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ABSTRACT

In this paper we propose an approach based on evolutionary 
computation for the prediction of secondary protein structure 
motifs. The prediction model consists of a set of rules that predict 
both the beginning and the end of the regions corresponding to a 
secondary structure state conformation (α-helix or β-strand). The 
prediction is based on a set of specific amino acid physical-
chemical properties. In addition we also propose a statistical study 
regarding the propensities of each pair of amino acids in capping 
regions of α-helix and β-strand. Experimental results confirm the 
validity of our proposal.1 

Keywords
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1. INTRODUCTION

The Protein Secondary Structure Prediction (PSSP) consists in 
predicting the location of α-helices, β-sheets and turns within a 
sequence of amino acids without any knowledge of the tertiary 
structure of the protein. 

PSSP has received much attention lately, since knowledge of the 
location of the elements in secondary structure could be used by 
approximation algorithms to obtain the tertiary structure of the 
protein. Being able to predict, from the amino acid sequence, how 
a protein will fold, is one of the main open problems 
in computational biology, and have important applications, 
e.g., in the development of new drugs. 

Repetitive motifs appear in a secondary structure, and the most 
common kind of motif is α-helices. An α-helix is a dextro-helical 
structure, with about 3.6 amino acids per turn. Such structure is 
held together by hydrogen bonds. In particular the amino group 
of amino acid n provides a hydrogen bond with the carbonyl 
group of the amino acid n + 4. Another common structure is 
represented by the β-sheet. β-sheets are characterized by theirs 
flattened and extended shape, and have a maximum number of 
hydrogen bonds between peptides that provide stability to the 
structure. Several 

peptide chains (β-strands), which are held together with hydrogen 
bonds in a zig-zag, constitute a β-sheet motif. The lamellar 
structure formed proportionate flexibility but no elasticity. The 
adjacent chains of a β-sheet can be targeted in the same direction 
(parallel β-sheet) or opposite direction (antiparallel β-sheet). 

Several methods were applied to the PSSP problem. These 
methods can be divided into two categories: statistical and soft 
computing approaches. Statistical methods are based on the 
calculation of amino acid probabilities to belong to a given 
secondary structure motif [5, 12, 17]. On the other hand, soft 
computing methods provide processing capabilities that can be 
used in order to solve the problem of PSSP. Such methods are 
characterized by the fact that they are tolerant of imprecision, 
uncertainty, partial truth, and approximation. The most popular 
soft computing paradigms applied to PSSP are: artificial neural 
networks (ANNs) [19, 18, 8], nearest neighbors [11, 21] and 
support vector machines (SVMs) [23, 4]. Some soft computing 
methods used in this problem are focused on determining contact 
maps (distances) between amino acids residues of a protein 
sequence. When a contact map is defined, proteins can be fold and 
the tertiary structure can be determined. 

In this paper, we propose a strategy based on evolutionary 
computation, to predict α-helices and β-sheets from sequences of 
amino acids. Evolutionary algorithms (EAs) are adaptive methods 
that can be used to solve optimization problems. We believe that 
EAs are good candidate for tackling this problem. In fact, PSSP 
can be seen as a search problem, where the search space is 
represented by all the possible folding rules. Such a space is very 
complex, and has huge size. EAs have proven to be particularly 
good in this kind of domains, due to their search ability and their 
capability of escaping from local optima. 

In our proposal, the prediction is made ab initio, i.e., without any 
known protein structure as a starting template for the search. The 
prediction model will consist of rules that predict both the 
beginning and the end of the regions corresponding to a α-helix or 
a β-strand. With this we want to overcome the limitation of 
existing methods that typically fail at predicting motifs boundaries 
[25]. In particular, β-sheet determination is more di cult to 
predict than α-helix [9]. 

Other methods based on evolutionary computation have been 
applied to secondary structure prediction. For instance, in [6], an 
EA using a torsion angle representation was proposed, and [22] 
introduced an approach based on lattice models. 
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In this paper, we also propose a statistical analysis of each pair of 
amino acids that are located in the beginning and the end of the α-
helix or β-sheets sequences. From this study, we can extract 
information that is useful in order to predict secondary structures. 

The rest of paper is organized as follow. In the next section we 
propose the statistical analysis of the sequences used in this paper. 
In section 3, we discuss our proposal to predict protein secondary 
structure motifs. Section 4 provides the experimentation and the 
obtained results. Finally, in the last section, we draw some 
conclusions and analyze possible future works. 

2. STATISTICAL ANALYSIS

As already mentioned, the aim of this paper is to propose a 
method for identifying the beginning and the end of motifs in 
sequence of amino acids. Figure 1 shows an example of a sub-
sequence of amino acids relative to a secondary structure, e.g., an 
α-helix. Each amino acid in the sequence is identified by its 
position, and amino acids between N1 and C1 form the α-helix. It 
follows that amino acids in positions N-cap and C-cap are those 
that immediately precede or follow the beginning or the end of 
the structure, respectively.  

α-helix 

Figure 1: Relevant positions in an α-helix and a β- strand. 

The analysis proposed in this section is aimed at studying the 
different propensities of each pair of amino acids in the studied 
positions, i.e, N-cap, N1, C-cap and C1. Knowing the propensities 
of each pair of amino acids at these positions would allow us to 
extract useful information about the properties of those amino 
acid that are located in the beginnings or ends of the different 
secondary structure motifs. 

Figure 2: Amino acid propensities in helix sequences. 

The data set used in this paper includes 163,461 α-helix and 
216,390 β-strand sequences with a total of 2,177,854 and 
1,606,246 amino acids respectively. These sequences were 
extracted using the DSSP program [15] from 12,860 non-
redundant protein sequences taken from PDB and sharing less 
than 30% sequence identity. To the best of our knowledge, no 
other approaches have used such a high number of secondary 
structure states sequences for a similar study. Before the cited 

analysis, we have also performed several studies to analyze certain 
aspects of the data set. Figure 2 show a chart with the propensities 
for each amino acid to belong to an α-helix. It can be noticed that 
A (Alanine) and L (Leucine) show the higher probabilities. It is 
worth mentioning that these two amino acids are nonpolar and 
have neutral charge.  

Figure 3: Amino acid propensities in beta sequences. 

On the other hand, Figure 3 proposes a graph relative to the amino 
acid probabilities of belonging to a β-strand. In this case, V 
(Valine), I (Isoleucine) and L (Leucine) have a probability of 12, 9 
and 8%, respectively. It is interesting to notice that also in this 
case these amino acids have two characteristics in common, 
nonpolarity and neutral charge. Figure 4 proposes a diagram that 
represents the ratios aimed at studying the most frequent length of 
an α-helix sequence.  We can observe that the most common 
length is 6, and that after this peak the graph almost follows a 
normal distribution with center 13. From this study we have 
discovered that the average size of α-helix sequences is 13.46 
residues. Figure 5 shows a diagram with the representation of the 
proportions for each size of β-strand sequences. Also in this case 
the graphs follows a normal distribution, were the average size of 
β-strands sequences is 7.49 residues. 

  Figure 4: Representation of alpha helix sequences sizes. 

Table 1 gives us more insights on propensities of each amino acid 
to belong to either N-cap or C-cap positions in α-helix and β-
strand sequences.  These probabilities are computed over the total 
of appearances of each amino acid. For the α-helix sequences, 
amino acids D, N, P and S (polar amino acids), present the higher 
probabilities in the case of N-Cap, while for the for C-cap position 
G (Glycine) is by far the most probable. As far as β-strand 



sequences are concerned, amino acids D, G and P (small amino 
acids), have the highest probabilities to appear in N -Cap 
positions. Amino acids D, G and N show the higher propensities 
for C-cap position. 

 Figure 5: Representation of beta strand sequence sizes. 

 Table 1: Amino acid propensities for C-cap an N-cap 
positions in alpha and beta sequences. 

    Alpha-helix        Beta-strands 

AA NCap  CCap AA NCap  CCap 
A 0,35 0,85 A 0,98 1,07 
C 1,19 1,36 C 0,74 1,04 
D 2,71 0,80 D 1,90 1,87 
E 0,48 0,64 E 1,13 1,06 
F 0,50 1,04 F 0,56 0,61 
G 2,00 3,46 G 1,87 1,71 
H 1,35 1,46 H 0,99 1,03 
I 0,29 0,51 I 0,39 0,49 
K 0,48 1,00 K 1,37 0,98 
L 0,31 0,82 L 0,51 0,83 
M 0,45 0,94 M 0,94 0,87 
N 2,40 1,78 N 1,72 1,85 
P 2,95 0,00 P 2,70 1,45 
Q 0,49 0,99 Q 1,18 0,88 
R 0,53 0,95 R 1,14 0,88 
S 2,68 1,25 S 1,04 1,32 
T 2,46 0,74 T 0,84 1,06 
V 0,33 0,56 V 0,40 0,50 
W 0,50 0,58 W 0,74 0,61 
Y 0,62 1,01 Y 0,63 0,64 

We have computed the global propensities for each pair of amino 
acids in N-cap, N1 positions and C1, C-cap positions (start and 
end of either a helix or a sheet). In this analysis, we have used the 
following formula: 

 where PXi Yi+1 is the global propensity for a XY amino acid pair, 
Xi Yi+1 represents a pair of amino acids in a helix or sheet capping 

 

position, and Ai Bi+1 represents a pair of amino acids in any 
consecutive position in a protein sequence. This equation 
computes the relative frequency of the amino acid pair XY at 
positions i, i+1 (N-cap, N1 or C1, C-cap) in helices or strands and 
the relative frequency of the pair in the total protein set. In order to 
analyze the propensity of a pair of amino acids to be in a certain 
position of either a helix or a strand, we used equation 1 and built 
four propensity matrices, shown in Figures 6, 7, 8 and 9. In these 
matrices, rows represent the N-cap or C-cap position and columns 
are relative to either the N1 or the C1 position. Each propensity is 
represented by a different color. A cell with blue color represents a 
high likelihood for this pair. On the other hand, a red cell 
represents a low propensity. 

 Figure 6: Propensity matrix for N-cap, N1 helix positions. 

Figure 6 shows the propensity matrix for N-cap, N1 positions of 
the helices. From the analysis of this matrix, we can conclude that 
amino acids D, N ,S and T (Aspartic acid, Asparagine, Serine and 
Threonine, respectively) are the most likely to occupy the N1 of a 
helix, while there are no specific amino acids for the N-cap 
position. This means that every amino acid could hold such a 
position. By further analyzing these amino acids, we have 
observed that all these amino acids have a polar side chain. 
Moreover, the most frequent pair in an α-helix start is M, T 
(Methionine and Threonine). 

 Figure 7: Propensity matrix for N-cap, N1 helix positions. 

Figure 7 shows the propensity matrix for C1, C-cap positions of 
the helices. In this case the amino acid P (Proline) has the lowest 
propensity in both C1 and C-cap positions and the G amino acid 
(Glycine) at C1 position. The most frequent pair in an α-helix end 
is Q, H (Glutamine and Histidine).  



Figure 8 shows the matrix for N cap, N1 positions of β-strands. 
From the analysis of the matrix, we can conclude that the amino 
acids that are most likely to appear in N1 position are G, P, N and 
D (Glycine, Proline, Asparagine and Aspartic acid respectively). 
Also in this case, these amino acids show a common 
characteristic: they have a small residue. Also in this case no 
specific conclusion can be drawn for the N-cap position. The most 
frequent pair in a β-strand start is P, V (Proline and Valine). 

Figure 8: Propensity matrix for Ncap-N1 strand positions. 

Figure 9 report the propensity matrix for C1, C-cap positions of a 
β-strand. In this case the amino acids N, D and P (Proline) have 
the lowest propensity to be in position C1, while amino acids I, V 
and Y (Isoleucine, Valine and Tyrosine respectively) shows the 
highest propensity for this position. In this case, these amino acids 
are all hydrophobic residues. No particular conclusion can be 
derived for the C-cap position. The most frequent pair in a β-
strand end is Y, C (Tyrosine and Cysteine). 

Figure 9: Propensity matrix for C1-Ccap strand positions. 

3. MATERIALS AND METHODS

In this section, we present our proposal for the identification of α-
helices and β-strands within a sequence of amino acids. α-helix 
and β-strand are a subsequence of amino acids.  

The aim of this paper is to propose an EA capable of finding a set 
of rules that can be used in order to predict whether or not a 
particular amino acid lies in either position N-cap or C-cap, for 
both α-helices and β-sheets. With such a predicting model, we 
could then precisely identify the beginning and the end of the 
considered secondary structures. 

The experimental procedure followed in this paper is shown in 
Figure 10. During the data acquisition stage, the α-helix and β-
strand sequences are extracted from the Protein Data Bank (PDB) 
[3], as described in section 2. Later, these sequences are used for 
training our evolutionary algorithm, which will generate a set of 
rules representing the predictive model. As already mentioned, 
these rules establish if a particular amino acid is relative to either a 
N-cap or a C-cap position, so if the amino acid precede or follow
the begin or the end of a structure. In order to test our algorithm,
we apply these rules to a set of known protein sequences, thus
used as test set.

Figure 10:  Experimental and prediction procedure. 

3.1   Encoding 

As already stated, the prediction model proposed by our algorithm 
will be based on a set of amino acid properties. In particular, we 
consider three properties: 

Hydrophobicity For this property, we use Kyte-Doolitle 
hydropathy profile [14] for the hydrophobicity representation. In 
this way the hydrophobicity spectrum is discretized into a set of 
well defined intervals. 

Polarity The Grantham’s profile [13] was used for the polarity 
representation. 

Charge Klein’s scale [16] for net charge codification. We 
represent an amino acid with negative charge, according the 
Klein’s scale, with 1, a positive charge with 1 and a neutral charge 
with 0. 



·

Notice that the profile values of each amino acid are normalized 
to a range of between 1 and 1 for hydrophobicity and polarity. 

Each individual of the population represents a rule, and will 
consist of window of two amino acids. For each amino acid, the 
three above mentioned properties will be represented. An 
individual may represent either the beginning or the end of an α-
helix or a β-sheet (N-cap, N1 or C1, C-cap positions). 

Figure 11 proposes an example of individual, where positions P1, 
P2, P1′ and P2′ represent the hydrophobicity ranges of the first and 
second amino acid of the window, respectively. P1 and P2 are real 
numbers which determine a hydrophobicity range for the amino 
acid in that position. Positions P3, P4, P3′ and P4′ represent the 
polarity intervals according to Grant scale of the first and second 
amino acid respectively. Also in these cases, these values are real 
numbers, which determine a polarity range for the amino acid in 
that position. Positions P5 and P5′ represent the net charge 
property values of the two amino acids. These two positions may 
assume three different integer values: 1 for a negative charge, 0 
for neutral charge and 1 for a positive charge. 

P1 P2 P3 P4 P5 P’1 P’2 P’3 P’4 P’5

N-cap    N1 

Figure 11: Example of chromosome codification for a 
beginning of an α-helix or a β-strand. 

3.2   Fitness Function  
The aim of the algorithm is to find both general and precise rules 
for identifying helices and sheets. To this aim, we have chosen as 
fitness of individuals the F-measure, which is given by the 
following formula: 

F  
Recall · P recision

. Recall P recision

The higher the fitness, the better the individual. Recall represents 
the proportion of training examples that matches this rule. 
Precision represents the error rate. 
In the literature, it has been proved that α-helices and β-sheets are 
characterized by some properties of the amino acids in positions 
N-cap, N1 or C1, C-cap. In order to increase the effectiveness of 
our proposal, we consider some of these properties. In particular, 
in [20] it has been demonstrated that there are molecules with 
asymmetrical distributions of charge in the limits of an α-helix. 
This means that the residues in limits of the helix are polar. 
Results obtained by our algorithm confirm this observation. 
Moreover, in [7, 10], it has been proven that many helices present 
a positive charge in its last turn and a negative charge at its first 
turn.
On the other hand, we also consider some specifications for the β 
β-sheet capping prediction. It has been demonstrated that 
hydrophobic amino acids have a high propensity to be at N1 and 
C1 positions (especially V, I, Y and W) in a β-sheet. In addition, 
many strands present a negative charge in C-cap and a positive 
charge in N-cap positions [9]. 

 

We increase the score of those individuals that fulfill one 
requirement in a 50%, and in a 100% for those individuals that 
present the two properties. 

3.3   Genetic Operators 

Individuals are selected with a roulette wheel mechanism. A 
roulette wheel is built, where the sector associated to each 
individual of the population is proportional its fitness. Individuals 
with higher fitness have more probability of being selected, since 
their sector is wider.  

Elitism is also applied, i.e., the best individual always survives to 
the next generation. 

Uniform crossover is used in order to generate offsprings. 
Crossover is applied with a 1.0 probability. All the offsprings are 
obtained by crossover except the one with best score which was 
copied without any change (elitism). Mutation is applied with a 
probability of 0.5. If mutation is applied, one gene of the 
individual is randomly selected, and its value is increased or 
decreased by 0.01. If the selected gene is relative to the charge of 
the amino acid, then its value is randomly changed to one of the 
other two allowed possibilities. After that an individual has been 
mutated, it is checked for validity, i.e., its values are within the 
ranges allowed for each property: [1, 1] for hydrophobicity and 
polarity and 1, 0 or 1 for the net charge. If the encoded rule is not 
valid, then the mutation is discarded. 

The initial population is randomly initiated. For the experiments 
proposed in this paper, the population size is set to 100. After 
having evaluated the initial population, the first generation is 
created. If the fitness of the best individual does not increase over 
twenty generation, the algorithm is stopped and a solution is 
provided. 

We evolve four populations separately: one population contains 
individuals that encode rules identifying the beginning of an α-
helix, a second population contains individuals representing rules 
identifying the end of the helix. A third population contains 
individuals that encode rules identifying the beginning of a β-
sheet, and the last population contains individuals representing 
rules for the end of a β-sheet. At the end of the evolutionary 
process, the best individuals from each population are extracted, 
and together they form the proposed solution. 

In the following we outline the main solution adopted for the EA 
proposed. In particular, we discuss the various solutions 
concerning the fitness, the representation and the genetic operators 
used. 

4. EXPERIMENTS AND DISCUSSION

In this section, we present the experimentation performed in order 
to assess the validity of our proposal. The prediction of protein 
secondary structure is obtained from amino acid sequences. For 
this reason, we need to obtain a set of known protein sequences. 
We obtain the sequences from the PDB site [3], where the 
information regarding secondary structures is also provided. 
However this information will be used only for testing our 
predicting model. 



As explained in section 3, a set of 12,830 non-homologous and 
non-redundant proteins with a homology lower than 30% were 
obtained from PDB, using the PDB Advanced Search [2]. We 
have only selected the structures which contain protein chains and 
not DNA or RNA chains. The complete list of the 12,830 PDB 
protein identifiers can be downloaded in [1]. The DSSP program 
[15] was used in order to extract the secondary structure relative 
to α-helix and beta-sheet states of each protein based on the 
atomic coordinates in the PDB file. Once we have located the 
motifs in the protein sequence, we extract the amino acids from 
N-cap to C-cap positions of the helix or sheet (figure 1), which 
are the amino acids that are in relevant positions in an α-helix or 
beta-sheet. From these sequences, we have randomly selected a 
subset of 5,000 α-helix and 5,000 β-strand sequences with a 
minimum size of four residues. These sequences were extracted 
from a subset of proteins sequences with length less than 150 
residues. Coils and no-motifs protein sequences are included as 
negative examples. 

In order to validate the obtained results, a 10-fold cross- 
validation has been applied. The data set is divided into 10 
subsets, and the holdout method is repeated 10 times. Each time, 
one of the 10 subsets is used as the test set and the other 9 subsets 
are put together to form a training set. Then the average result 
across all 10 trials is computed. A model is obtained for each fold. 
This model consists of a set of rules that identify beginnings and 
ends of an α-helix or of a β-strand respectively. 

For each fold, we compute the following measures: 

Recall represents the percentage of correctly identified positive 
cases. In our case, Recall indicates what percentage of beginnings 
or ends of motifs have been correctly identified. 

Precision is a measure to evaluate the false positive rate. 
Precision reflects the number of real predicted examples.  

Specificity, or True Negative Rate, measures the percentage of 
correctly identified negative cases. In this case, Specificity 
reflects what percentage of no beginnings or ends of motifs have 
been correctly identified.  

Accuracy is the proportion of true results in the population. 

The optimal number of rules necessary for the prediction is 
unknown. For this reason, we performed experiments with a 
different number of iterations of the algorithm, more specifically 
from 10 to 40. Notice that after each iteration a set of rules is 
provided. The more iterations of the algorithm, the more rules 
will be incorporated in the final prediction model. 

In the experiments proposed in this paper, we used the following 
parameters for the EA. The population size is set to 100. 
Crossover and mutation probabilities are set to 1.0 and 0.5, 
respectively. The maximum number generations is set to 100. 
These parameters were established after a set of preliminary tests. 

Table 2 and Table 3 show the obtained results for the helix 
capping prediction algorithms (starts and ends of helices). In 
particular, the first column provide the number of iterations of 
the algorithm, and the rest of the columns report the average 
recall, specificity, precision and accuracy. Standard deviation is 
also reported. It can be noticed that for the α-helix capping 
prediction, the algorithm obtained extremely high accuracy, with 
an average of 0.99. The average recall is about 0.64, in C-cap 

and about 0.62 in N-cap prediction. Precision shows a low rate of 
error in the prediction with an average of about 0.69. All the 
measures vary weakly depending on the number of iterations. 
The results become more or less stable after 20 executions for all 
the measures. Previous works achieve an average recall of 30 
38% in N-cap prediction [24]. Our approach improved these 
results. 

Table 2: Average results for the prediction of the beginning of 
α-helices obtained for different number of iterations. Standard 
deviation is reported between brackets. 

It. Recall  μ±σ Spec. μ±σ Prec. μ±σ Accuracy 

10 0.604±0:103 0.993±0.001 0.693±0.024 0.992±0.002 

20 0.635±0.096 0.991±0.002 0.687±0.023 0.993±0.002 

30 0.638±0.066 0.993±0.000 0.692±0.012 0.992±0.001 

40 0.623 ±0.055 0.995±0.000 0.732±0.010 0.992±0.001 

Table 3: Average results for the prediction of the end of α-
helices obtained for different number of iterations. Standard 
deviation is reported between brackets. 

It. Recall  μ±σ Spec.  μ±σ Prec. μ±σ Accuracy 

10 0.633±0:160 0.993±0.002 0.665±0.022 0.992±0.003 

20 0.643±0:196 0.993±0.003 0.694±0.049 0.993±0.004 

30 0.656±0.066 0.992±0.002 0.668±0.031 0.992±0.003 

40 0.634 ±0:101 0.992±0.001 0.640±0.013 0.992±0.002 

Results relative to the prediction of β-strands capping are 
reported in table 4 and table 5. These results are slightly less 
accurate than those relative to the helix prediction. The main 
difference can be noticed in the results obtained for the N-cap and 
C-cap recall, with an average recall of about 0.18 in N-cap, and
about 0.52 in C-cap prediction. So, in the case of the N-cap
prediction, the result is much lower than in the case of N-cap
prediction of α-helices. The precision is about 0.59, in N-cap and
about 0.68 in C-cap prediction. High levels of accuracy and
specificity are shown in both cases. Unlike α-helices [24], to the
best of our knowledge, there are not previous results reported in
the literature for the β-sheet capping prediction.



Table 4: Average results for the prediction of the beginning of 
β-strands obtained for different number of iterations. 
Standard deviation is reported between brackets. 

It. Recall  μ±σ Spec.  μ±σ Prec.  μ±σ Accuracy 

10 0.151±0.083 0.995±0.001 0.671±0.039 0.978±0.002 

20 0.163±0.040 0.988±0.001 0.596±0.018 0.996±0.001 

30 0.198±0.015 0.994±0.000 0.551±0.019 0.975±0.000 

40 0.187 ±0.055 0.995±0.001 0.565±0.044 0.975±0.002 

Table 5: Average results for the prediction of the end of β-
strands obtained for different number of iterations. Standard 
deviation is reported between brackets. 

It. Recall μ±σ Spec. μ±σ Prec. μ±σ Accuracy 

10 0.489±0:101 0.990±0.001 0.615±0.014 0.984±0.003 

20 0.524±0.040 0.991±0.001 0.663±0.008 0.988±0.001 

30 0.516±0.014 0.994±0.000 0.760±0.019 0.985±0.000 

40 0.586 ±0.059 0.993±0.001 0.728±0.019 0.987±0.002 

Figure 12 shows an example of rule discovered by our algorithm. 
In particular this rule is relative to the beginning of an α-helix. If 
we inspect this rule, we can see that the hydrophobicity value for 
the amino acid in the N-cap position is between 0.52 and 0.92, 
the polarity value lies between 1.0 and 0.93 and neutral charge 
(0.0). Therefore, this amino acid could be L (Lysine) or F 
(Phenylalanine), which fulfills these features according to the 
cited scales. As it can be noticed, the rules that compose the 
prediction model provided by our algorithm are easily 
interpretable. We believe that this is an important factor, since 
this would facilitate the interpretation of results by an expert in 
the field. 

0.52 0.92 1.00 0.93 0.00 0.73 1.00 0.65 0.85 1.00 

N-Cap     N1 

Figure 12: Example of a resulting rule for a beginning of an α-
helix. 

In conclusion, we can say that the proposed algorithm obtained 
satisfactory results. Moreover, the algorithm has been tested 
using a high number of sequences (5,000 helix and 5,000 strand 
sequences). We believe that this represent an important factor. In 
fact, the number of protein sequences available increase by the 
day, and thus, having a method that is scalable would be very 
important. 

 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed an evolutionary algorithm for α-
helix and β-strand capping prediction from sequences of amino 
acid. The prediction is based on three amino acids properties, i.e., 
hydrophobicity, polarity and net charge. Moreover, some 
particular characteristic of these motifs are considered in order to 
improve the search process performed by the algorithm. 
We have performed a statistical analysis aimed at discovering the 
amino acid propensities in capping positions in 163,461 α-helices 
and 216,390 β-sheets extracted from PDB using the DSSP 
program. We have computed the probability, for each pair of 
possible amino acids, to appear in both N-cap and N1 positions 
and C1, C-cap positions. This study provided us with useful 
information for the prediction of secondary structure. In fact, this 
information could be used for modifying the fitness function, 
improving in this way the evolutionary search. A study of each 
single amino acid has been also developed in each position. From 
this study, we could individuate which amino acid is more 
probable to appear in one of the positions taken into 
consideration. 
In order to test the validity of the proposed algorithm, we 
performed a set of experiments using 5,000 α-helix and 5,000 β-
strand sequences. These sequences were extracted from a protein 
data set from Protein Data Bank. In particular, we considered 12; 
830 non-redundant and non-homologous protein with a 
homology rate lower than 30%. To the best of our knowledge, no 
other approaches have used such a high number of sequences in 
α-helix capping regions prediction. Results obtained on the 
prediction of α-helices are very encouraging and in particular, the 
accuracy characterizing the prediction models obtained is very 
high independently from the number of rules generated. As far as 
the experiments on the prediction of β-sheets, we have not found 
other results in the literature to contrast our results. However, 
also in this case, the accuracy obtained is satisfactory, even if the 
results are slightly worse than those obtained for the α-helices. 
Future works will be focused on the analysis of different 
properties to be included in the fitness function, with the aim of 
increasing the quality of the prediction model. For example we 
are planning to incorporate the residue size, which has a 
significant relevance according to our statistical study. We will 
also expand the number of residues in the window of amino 
acids. 
Furthermore, we are studying the possibility of incorporating a 
local search phase in the algorithm that will help to improve 
individuals. We also intend to extend our experimentation to 
other dataset of protein sequences. 
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