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Abstract. Protein structure prediction consists in determining the thre-
e-dimensional conformation of a protein based only on its amino acid se-
quence. This is currently a difficult and significant challenge in structural
bioinformatics because these structures are necessary for drug designing.
This work proposes a method that reconstructs protein structures from
protein fragments assembled according to their physico-chemical simi-
larities, using information extracted from known protein structures. Our
prediction system produces distance maps to represent protein struc-
tures, which provides more information than contact maps, which are
predicted by many proposals in the literature. Most commonly used
amino acid physico-chemical properties are hydrophobicity, polarity and
charge. In our method, we performed a feature selection on the 544 prop-
erties of the AAindex repository, resulting in 16 properties which were
used to predictions. We tested our proposal on 74 mitochondrial ma-
trix proteins with a maximum sequence identity of 30% obtained from
the Protein Data Bank. We achieved a recall of 0.80 and a precision
of 0.79 with an 8-angstrom cut-off and a minimum sequence separation
of 7 amino acids. Finally, we compared our system with other relevant
proposal on the same benchmark and we achieved a recall improvement
of 50.82%. Therefore, for the studied proteins, our method provides a
notable improvement in terms of recall.

Keywords: Protein structure prediction, physico-chemical amino acid
properties, fragment assembly, protein distance map, feature selection.

1 Introduction

Knowing the protein native 3D structures is currently a difficult and significant
challenge because these structures determine protein function and they are neces-
sary to design new drugs. Experimental methods to determine protein structures,
generally X-ray crystallography and nuclear magnetic resonance, are very expen-
sive and they have limitations with the structures of some proteins. Moreover,



the great number of protein sequences whose three-dimensional structures must
be determined, make computational methods of protein structure prediction a
very useful tool.

Protein structure prediction (PSP) consists in determining a three-dimensio-
nal model based only on the amino acid sequence of a protein and it is currently
an issue with great significance in structural bioinformatics [1].

There are currently two main approaches for the PSP problem. The first
is the ab initio methods, which find the structure that corresponds to a global
minimum of a function, generally a energy function, based in sequence properties.
These methods do not use any protein as a template, their computational cost
is generally very high and their reliability decreases when the sequence length
increases [2].

The second main approach is homology methods, also known as comparative
modeling, which try to solve the structure based on protein templates (template-
based modeling). This approach is based on the structural conservation of pro-
teins in a protein family, since the 3D structures are more conserved in evolution
than sequences. These methods are considered the most currently reliable ap-
proach for PSP problem [2].

Template-based modeling methods achieve good results when solved struc-
tures are available for proteins with sequences similar to the sequence of the
target protein. However, when no homologous proteins with solved structures
exist, free-modeling is used.

Within free-modeling methods we find the fragment assembly methods that
reconstruct the structure of a protein from structural fragments of other proteins.
Three of most relevant fragment assembly-based methods are Fragment-HMM
[3], FragFold [4] and ROSETTA [5]. ROSETTA uses a two-stage approach, which
begins with a low-resolution model and continues with a representation of all
the atoms of the protein, with the goal of minimizing the corresponding energy
function.

Since all information used in structure prediction must be inferred from amino
acid sequence, there is many useful information derived from sequence used in
the literature. Among this information, there are recent methods that use a
great set of physico-chemical properties of amino acids [6]. However, the most
commonly used properties are hydrophobicity, polarity and charge, which are
used, for example, in the models HP and HPNX [7]. There is a database of amino
acid properties named AAindex [8] which contains currently 544 properties, from
which we selected a subset of 16 in this work by a feature selection process.

The motivation for applying feature selection (FS) techniques has shifted from
being optional to becoming a real prerequisite for model building. Specifically,
in the PSP problem, the feature selection was also applied and improves the
accuracy of predictions [9]. Theoretically, having more features should give us
more discriminating power. However, this can cause several problems: increased
computational complexity and cost; too many redundant or irrelevant features;
and estimation degradation in the classification error.



Based on the generation procedure, FS can be divided into individual feature
ranking (FR) and feature subset selection (FSS) [10,11]. FR measures feature-
class relevance, then ranks features by their scores and selects the top-ranked
ones. These methods are widely used due to their simplicity, scalability, and good
empirical success [12]. However, FR is criticized because it can only capture the
relevance of features to the target concept, while redundancy and basic interac-
tions between features are not revealed. Furthermore, it is difficult to determine
the number of features retained, because a threshold is required. In contrast, FSS
attempts to find a set of features that performs well. It integrates the metrics
for measuring feature-class relevance and feature-feature interactions.

In this work, a hybrid algorithm was used, BARS [13], in order to handle large
datasets to take advantage of the above two approaches (FR, FSS) [14]. This
method decouple relevance analysis and redundancy analysis, and have proven to
be more effective than ranking methods and more efficient than subset evaluation
methods in many traditional high-dimensional datasets.

There are many PSP algorithms currently in the literature that produce a
contact map to represent the predicted structure [6,15]. In contrast, our method
produces a distance map, which includes more information than a contact map
because it incorporates the distances between all of the amino acids in the
molecule, irrespective of whether they make contact. There are fewer propos-
als in the literature that predict distance maps [16], because it is more difficult
to perform regression than classification (continuous distances instead binary
contacts). Some authors discretize the distances to predict, providing an inter-
mediate representation between contacts and continuous distances, such as the
proposal of Walsh et al. 2009 [2] which uses 4-class distance maps. However,
unlike 3D models, both distance and contact maps have the desirable property
of being insensitive to rotation or translation of the protein molecule.

Our method is a free-modeling approach based on fragment assembly that
selects the best distances between pairs of amino acids using fragments of known
structures of proteins. These fragments are chosen through a searching process
for nearest neighbors by similarity in 16 physico-chemical properties of amino
acids selected from the AAindex repository.

We tested our methodology by performing predictions on mitochondrial ma-
trix proteins from the Protein Data Bank (PDB) [17] with a maximum sequence
identity of 30%. We have performed predictions with a minimum sequence sep-
aration of 7 amino acids, as has been used in the literature [18]. Finally, we
compared our system with RBFNN method proposed by Zhang et al. 2005 [19]
with the same proteins in the same experimental conditions.

In section 2, we define the elements, procedures and evaluation measures used
by our prediction method. In section 3, we detail the used protein datasets, the
experimental settings and the achieved results. Finally, in section 4, we describe
the main conclusions of the performed study and we outline approaches for future
studies.



2 Methods

2.1 Representation of Protein Structures

The representation of protein structure that we used is the distance map, which is
a square matrix of order L, where L is the number of amino acids in the protein
sequence. The distance matrix is divided in two parts: observed part (upper
triangular) and predicted part (lower triangular). The element (i, j), where i < j,
of the distance matrix is the actual distance measured in angstroms (Å) between
the amino acids ith and jth in the sequence. To measure the distances between
amino acids, it is necessary to use a reference atom of each amino acid. The
most commonly used reference atoms are the alpha carbon and the beta carbon
of amino acids [18]. In our method, we used the beta carbon (with the exception
of glycine, for which the alpha carbon was used). The distances predicted by
the algorithm are stored in the lower triangular of the distance map. Thus, the
element (i, j) with i > j of the distance matrix is the predicted distance measured
in angstroms between the amino acids ith and jth of the protein sequence.

2.2 Construction of Protein Fragments Knowledge Base

Our prediction system ASPpred (Amino acid Subsequences Properties-based
Predictor), works in two phases. In the first phase, it constructs a gallery of
protein fragments from all the subsequences of all the proteins in the training
set. In the second phase, the target structures of the proteins in test set were
predicted using the generated protein fragments model.

The knowledge base consists of a set of vectors called prediction vectors.
Each one of these vectors was obtained from one training protein subsequence
and contains the physico-chemical properties of the amino acids ends of such
fragment. The vector also contains the actual distance between them.

In order to define our prediction vectors formally, it is necessary to define
the following elements. In first place, an amino acid sequence of length L is
defined by s1 . . . sL. A fragment or subsequence into a sequence is represented
by s1 . . . sb . . . se . . . sL, where sb . . . se is the fragment, sb is the beginning amino
acid of the fragment, se is its ending amino acid and 1 ≤ b < e ≤ L.

Moreover, physico-chemical properties are defined by P1 . . . Pm, where m is
the number of properties used by the algorithm. The value of the property Pi

of an amino acid sj is defined by Pi(sj). The prediction vector of a fragment is
defined by the tuple showed in Equation 1.

{B1, E1, . . . , Bm, Em, D} (1)

Where D is the distance between amino acids sb and se. Bi and Ei are defined in
Equations 2 and 3, respectively. Bi represents the physico-chemical distribution
of the entire sequence with decreasing weighting starting at the first amino acid
of the fragment. Ei is analogous to Bi starting at the last amino acid of the
fragment.



Bi = Pi(sb) +
L∑

j=1
j �=b

Pi(sj)
L|b − j| , ∀i ∈ {1..m} (2)

Ei = Pi(se) +
L∑

j=1
j �=e

Pi(sj)
L|e − j| , ∀i ∈ {1..m} (3)

Note that prediction vectors represent fragments of different lengths, but these
lengths is not included in them. The physico-chemical properties included in the
prediction vectors are explained in the next subsection. From the point of view
of data mining, Bi and Ei are the attributes of training instances and D the
class to predict.

2.3 Physico-chemical Feature Selection

To the aim of using the smallest and most effective set of physico-chemical
properties, we performed a feature selection from the repository AAindex of
physico-chemical properties of amino acids. This repository currently contains
544 amino acid properties.

We used BARS to perform the feature selection over all the properties in
AAindex. BARS is an agglomerative algorithm due to the way it constructs the
final subset of selected features. The method begins by generating a ranking.
Then, pairs of features are obtained with the ranking’s first features, in combi-
nation with each one of the remaining features on the list. The pairs of features
are ranked according to the value of the evaluation, and the process is repeated,
that is, the subsets made up by the first sets on the new list are compared with
the rest of the sets. At the end, the algorithm returns the best positioned feature
subset of all the subsets evaluated.

BARS can use any measure to evaluate feature subsets. Taken into account
this domain with a numeric class attribute where distance between amino acids
is represented, we used linear regression as evaluator criteria when the search
process is carried out to find a relevant and not redundant subset of features.

The dataset that we used for the feature selection is published by Fariselli et
al. 2001 [18], that contains 173 proteins with a sequence identity lower than 25%,
without chain breaks and with alignments with more than 15 sequences in the
corresponding families. This process results on 16 physico-chemical properties
that are showed in Table 1 with the same name and description used in AAindex.

2.4 Structure Reconstruction

The second phase of our system consists in obtaining the prediction vectors of
the target proteins and in performing a full sequential search to compare each
test prediction vector with the training prediction vectors achieved in the first
phase. The objective was to find the training prediction vector most similar to



Table 1. The 16 physico-chemical properties of amino acids considered from AAindex

CHOC760104 Proportion of residues 100% buried
LEVM760104 Side chain torsion angle phi(AAAR)
MEIH800103 Average side chain orientation angle
PALJ810107 Normalized frequency of alpha-helix in all-alpha class
QIAN880112 Weights for alpha-helix at the window position of 5
WOLS870101 Principal property value z1
ONEK900101 Delta G values for the peptides extrapolated to 0 M urea
BLAM930101 Alpha helix propensity of position 44 in T4 lysozyme
PARS000101 p-Values of mesophilic proteins based on the distributions of B values
NADH010102 Hydropathy scale based on self-information values in the two-state

model (9% accessibility)
SUYM030101 Linker propensity index
WOLR790101 Hydrophobicity index
JACR890101 Weights from the IFH scale
MIYS990103 Optimized relative partition energies - method B
MIYS990104 Optimized relative partition energies - method C
MIYS990105 Optimized relative partition energies - method D

each test prediction vector. For the search process, we consider only training
vectors with the same amino acid ends (first and last of each subsequence) than
the test vectors. Figure 1 shows this search scheme.

test Bt
1 Et

1 . . . Bt
m Et

m ?

training
...

Br
1 Er

1 . . . Br
m Er

m Dr

...

Fig. 1. Search for the most similar training prediction vector

In the search scheme of the Figure 1, Bt
1 . . . Bt

m and Et
1 . . . Et

m are the elements
of the test subsequence explained above and Br

1 . . . Br
m and Er

1 . . . Er
m are those

of the training subsequence with more similarity to the test subsequence. The
distance field Dr of the most similar training vector is assigned to the distance
field (symbolized with ?) of test vector.

The training vector with the highest similarity to a test vector satisfies the
condition showed in Equation 4. As can be seen in that condition, for the com-
parison of the test and training vectors, an Euclidean distance is used, which
includes all the attributes in these vectors with same weigths. All these attributes
are normalised previously. The normalization ensured that all of the attributes
are on the same scale and contributed equally to the prediction.



min
r∈TrainingSet

√√√√
m∑

i=1

(Bt
i − Br

i )2 +
m∑

i=1

(Et
i − Er

i )2 (4)

Finally, once predicted distances are assigned in test vectors, these distances
are stored in the lower triangular of the distance map of the test sequence.
Specifically, the distance field of the prediction vector of the subsequence sb . . . se

is assigned to the position (e, b) of the distance map. Thus the structure of each
target sequence, by its distance map, is reconstructed.

2.5 Evaluation of Predicted Models

We used several measures to evaluate the quality of the predictions. The first
measure is the precision, that is the percentage of predicted contacts that are
present in the native structure. This measure is largely used in the literature of
protein structure prediction, as in the works of Fariselli et al. [18,20]. The second
one is the recall, that is the percentage of native contacts that are predicted to be
contacts. Recall has also been widely used in other protein prediction methods
[19]. Finally, we have obtained measures of accuracy, specificity and Matthews
Correlation Coefficient, that may often provide a much more balanced evaluation
of the prediction than percentages [21]. The following formulas (5,6,7,8,9) define
these five measures.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Specificity =
TN

TN + FP
(8)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(9)

These measures are used to evaluate the quality of a classification: i.e., each pre-
dicted value is assigned a value of 0 or 1. Thus, there are four possible outcomes
depending on the quality of the predictions: a) both the real and predicted val-
ues are 1 (true positive, TP), b) both the real and predicted values are 0 (true
negative, TN), c) the real value is 1 and the predicted value is 0 (false negative,
FN) and d) the real value is 0 and the predicted value is 1 (false positive, FP).
Because in this case, the class to predict is a real value (a distance), to obtain
these measures it is necessary to binarise the class using a distance threshold or
cut-off.



In this work, we used a cut-off value of 8 angstroms, which is commonly used
in the literature [18,20,19]. In the evaluation of the measures, we omitted pre-
dictions of amino acid pairs with a minimum separation in the protein sequence
of 7 amino acids, as in Fariselli et al. [18].

3 Experimentation and Results

3.1 Prediction of Mitochondrial Matrix Proteins

We performed an experimental validation of our predictor using all mitochondrial
matrix proteins (GO ID: 5759) published in the PDB with a maximum identity
of 30% (non-homologous proteins) at October 2011 (74 proteins with a maximum
length of 1094 amino acids). In Table 2, we show the PDB codes of the proteins
used in this study. We classified proteins in three groups of sequence length L
(L ≤ 300, 300 < L ≤ 450 and L > 450) in order to show the prediction behavior
for each sequence length interval.

Table 2. Mitochondrial matrix proteins used to train and test our predictor

L ≤ 300 2CW6 1CSH 2DFD 3CMQ 1PJ3 3C5E

1BWY 2GRA 1D2E 2E0A 3EXE 1WDK 3DLX

1EFV 2HDH 1F0Y 2IB8 3GH0 1WLE 3E04

1KKC 2O23 1GKZ 2IZZ 3KGW 1ZMD 3IHJ

1MJ3 2WYT 1HW4 2OAT 7AAT 2FGE 3IKL

1QQ2 3ED7 1I4W 2QB7 L > 450 2J6L 3IKM

1R4W 3EMN 1OTH 2QFY 1A4E 2JDI 3MW9

1RHS 3QUW 1RX0 2R2N 1CJC 2UXW 3N9Y

1TG6 3ULL 1W6U 3AFO 1G5H 2WYA 3OEE

1XX4 5CYT 2A1H 3BLX 1HR6 2XIJ 3OU5

1ZD8 L300 − 450 2BFD 3BPT 1OHV 2ZT5 3SPA

A cross-validation was performed over each group of proteins and over the
all 74 proteins. We used a leave-one-out scheme in order to avoid the effect of
fold choice in a cross-validation with folds. Table 3 shows the five evaluation
measures obtained in this experiment.

We achieved a recall value of 0.80 and a precision of 0.79 for the complete
group of proteins, as shown in Table 3. We obtain best predictions, in terms of
recall and precision, with proteins of length between 300 and 450 amino acids.
In this group of proteins, we achieved recall of 0.84 and precision of 0.83.

In most cases the precision obtained in predicting proteins with long se-
quences (more than 300 amino acids) is lower than with proteins of short se-
quences. For example, in the work of Fariselli et al. 2001 [18], which also uses
a cross validation, cut-off of 8 angstroms and minimum sequence separation of
7 amino acids, achieved a precision value of 0.11 for proteins of more than 300
amino acids.



Table 3. Efficiency of our method predicting mitochondrial matrix proteins

Protein set Recall Precision Accuracy Specificity MCC

All proteins (74) 0.80 0.79 0.97 0.97 0.82
L ≤ 300 (20) 0.77 0.76 0.98 0.98 0.75
300 < L ≤ 450 (27) 0.84 0.83 0.99 0.99 0.83
L > 450 (27) 0.77 0.76 0.95 0.95 0.82

(a) 1TG6 (277 amino acids) (b) 3BLX (349 amino acids) (c) Color scale

Fig. 2. Predicted distance maps for the mitochondrial matrix proteins 1TG6 (a) and
3BLX (b) with their color scale (c)

Figure 2 shows the predicted distance maps for protein 1TG6 (277 amino
acids) and 3BLX (349 amino acids) from the study set. We show a color scale to
represent the distances, ranging from the minimum (red) to the maximum (blue)
distance. We can appreciate in these distance matrices that the lower triangular
(predicted distances) is largely similar to the upper triangular (real distances).

3.2 Comparison with RBFNN on the Same Benchmark

In order to assess the quality of the predictions obtained with our method and to
validate our predictor, we compared our proposal with RBFNN method proposed
by Zhang et al. 2005 [19]. We predicted the same test proteins with the same
training sets in the same conditions.

Zhang et al. 2005 used recall (namely accuracy (Ap) by the authors), predicted
and desired numbers to evaluate the performance. Predicted numbers Np is the
count of the predicted contacts by the algorithm and desired numbers Nd is the
total number of contacts. The contact threshold was set at 8 Å.

In Table 4 we show the results of this experimentation. As we can see in
this table, the average recall (Ap) of ASPpred is 50.82% higher than RBFNN.



Table 4. Comparison at 8 Å with RBFNN on the same benchmark

PDB code (length)
RBFNN ASPpred

Np Nd Ap Np Nd Ap

1TTF (94) 376 1421 26.46 1307 1421 91.96
1E88 (160) 1006 3352 30.01 3075 3352 91.73
1NAR (290) 3346 10524 31.79 1797 10524 17.07
1BTJ B (337) 3796 14283 26.58 14026 14283 98.20
1J7E (458) 6589 25026 26.33 23407 25026 93.53

Average 27.67 78.49

Np: predicted numbers; Nd: desired numbers; Ap: prediction accuracy (%).

Only the protein 1NAR is poorly predicted because there is only one protein as
training in the benchmark and it seems to be insufficient to build an effective
knowledge base of protein fragments. Thus on the same benchmark dataset,
ASPpred yields a sizable improvement.

4 Conclusions and Future Work

In this work we have proposed a method in which protein fragments are assem-
bled according to their physico-chemical similarities, using 16 physico-chemical
properties of amino acids selected from AAindex by the BARS feature selection
algorithm. We have predicted distance maps, which provide more information
about the structure of a protein than contact maps. We have performed an exper-
imental validation of the method on all non-homologous mitochondrial matrix
proteins currently available in PDB. We have achieved a recall of 0.80 and a pre-
cision of 0.79 with an 8-angstrom cut-off and a minimum sequence separation
of 7 amino acids. Finally, we have compared our system with RBFNN method
proposed by Zhang et al. 2005 on the same benchmark and we have achieved a
recall improvement of 50.82%. Therefore we achieved a significant improvement
over previous algorithms.

As future work, we propose to use other prediction vector definitions, including
more specific descriptors of the fragment that represent, as amino acid windows.
We will also include in these vectors information of the secondary structure of the
fragment and its solvent accessibility. We are designing feasibility measures for
the geometry derived from predicted distance maps and adjustment algorithms
in order to improve our results.
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