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Abstract: Currently, the concept of Industry 4.0 is well known; however, it is extremely complex,
as it is constantly evolving and innovating. It includes the participation of many disciplines and
areas of knowledge as well as the integration of many technologies, both mature and emerging, but
working in collaboration and relying on their study and implementation under the novel criteria
of Cyber–Physical Systems. This study starts with an exhaustive search for updated scientific
information of which a bibliometric analysis is carried out with results presented in different tables
and graphs. Subsequently, based on the qualitative analysis of the references, we present two
proposals for the schematic analysis of Industry 4.0 that will help academia and companies to
support digital transformation studies. The results will allow us to perform a simple alternative
analysis of Industry 4.0 to understand the functions and scope of the integrating technologies to
achieve a better collaboration of each area of knowledge and each professional, considering the
potential and limitations of each one, supporting the planning of an appropriate strategy, especially
in the management of human resources, for the successful execution of the digital transformation of
the industry.

Keywords: Industry 4.0; cyber–physical system; IIoT; big data; cloud computing; digital twin;
cyber security; artificial intelligent; digital maturity; blockchain

1. Introduction

In a globalized and highly competitive world, an industry that is not willing to
innovate, to constantly improve its processes or to use emerging technologies may be
condemning itself to disappear. That is why the concept of Industry 4.0 has become a fun-
damental pillar, both in current research and in its application in the industrial sector. There
is a classification made by The IMD World Digital Competitiveness Ranking 2021, which
can be a benchmark of the technological reality of industrialized countries. This ranking
annually conducts studies that measure the capacity and readiness of 63 economies to
adopt and explore digital technologies for economic and social transformation, considering
factors, such as knowledge, technology, and preparation for the future [1].

The Industry 4.0 transition offers many opportunities to reinvent global supply chains
with sustainability in mind by significantly improving supply chain processes and achiev-
ing strategic results. This digitization drive has become the mainstay of engineering
organizations, regardless of size. Industry 4.0 will help organizations achieve sustainable
growth and generate higher values in profits and results through faster design and de-
velopment, innovative products, lower risk and reducing waste to the minimum amount
possible. The social point of view reveals that technological modernization is expected to
influence the spread of social transformation, especially in developing countries. However,
its implementation faces technological and social challenges. It is important to identify
contemporary trends and future prospects of sustainable Industry 4.0 and to study more
rigorously its impact on sustainable development [2].
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The stages in the development of industrial manufacturing systems, from manual
labor to the concept of Industry 4.0, can be presented as a path through the four industrial
revolutions. This path has been covered in many scientific papers; among them, we can
mention [3,4]. The First Industrial Revolution began in the late 18th and early 19th century
and was characterized by the introduction of mechanical manufacturing systems, using wa-
ter and steam. The Second Industrial Revolution began in the late 19th century, symbolized
by mass production based on the use of electric power. The Third Industrial Revolution
began in the mid-20th century and introduced automation and microelectronic technol-
ogy in manufacturing. Today, we are in the fourth industrial revolution driven by the
development of information and communication technologies (ICT). Its technological basis
is the intelligent automation of cyber–physical systems with decentralized control and
advanced connectivity (IoT functionalities) [5,6]. The consequence of this new technology
for industrial production systems is the reorganization of classical hierarchical automation
systems to a self-organizing cyber–physical production system that enables customized
and flexible mass production in production quantity [7,8].

The human factor is fundamental in Industry 4.0; its application translates into the
“redefinition” of jobs, avoiding isolated knowledge and ensuring interconnectivity, collab-
oration, and knowledge sharing [9,10]. Therefore, it is necessary to talk about computer
supported collaborative work (CSCW) in a way that includes the processes and resources
that are involved and offers an integration of tools and methods that support the collabora-
tion of work teams and can potentially improve the productivity and effectiveness of those
who work collaboratively [11,12]. CSCW is generally structured around four disciplines:
psychological, sociological, organizational and technological. For this paper, we focus only
on the technological theme.

We cannot talk about specific technologies, as the concept allows a constant evolution
and a continuous integration of new technologies as they mature or adapt, i.e., several
emerging technologies are converging to provide more and more digital solutions to the
industry, but we will mention the main ones, and their application in this case study [13].
According to the authors of the papers [14,15], they clearly mention the technologies
involved in the concept of Industry 4.0. They also propose in the paper [15] a conceptual
framework, which they divide into front-end technologies and core technologies. The
front-end technologies consider four dimensions (smart manufacturing, smart products,
smart supply chain and smart work), while the base technologies consider four (Internet
of Things, cloud services, big data and analytics). These works were of great help for our
study, as they define a way to analyze the complex and multidisciplinary world of Industry
4.0; however, for our case, we will analyze in terms of paradigms with cyber–physical
systems criteria. Our analysis proposal allowed us to clarify the concept and propose
better roadmaps toward the fulfillment of each Industry 4.0 project objectives. Finally, the
bibliometrics of the research is exposed in the most explicit and graphic way possible in
order to not only deliver information to readers, but also as a motivation or inspiration for
other researchers to have a vision of the opportunities presented by Industry 4.0 and digital
transformation to see how world power countries invest in research in these areas and turn
them into technological and economic leaders.

2. Materials and Methods

For the development of this work, we analyzed almost two hundred scientific docu-
ments including scientific articles, books, web pages and conference proceedings of the
paradigms and main mature and emerging technologies that encompass the concept of
Industry 4.0 to ease the understanding of its complexity.

We have tried to include as many of the technologies that are directly or indirectly
involved in Industry 4.0 as possible in order to have a fairly broad and objective view of this
concept. We mention the databases that were used for the collection of information: MDPI,
IEEE, Taylor & Francis, Scopus, IET Inspect, dblp, EBSCO, DOAJ, Springer, Microsoft
Academic, ULRICHS WEB, ELSEVIER, ScienceDirect, and Redalyc.
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This study follows the systematic review guideline and the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) to ensure the soundness and relia-
bility of the information used in this work. The main steps taken, including the protocols
mentioned above, to validate our research are shown in Figure 1.

Figure 1. The main steps taken to validate the research.

The research strategy started with an initial search in the aforementioned databases
for scientific information with the following terms or keywords: “Industry 4.0”, “Smart
factory”, “Fourth industrial Revolution”, “I4.0” and “Connected Industry 4.0”. The results
of this first search allowed us to understand in a general way the concept of Industry 4.0, the
studies that were developed on this topic and specifically to identify the main key technolo-
gies and paradigms involved in the Fourth Industrial Revolution. The inclusion/exclusion
criteria from Table 1 applied were Y01, Y02, Y03, Y04, N01, N02, and N03. In addition,
it is worth mentioning that no exclusions were applied due to the region, university or
research center, and for this initial search, no restriction was applied with respect to the
year of publication.

Table 1. Inclusion and exclusion criteria.

Category Criteria Code

Inclusion

The article corresponds to a scientific database and formally published. Y01
Articles completely written in English or Spanish Y02

The article addresses the topic of Industry 4.0 in a major way. Y03
The article mentions key paradigms and technologies involved in Industry 4.0 concept. Y04

The article relates the key technology to Industry 4.0. Y05
The article is updated no more than 5 years in the case of key technologies. Y06

The article details the contribution of the technology in question to Industry 4.0. Y07
If it is a web page, it must correspond to official scientific dissemination sites. Y08

Exclusion

The article is not published in scientific databases and/or indexed journals. N01
The quality of the information is irrelevant for this study. N02

The information is redundant and of lower quality than previously included articles. N03
The article deals with emerging technologies but does not relate them to Industry 4.0. N04

The article deals with very particular case studies and with little detail. N05
The article mentions Industry 4.0 in its title or key words but does not address the topic in its content. N06

The information in the article is outdated with respect to others previously included. N07
If it is a web page, it corresponds to blogs or unofficial web pages. N08
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Once the key technologies and paradigms of Industry 4.0 were identified, the search
for scientific information on each of them was individualized with a query as follows: “key
technology” and “Industry 4.0”; “key technology” and “Smart factory”; “key technology”
and “Fourth industrial Revolution”; “key technology” and “I4.0”, “key technology” and
“Connected Industry 4.0”. This type of search was performed to ensure that the article
studies the technology in question, but within the concept of Industry 4.0. The inclu-
sion/exclusion criteria applied and present in Table 1 were Y01, Y02, Y05, Y06, Y07, Y08,
N01, N02, N03, N04, N05, N06, N07, and N08. It should be noted that there are very
few exceptions of articles that did not meet the year inclusion criteria (Y06); however, the
content was relevant enough to be included in this study.

Furthermore, this study contains a bibliometric analysis technique to provide details
of scientific production through statistical methods. The bibliometric analysis allows us to
quantitatively evaluate the articles and recognize measurable patterns of interest, such as
the occurrence of keywords, the geographical distribution of articles, year of publication,
leading journals and databases. On the other hand, we used a content-centric analysis to
identify qualitatively patterns, concepts and interrelation between the paradigms and the
key technologies of Industry 4.0.

Finally, this study offers two alternative schemes to analyze the complex concept of
Industry 4.0 from a practical perspective to provide industries with a clearer vision of the
resources needed for a successful digital transformation.

The search for information for the preparation of this manuscript began in early
April 2021, with the aim of presenting some preliminary data at the “XVI International
Multidisciplinary Congress of Science and Technology CIT2021” held in June, where it
was accepted and successfully presented. After that, the search for specific information
intensified until mid-October. The number of articles of each key technology and paradigm
found, excluded and included, are mentioned in Table 2.

Table 2. Technologies and paradigms of Industry 4.0 analyzed.

Technology/Paradigm Identified Documents Excluded Documents Included Documents References

Industry 4.0 55 40 15 [1–15]
Cyber–Physical Systems 61 55 6 [16–21]

IoT–IIoT 120 103 17 [22–38]
Cyber security 44 30 14 [39–52]

Big Data and Analytics 82 73 9 [53–61]
Big Data in Industry 4.0 68 55 13 [62–74]

Digital Twin 45 29 16 [75–90]
Cloud, Fog, Edge computing 265 240 25 [91–115]

5G in Industry 4.0 78 64 14 [116–129]
AI in Industry 4.0 198 177 21 [130–150]

Digital Maturity of Industry 46 36 10 [151–160]
Virtual/Augmented Reality 72 55 17 [161–177]
Blockchain in Industry 4.0 52 32 20 [178–196]

Total 1186 989 197

2.1. Inclusion and Exclusion Criteria

Table 1 shows the inclusion and exclusion criteria used in this study, following the
PRISMA protocols and the methodology of a systematic literature review.

The criteria were coded in order to be more easily used and understood in the context
of this manuscript. Basically, these criteria allow us to guarantee the trustworthiness of the
scientific information, that the sources are rigorous and reliable, and that the information is
useful for the purposes of this study.
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2.2. Metadata Extraction for Analysis

The strategy applied for the extraction of metadata for subsequent analysis was
simple and manual. As an article was included under the inclusion and exclusion criteria,
the following data were extracted for each one: geographical origin (country), year of
publication, keywords, journal, or scientific publisher where it was published, and language.
All this information was stored and classified in Excel spreadsheets for subsequent analysis
and elaboration of diagrams. The results of this analysis can be found in the Bibliometric
Analysis section.

3. Bibliometric Analysis

All this information allowed us to clarify the evolution of this concept to better abstract
it from the academy and to propose strategies for its better analysis and treatment, due to
the multidisciplinarity and constant evolution of the concept. This concept is understood
as a point of convergence of technologies that is in constant expansion, in parity with tech-
nological advances to which new techniques and technologies are progressively annexed.

3.1. Summary of Information Selection

Table 2 summarizes the technologies, number of documents and their respective
references analyzed for the elaboration of this work, the graphical representation of the
data in this table is shown in Figure 2.

Figure 2. (a) Ratio of exclusion and inclusion of documents of each paradigm and key technology; (b)
Percentage of documents included and excluded with respect to the total.

3.2. Geographical Distribution of Scientific Information

In Table 3, we identified the origin of each document used in this work in order to
have a reference indicator of the countries that contribute scientifically to this topic. This
indicator can give us a brief idea of the direct relationship between scientific research and
the industrial development of each country.
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Table 3. Scientific contribution by country.

Country Number of Documents

U.S.A. 28
China 27
Spain 22
Italy 18

Germany 16
India 12

Australia 10
United Kingdom 10

Canada, South Korea 8
France 7
Brazil 7

Austria 5
Colombia, Sweden, Turkey, Portugal, Greece 4

Ireland, Poland, Romania, Finland, Saudi Arabia,
Malaysia, Denmark 3

Switzerland, Lithuania, Taiwan, Singapore, Pakistan, Iran,
Belgium, New Zealand, Hungary 2

Slovakia, Ecuador, Russia, Norway, México, Morocco, Egypt,
Estonia, Argentina, Macedonia, Malta,

Czech Republic, the Netherlands, Jordan, Seoul, Israel,
Mexico, Palestine, Lebanon, Tunisia, Iraq

1

A map helps us to visualize geographically all the scientific contributions analyzed. It
can be noticed that the United States and China are the countries that do the most research
and contribute to this topic; in turn, we can suggest that they are the technologically,
industrially, and economically dominant countries. It is shown in Figure 3.

Figure 3. Geographical distribution and density of publications.
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To find how much each country has contributed with its research to the elaboration
of this study, each scientific paper was individualized, and its contribution was summed
according to its authors and their affiliations. Each different affiliation per article was
considered with a value of 1, represented as a percentage in Figure 4.

Figure 4. Percentage of countries’ contribution.

3.3. Chronology of Scientific Information

Table 4 shows a chronological classification of the scientific papers according to the key
technology analyzed. In addition, two schematic diagrams are presented in Figures 5 and 6.

Table 4. Technologies and paradigms publication year.

Technology/Paradigm 2008 2009 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Industry 4.0 1 4 3 3 1 3
Cyber–Physical Systems 1 1 2 2

IoT–IIoT 1 2 1 1 3 2 7
Cyber security 2 4 1 1 6

Big Data and Analytics 1 2 1 1 1 3
Big Data and Industry 4.0 1 1 1 2 2 1 2 3

Digital Twin 1 2 1 12
Cloud computing, Fog

computing, Edge computing 1 1 4 5 14

5G and Industry 4.0 1 1 1 3 2 6
AI and Industry 4.0 4 1 9 7

Digital Maturity of Industry 5 1 3 1
Virtual/Augmented Reality 2 3 6 2 4
Blockchain in Industry 4.0 1 4 6 8
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Figure 5. Chronology of scientific information on each technology and paradigm.

Figure 6. (a) Percentage ratio of scientific production by years; (b) distribution of scientific information
by year.



Sensors 2022, 22, 66 9 of 22

3.4. Keywords Most Frequently Used

A total of 457 different keywords were identified throughout the reference literature.
Keywords with the same or very similar definitions or concepts were grouped together to
obtain a better analysis of the frequency of occurrence of technologies or concepts within
the Industry 4.0 study. In some scientific documents, in which there was no keyword
section, nor was this information part of the file metadata, the main words of the title
were considered the keywords of the document. Figure 7 shows the 40 most frequently
occurring words.

Figure 7. Keywords most frequently used.
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3.5. Contribution Per Journal

For this work, 87 different scientific sources were identified, including journals, books,
book chapters and web pages. Figure 8 shows the journals that have contributed the most.
The search for articles did not have criteria based on exclusive journals but were selected
according to the topics and criteria mentioned in previous sections.

Figure 8. Leading journals in this work.

3.6. Language of References

Initially it was stated that the languages accepted would be English and Spanish, with
preference always given to English. However, some interesting contributions in Spanish
were found and considered. Figure 9 gives the language ratio of the total number of
references consulted.

Figure 9. Language ratio.
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4. Results and Discussion

All the scientific information collected was understood and organized in two schemes,
which we propose for an alternative and simple analysis of Industry 4.0.

A qualitative analysis of the information in the references was carried out to obtain
the following schemes. These results were obtained by combining a descriptive and
interpretative investigation of the references. The main phases of this analysis are as follows:

• Searching for and obtaining useful information.
• The preparation, review, and transcription of information.
• The organization of information and data according to criteria.
• The categorization, labeling and coding of information and data, which prepares them

for analysis.
• The analysis of the data and the generation of propositions, usefulness, examples,

and conclusions.

4.1. Criteria and Paradigms of Industry 4.0 Reorganized

Moving from strategy to execution is the key to an Industry 4.0 implementation study;
however, having too much information about all the technologies involved in such a broad
concept, this becomes a rather complicated task. Therefore, a poor execution will show us
that the strategy, no matter how good it is, will not be successful and the desired objectives
will not be achieved. That is why we make a proposal for the organization of I4.0 paradigms,
technological knowledge areas; we place certain general aspects based on cyber–physical
systems criteria, we highlight the importance of information and data, and finally we have
a relationship with the classic pyramid of automation to better abstract the criteria with
well-known theoretical concepts.

This schematic in Figure 10 can help inspire and contribute to the design of strategic
business plans that can be successfully implemented and align IT, OT and human resources
to the execution of these plans. The scheme also serves another purpose, from the point of
view of academia, to be analyzed and help the understanding of Industry 4.0 starting from
better-known theoretical concepts.

Many general studies talk about the aspects involved in an industry in its digital
transformation [1–10] and within the internal aspects of the value chain we can mention
financial resources, social/brand capital, business processes, innovation capabilities, tech-
nology, human capital, organizational culture, and management capabilities. However, in
this study, we focused on the technological aspects and their respective resources.

This first proposed scheme is based on the automation pyramid, a classification that
is widely studied by levels in automation and smart factory issues so that we can start
from a theoretical and standardized concept. Below, in our opinion, the areas of knowledge
and the general technologies involved are placed in the scheme; this section can help us to
plan an appropriate strategy, especially in the management of human resources and related
professionals. The areas of knowledge give us a reference of the sciences in charge of the
study or development of the key technologies and paradigms that are mentioned at the
bottom of the scheme and are vertically aligned to the corresponding area of knowledge.
In this way it is easier to identify the appropriate human resource according to the need for
key technology that needs to be implemented or developed in a digital transformation of
the industry.

Industry 4.0 is characterized by being an integral platform, so there are currently
standardized protocols within IIoT of both vertical and horizontal integration that simplify
these processes (for example, IO-LINK and MQTT). We can say to better understand that it
would be enough a communication protocol to connect IoT devices with each other and at
the same time with the cloud directly without the need to go climbing through the automa-
tion pyramid as it was analyzed before. That is why the vertical and horizontal integration
is not treated with the same criteria as an automation pyramid, simply differentiating the
two most notorious levels by aligning the areas of knowledge. We have mentioned the
best-known communication protocols. From here on, information plays an important role.
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Figure 10. Proposed scheme of reorganization of Industry 4.0 criteria, paradigms, and key technologies.

Finally, we reorganized the paradigms of Industry 4.0, according to the areas of
knowledge, related to the automation pyramid, and the participation of information within
this concept, general aspects of the cyber–physical systems criteria were placed and where
each of them would be participating.
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In the left column, the key technologies and paradigm were placed, which are in
bold and italics. In horizontal correspondence to each paradigm are placed the enabling
or support technologies considering the cyber–physical systems criteria, each of these
enabling technologies are at the same time vertically aligned with the knowledge areas
and the automation pyramid. These enabling or supporting technologies are the more
traditional, prevalent and in some cases mature technologies that allow the key technologies
or paradigms of Industry 4.0 to perform their intended functions. This section of the scheme
lists Industry 4.0 enabling technologies that we have recognized in the included articles.
Many of these technologies have been available and commonly used in industry even for
decades. In some literature, the prefix “smart” or “intelligent” is often used when naming
these technologies, with the understanding that they are developed differently from the
ground up to primarily support integration with each other.

The two columns on the right, slightly separated, try to explain the role of data in
Industry 4.0. It starts from the vertical and horizontal integration, where its main function
is the transmission of data, then briefly analyzes each key technology or paradigm to
identify the role that each of them have in the management of both local data and in the
cloud. These data and information management are one of the main characteristics of
Industry 4.0, and practically intervene in almost all the paradigms analyzed; they could
be considered core technologies of Industry 4.0 because they are an essential part of the
integration between enabling technologies, key technologies and paradigms. Moreover,
the treatment of this information and data in each paradigm is the basis of the Industry
4.0 concept.

Obviously not all technologies and criteria are present, and there will always be the
possibility of integrating new technologies or new paradigms appearing. However, the
proposed scheme is intended as a guide and reference to abstract in the best possible way
the complex concept of Industry 4.0.

To better understand the scheme, we analyze some key technologies. Cybersecurity
is a very important paradigm that is present at all levels of automation. Especially in
the protection of data, both local and in the cloud, we can mention at lower levels that
the role of cybersecurity is to ensure the integrity of the device and the integrity of the
data obtained; the following levels must mainly ensure secure access to data and secure
data transmissions, finally reaching the exclusive protection of local data and secure cloud
storage. This key technology, as can be seen, is involved in all levels of Industry 4.0, and
we can corroborate this by knowing that the core of the digitization of industry is the
management of data at all levels, and these must always be protected.

Another key technology is cloud computing. This technology, despite being very
important within Industry 4.0, is exclusively involved in data collection, data transmission
to the cloud, and data computation in the cloud; in other words, it is not present at all levels.

IoT and IIoT have functions that are present at all levels of both automation and data,
require professionals from all technological areas and are mentioned in the scheme. This
undoubtedly ratifies the importance of this key technology in Industry 4.0; it is the funda-
mental pillar that supports, even with its architecture, the basis of cyber–physical systems.

4.2. CSCW Matrix for Industry 4.0 Paradigms

Our proposal stems from the initial difficulty of being able to place an Industry 4.0
paradigm in a single specific quadrant of the classic CSCW matrix, obviously because the
CSCW concept is very useful but relatively old with respect to these emerging technologies.
The matrix has had certain modifications to adapt as best as possible to the collaborative
participation of each paradigm analyzed.

The purpose of this classification is to understand that these new concepts are not
so much spatially or temporally located in a single quadrant, but that their scope goes
beyond these classic boundaries and that they are collaborative and interdependent. For
example, augmented reality interacts directly with the plant and machinery (same place)
but requires high computational capacity and processing speed that is done with cloud
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computing (different place) all working in real time (same time), being a paradigm that is
difficult to place in a classic automation pyramid or a classic CSCW matrix. However, there
are also paradigms that can be placed in a single quadrant, as is the case of edge computing,
which is characterized by performing computing and data storage in the location where it
is needed (same place) to improve response times (same time) and save bandwidth.

Additionally, we considered adding a level to the place axis. Initially, in a CSCW
matrix, there are only “same place” and “different place”, but in some paradigms, they
can be interpreted to work in intermediate places, which we call “near place”, as is the
case of fog Computing, which is part of a decentralized architecture where an additional
edge processing unit is used to perform a substantial amount of computation, storage
and communication locally not precisely on the device, but as an aid to cloud computing
because it reduces the traffic between IoT devices and the cloud, i.e., for data to be processed
locally and devices to communicate with each other, an additional processing unit has to
be added to the IoT devices.

Subsequently, the rest of the paradigms were placed according to their functions.
Figure 11 shows a CSCW matrix adapted to the Industry 4.0 concept.

Figure 11. Proposed CSCW matrix for Industry 4.0 paradigms and key technologies.

5. Conclusions

The proposed Industry 4.0 paradigm organization schemes will help academia and
the industrial sector with little experience to propose more appropriate strategies according
to the needs, available resources, and resources that will be required to ensure a successful
implementation.

There is always the possibility that new technologies, new criteria, and new paradigms
can be integrated into the proposed schemes, or even be modified due to the different
opinions of other professionals in certain technical aspects, because Industry 4.0 is a rather
broad topic, and it is also constantly evolving along with the rapid technological progress.

Moving from strategic planning to successful execution requires not only a correct
digital maturity assessment and a proper roadmap, but also the proper management of re-
sources: IT, OT, and human resources. Being as clear as possible about the complex concept
of Industry 4.0 and its paradigms is very important for human resource management and
related professionals to implement the successful execution of these plans.

The proposed schemes are based on an exhaustive literature search, but also on criteria
and experience from an ongoing project based on the needs and problems that have to
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be faced; therefore, relatively different criteria may exist. The main purpose is to be a
classification basis to better understand the Industry 4.0 concept.

The large amount of scientific information on these topics is a limiting factor for a
more complete analysis, so there are still technologies that were not mentioned and that can
be included in this proposed scheme. However, the main ones are found in the schemes.

Global market conditions have been strongly influenced by the COVID-19 pandemic
and have led us to understand the importance of technology in the industry. This has led
many companies to envision an early digital transformation, which will require as much
information as possible to assist in the execution of their strategies.

Industry 4.0 paradigms have a spatial and temporal distribution that do not fit in a
classical CSCW matrix, so it is necessary to adapt a matrix to best represent this new form
of distribution. This is due to the integration of several technologies that become more
complex concepts and difficult to be abstracted in a traditional way.

Investment in research on these topics has a direct influence on the economy of each
country; countries that do more research on these topics are those that are more advanced
industrially, and it does not seem to be a casual coincidence of this direct relationship of
the documents analyzed in this study. Therefore, it is necessary to encourage research in
sectors with developing economies.

Today, companies are strongly considering the option of digital transformation and
entry into Industry 4.0, and thus, the scope, and technology trends for sustainable results.
Industry 4.0 offers different solutions for sustainability, including contributing to social
sustainability that provides a good working environment that is safer and more pleasant
for workers.

In spite of being a widely studied topic and having a lot of scientific information, the
amount of information is not enough to understand the interrelation of the technologies
that integrate the concept of Industry 4.0, which became an obstacle at the moment of
applying the concepts and above all for taking advantage of the available human resources.
There is some conflict in the scope of each professional in different areas of knowledge, as
well as the limitations of the same professionals. For example, professionals in the areas
of IT and ICT experts in developing software applications, KPIs, APIs, etc., have limited
knowledge in areas of electronics and automation; the same happens in the opposite case,
that is, it would be impossible to work with only one type of professional. It is even difficult
to work with each professional needed if they do not know their scope and limitations. That
is why investigating the interrelationship of key technologies and paradigms of Industry
4.0, relating both areas of knowledge, levels of automation, information management,
communications, with each paradigm and key technology, and representing them in a
scheme was a necessity that now allows us to have a theoretical tool to continue with future
research accompanied by real implementations in the industry.
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