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Abstract. We present a multi-objective evolutionary approach to
predict protein contact maps. The algorithm provides a set of rules,
inferring whether there is contact between a pair of residues or not. Such
rules are based on a set of specific amino acid properties. These properties
determine the particular features of each amino acid represented in
the rules. In order to test the validity of our proposal, we have
compared results obtained by our method with results obtained by
other classification methods. The algorithm shows better accuracy and
coverage rates than other contact map predictor algorithms. A statistical
analysis of the resulting rules was also performed in order to extract
conclusions of the protein folding problem.

Keywords: Protein structure prediction, contact map, multi-objective
evolutionary computation.

1 Introduction

Protein Structure Prediction (PSP) is one of main challenges in Structural
Bioinformatics. Since Anfinsen’s experiment discovered that the amino acid
sequence determines the shape of a protein [1], a huge number of computational
experiments were performed with the aim of obtaining the rules of the protein
folding. Knowledge of these rules would play an important role in Biomedicine
for the design of new drugs. Although experimental procedures to obtain the 3D
protein structure, as X-ray Crystallography and Nuclear Magnetic Resonance
(NMR), have shown brilliant results [2], the cost of such techniques, both in
term of time and money, is prohibitive. Besides, these techniques cannot be
applied to all proteins. In fact, 25% of proteins do not crystallize and are too
big for the NMR.

For these reasons, computational methods are particularly suited for this
problem, since they, generally, represent a cheaper and faster way to address the



protein folding problem. Some of these computational methods used a contact
map representation to solve this problem. A contact map is a bi-dimensional
representation of the protein structure of a protein, where if an entry i, j has
value 1 then a contact between residues i and j is predicted, and a 0 indicates a no
contact. We consider a contact between i and j, if the distance between them is
lower than a certain threshold μ. Different approaches were developed as protein
contact map predictors: artificial neural networks (ANNs) [3,4], support vector
machines [5], evolutionary algorithms (EAs) [6] and template-based modeling [7].
Every two years, Critical Assessment of Protein Structure Prediction (CASP)
competition [8] evaluates the most accurate computational methods for the PSP
problem. One of the categories of this competition is called “Detecting residue-
residue contacts in proteins (RR)”. Our approach is included in this category.

Among the above mentioned methods, EAs, have become popular as robust
and effective methods for solving optimization problems. In particular, they have
shown the capacity of finding suboptimal solutions in search spaces when the
search space is characterized by high dimensionality. This is the case for the
protein folding problem, where the set of possible folding rules of a protein
determine the search space. Many evolutionary approaches have been developed
to tackle the PSP problem, e.g., [9] [10] [6] [11]. These methods evaluate
individuals by means of a single function that provides a measure of their
quality. In other words, they are evaluating a single objective function. This
approach represents the classical way of addressing a problem with an EA: the
objectives to optimize are combined into a single fitness function which is then
used in order to guide the evolutionary search. However, there are some problem
where this approach is not the most appropriate. Different solutions can produce
conflicts between different objectives. A solution that is optimal with respect to
one objective may not be optimal for the rest, therefore it would be improper
to choose such solution as optimal solution of the problem. It becomes then
necessary to establish a compromise among the objectives. The solutions that
fulfill this compromise are called the Pareto set. The notion of Pareto set is based
on the concept of dominance that will be explained in the next section. When
an optimization problem has several objectives, the task of finding one or more
suboptimal solutions is called Multi-objective optimization.

Multi-objective Evolutionary Algorithms (MOEAs) appear as an extension of
EAs for single objective problems. A MOEA should be designed to achieve two
purposes simultaneously: to achieve good approximations to the Pareto front and
maintain the diversity of solutions, in order to adequately search the solution
space and do not converge to a unique solution [12]. Some of the best known
MOEAs are NSGA, SPEA, NSGA-II, SPEA-II and PAES-II [8].

Several prediction methods have considered the PSP problem as a multi-
objective optimization problem. For instance, [13] developed MI-PAES as a
modified version of PAES using a torsion angles model. A parallel multi-objective
optimization was performed by using Chemistry at HARvard Macromolecular
Mechanics (CHARMM) energy function in [14]. [15] proposed a multi-objective
Feature Analysis and Selection Algorithm (MOFASA) in order to solve the



Protein Fold Recognition (PFR) problem. In [16], a I-PAES algorithm is used
as search procedure for exploring the space of the PSP problem. The concept of
bond and non-bond energies are included in the fitness function of this approach.

In this paper, we propose a contact map predictor based on a MOEA. More
specifically, it is based on a NSGA-II algorithm [17]. A NSGA-II algorithm
initially creates a population (random or by a technique of initialization) of
parents. The population is sorted according to levels of non-dominance (ranking
Pareto fronts). Each solution is then assigned a fitness value according to their
level of non-dominance (1 is the best level). Tournament selection, the crossover
and mutation are used to create the offspring population of size N.

Our algorithm generates a set of rules that predicts contacts between amino
acids. In particular, each rule imposes a set of conditions on some specific amino
acids properties. Rules consider two windows of 3 amino acids, which are centered
around the two target residues in contact.

In order to test our proposal, we obtain the training data set from the
Protein Data Bank (PDB), and produce a file in arff format with the encoded
information. The rules that are produced after the training phase are classified
according to each specific pair of residues that they represents. For a new protein
sequence, we apply the required rules for each residue pair and obtain the protein
contact map. Our application also provide a graphical representation of these
contact maps. The novelty of our proposal consists on the use of amino acid
properties which are involved in the folding process and, to the best of our
knowledge, have not been applied in similar evolutionary approaches for this
problem.

The remainder of this paper is organized as follows. Section 2 introduces
some basic concepts of the Multi-objective optimization. Our multi-objective
evolutionary approach is described in section 3. Section 4 presents the
experimentation and obtained results. Finally, section 5, includes some
conclusions and possible future works.

2 Multi-objective Optimization Problem

Before describing our algorithm, this section presents a brief introduction to
multi-objective optimization problems and related concepts.

A Multi-objective optimization problem is based on the optimization
(minimization or maximization) of a set of objective functions, usually in
conflict with each other. The existence of multiple objective poses a fundamental
difference with the single objective problems: typically there will not be a single
solution, but a set of solutions that can present different clashes among the
values of the objectives to optimize. We can define a multi-objective optimization
problem in this way: let (f1(x), f2(x)...fn(x)) be a set of functions to be
optimized, where x = (x1, ..., xp) is a vector of decision variables belonging
to a universe X and fi(x) is an arbitrary linear or non-linear function, 1 ≤
i ≤ n. Therefore, the problem consists of finding the x that provides the best
compromise value for all fi(x).



To solve the above problem, we should defined some criteria to determine
which solutions are considered of good quality and which are not. Hence, we
introduce the concept of dominance, that is used in the process of evaluating
the different solutions. A solution x is said to be not dominated iff there is not
another solution y such that: fi(y) <= fi(x) for all i = 1..n and fi(y) < fi(x)
for some i. From this, it follows that the Pareto front is formed by all the non-
dominated solutions.

We have applied these concepts to the Protein Contact Prediction problem. In
this article, we have considered coverage and accuracy as two different functions
and are optimized separately.

In order to do so, we have implemented a MOEA based on an Elitist Non-
Dominated Sorting Genetic Algorithm (NSGA-II). NSGA-II incorporates elitism
and reduces the complexity of the procedure fast sorting by non-dominance of
its predecessor NSGA. The algorithm performs a classification of the population
using Pareto fronts. Individuals which belong to the first front are the non-
dominated front, those in the second front are not dominated in the absence
of previous front, and so on. Each individual is assigned a rank equal to its
level of non-dominance. The best individuals are those with lower ranks. In
order to maintain diversity, we use a crowding distance, which is assigned to
each individual of the current population. The selection is performed by binary
tournament. The tournament is won by the individual with a lower range (Pareto
front level). If the two ranges are the same, the tournament is won by the
individual who has lower crowding distance. This algorithm has a low time
complexity of O(NlogN), where N is the population size.

3 Our Approach

In this section, we present the main characteristics of our proposal. As we have
said before, the aim of this algorithm, called PSP-NSGAII, is the prediction
of protein contact maps. In order to test our proposal, the first thing to do
was to select a set of sequences. For this, we selected from PDB a set of
173 proteins that appears in [3]. We extract the required information as the
amino acid sequences and distances between amino acids. To calculate the
distances, we use the Euclidean distance between Cβ atoms (Cα for Glycine)
of each pair of residues. The formula of Euclidean distance is d(i, j) =�
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, where (x1, y1, z1) represent the atomic

coordinates of the first amino acid and (x2, y2, z2) are the coordinates of the
second amino acid. Once the training set is prepared, we use this data to train
our evolutionary algorithm. As we have said previously, we propose a Multi-
Objective algorithm as a method to identify protein folding rules. These rules
provide us the specified characteristics of amino acids in contact. They specify
which property values and conditions must have the amino acids in contact and
the ones which precede and follow them. Our proposal build the set of final rules
in an incremental way. Each time the algorithm is run, a set of rules are selected
and added to a final solution set. For each iteration, we select those rules which
contribute to increase the F-measure of the global solution.



In the following the characteristics of the representation, the fitness function
and the genetic operators used by the EA will be presented.

3.1 Encoding

Each individual is represented as follows. We have taken into account six amino
acids. For two amino acid in contact i and j, we represent the amino acid i− 1,
i + 1, j − 1 and j + 1, i.e., the amino acids that precede and follow i and j in
the sequence. This choice was made after having performed various experiments
with different window sizes, ranging from 6 to 14. Each amino acid is represented
by 7 genes; two genes for the hydrophobicity (ranging from -1 to 1), two genes
for polarity (ranging from -1 to 1), 1 gene for the charge (-1, 0, 1 for negative,
neutral and positive charge respectively) and two genes for the volume of residue
(ranging from 0 to 1). Figure 1 shows the representation for an amino acid. Our
representation consists in 42 attributes in total.

H1 H2 P1 P2 C V1 V2��
i

Fig. 1. Example of encoding for the amino acid i. An individual is constituted by six
amino acids i−1, i, i+1, j−1, j and j+1. H1,H2,P1,P2,V1 and V2 are lower and upper
bounds for the hydrophicity, polarity and volume values, respectively. C represents the
charge value of the residue.

We selected Kyte-Doolittle hydropathy profile [18], the Grantham’s profile
[19] for polarity and Klein’s scale for net charge [20]. The Dawson’s scale
[21] is employed to determine the volume of the residues. In table 1, we can
appreciate the amino acid values for each property according to the cited scales
and normalized between −1 and 1 for hydrophobicity and polarity, and between
0 and 1 for the residue volume.

From all the extracted data, we have built a file in arff for-
mat, with all the training data information. This file is available at
http://www.upo.es/eps/asencio/data/training set.arff. In this file we include
protein subsequences of windows of six amino acids codified with the values
of the cited four different physico-chemical properties. The positive class (con-
tact) is represented with 1 and the negative class (no contact) is represented
with 0. The total data set constitutes 123, 949 instances with 6, 922 positive and
117, 027 negative cases (contact and no contacts respectively).

3.2 Fitness Function

As already mentioned, we consider two objectives to be optimized: coverage and
accuracy. Coverage represents the number of predicted contacts and accuracy
evaluates the real predicted contacts rate. Therefore, Coverage = C/Ct and
Accuracy = C/Cp, where C is the number of correctly predicted contacts of a



Table 1. Values of different properties according to the cited scales for each amino
acid. H represents the hydrophobicity, P the polarity, C the charge net and V is the
residue volume.

Prop. A C D E F G H I K L

H 0.40 0.56 -0.78 -0.78 0.62 -0.09 -0.71 1.00 -0.87 0.84

P -0.21 -0.85 1.00 0.83 -0.93 0.01 0.36 -0.93 0.58 -1.00

C 0 0 -1 -1 0 0 0 0 1 0

V 0.33 0.40 0.33 0.67 0.87 0.07 0.80 0.73 0.93 0.73

Prop. M N P Q R S T V W Y

H 0.42 -0.78 -0.36 -0.78 -1.00 -0.18 -0.16 0.93 -0.20 -0.30

P -0.80 0.65 -0.23 0.38 0.38 0.06 -0.09 -0.75 -0.88 -0.68

C 0 0 0 0 1 0 0 0 0 0

V 0.80 0.67 0.73 0.80 1.00 0.40 0.67 0.67 0.93 0.93

protein, Ct is the total number of contacts of the protein and Cp is the number
of predicted contacts. We aim at finding the best compromise between these two
measures.

3.3 Genetic Operators

We use two mutation operators. The first operator follows a Gaussian
distribution for a randomly selected individual and increase or decrease a gene
value with a probability of 0.5. A second operator randomly selects a gene that is
related to a given property, and moves the bounds to the maximum or minimum
of the domain, making the property irrelevant in this rule. For example, if the
property is the hydrophobicity, we change the range to -1, 1 so the rule does not
take into account this property in this case. This type of mutation is applied
with a 0.1 probability. For each individual, we test that the mutated value was
between the allowed ranges.

A 2-point crossover operation was used with a 0.5 probability. A binary
tournament selection is applied with a probability of 0.5. In each tournament,
we select the individual which is located in the better Pareto front. If the two
individuals are on the same front, we use the crowding distance to determine
the winning configuration. The crowding distance is a measure of the diversity
of the population. This process is called Stacking tournament selection.

The population size is set to 100, and the initial population is randomly
initialized. The maximum number of generations that can be performed is set to
100. However, if the fitness of the best individual does not increase over twenty
generations, the algorithm is stopped and a solution is provided. At the end of
the execution, repeated or redundant rules are discarded from the solution set.

All the parameters were set after having performed several trial runs of the
algorithm.



4 Experiments and Results

As mentioned in the previous section, in order to test our proposal, we have
selected a protein data set specified in [3]. This data set consists of 173 proteins
with percentage of sequence identity lower than 25%. Four subsets have been
classified according to the sequence length; lower than 100 residues (DS1),
between 100 and 170 (DS2), between 170 and 300 (DS3), and higher than 300
residues (DS4). The minimum and maximum size of the proteins are 31 and
753 amino acids respectively. A threshold of 8 angstroms (Å) was established
to determine a contact. In order to avoid the effect of learning local contacts,
we set a minimum sequence separation of 7 residues between each pair of amino
acids to establish a contact. A 3-fold cross-validation were performed during all
the experimentations. All these requirements were also found in [3]. In order
to validate our experimentations, accuracy and coverage rates were calculated.
These two measures are also employed to validate the prediction algorithms in
CASP competitions.

We have performed several experiments with three Weka classifiers [22]: Näive
Bayes (NB), C4.5 classifier tree (J48), Nearest Neighbor approach with k = 1
(IB1). The obtained results can be seen in Table 2 for a 3-fold cross-validation.
We appreciate low coverage and accuracy values in all the cases. The training
data used contained all the possible subsequences of size 6 of the DS1 protein
data set with a minimum separation between contact residues of 7 amino acids.
This experiment was performed with the aim of validating our representation
and confirms that this representation provides enough information for a good
performance of a learning classifier. Moreover, we can also notice that PSP-
NSGAII achieved the best results for this experiment.

Table 2. Average results obtained for different classification Weka algorithms for the
DS1 protein data set

Algorithm Data Set Coverageμ Accuracyμ
J48 DS1 0.03 0.31

IB1 DS1 0.09 0.09

NB DS1 0.20 0.13

PSP-NSGAII DS1 0.21 0.33

The optimal number of rules for the prediction is unknown. In order to
establish the optimal number of executions, we have run several preliminary
experiments and compared the obtained results. From these, we have concluded
that the best results were obtained when the algorithm was run for 1,000
executions.

Table 3 shows the average results obtained using the dataset. Our results were
compared with the ones showed in [3]. We can observe as main conclusion, how
the coverage and accuracy rates decrease if the size of the proteins increases. This
is due to the fact that, generally, ab initio methods only work well with peptides
lower than 150 amino acids [23]. We obtain better results for proteins whose



Table 3. Average results and standard deviation obtained for 1,000 executions of the
algorithm for the different protein data subsets

Data Set #proteins Coverageμ±σ Accuracyμ±σ Accuracyμ[3]

DS1 65 0.21±0.02 0.33±0.01 0.26

DS2 57 0.10±0.01 0.21±0.02 0.21

DS3 30 0.08±0.03 0.13±0.02 0.15

DS4 21 0.06±0.03 0.09±0.03 0.11

sequence length is lower than 100 (DS1), 0.33 against 0.26. We have obtained
the same accuracy rate for the second subset DS2, and similar rates for the third
and fourth group. We could not compare the coverage rates, because they are
not included in the cited paper [3].

We have analyzed the set of resulting rules, and they show that a vast majority
of amino acids in contact have high values of hydrophobicity. On the other hand,
a high percentage of contacts have non-polar residues. These conclusions were
expected, because hydrophobic and non-polar amino acids tend to be located in
the inner of the protein. Therefore, these type of residues have more probabilities
to be in contact [6]. According to the residue volume, residues with values
between 0.5 and 0.75 are the most representative. We have not observed any
clear conclusion according to the net charge. Although the amino acids with
opposite charges are supposed to be in contact [6], this condition seems to be
irrelevant in our rule set and does not appear as a clear conclusion. Figure
2 shows the graphical representation of the probability of appearance of each
property in our whole set of resulting rules for the amino acid i. The properties
values have been discretized in five groups in intervals of 0.5 from −1 to 1 for
the hydrophobicity and polarity and from 0 to 1 in intervals of 0.25 for the
residue volume. The rest of amino acid positions in the rules presents similar
behaviors.

In figure 3, we show a graph which represents the different Pareto fronts for
five generations (from generation 0 to 80 with an interval of 20) of an execution
in order to test the correct performance of our multi-objective evolutionary
algorithm. Each different symbol represents an individual of the Pareto front in
different generations. The X-axis represents the coverage and the Y-axis shows
the accuracy rate. These two measures are the two parameters which should be
optimized during the executions. We can notice how the quality of individuals
improve with the generations.
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5 Conclusions and Future Work

In this work, we presented a multi-objective optimization algorithm for the
residue-residue contact prediction. This algorithm generates rules that predict
the necessary conditions for the contact between two amino acids based on
their physico-chemical properties. The algorithm was tested on a set of protein
sequences that had been previously used in the literature and achieve similar
coverage and accuracy rates than other contact map predictor algorithm. We
have analyzed the resulting rules set and drawn some conclusions about the
folding prediction problem. From the obtained results, we can conclude that
our algorithm, as other ab initio methods, obtains lower accuracy if the size of
the protein is increased. Although these methods are computationally expensive,



they have a main advantage; by only taking the sequence as baseline information,
it is possible to obtain a folding model for an unknown protein.

As future work, we are planning to include more useful information based
on amino acid properties in our rules representation as secondary structure
prediction and solvent accessibility. The variability of the window size must
be taken into account for the next version of the algorithm. Furthermore, our
algorithm must be validated with a higher number of proteins data set.
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