
*Corresponding author. Tel.: #34-95-455-2768; fax: #34-95-
455-7139.

E-mail addresses: mariano@lsi.us.es (J. M. G. Romano), eduardo@
cartuja.us.es (E. F. Camacho), juango@cartuja.us.es (J. G. Ortega),
mtoro@lsi.us.es (M. T. Bonilla).

A generic natural language interface for task planning *
application to a mobile robot

JoseH Mariano GonzaH lez Romano!,*, Eduardo FernaH ndez Camacho", Juan GoH mez
Ortega", Miguel Toro Bonilla!

!Departamento Lenguajes y Sistemas Informa& ticos, Facultad de Informa& tica y Estad&nstica, Universidad de Sevilla, Avda Reina Mercedes s/n,
41012 Sevilla, Spain

"Departamento Ingenier&na de Sistemas y Automa& tica, Escuela Superior de Ingenieros Industriales, Universidad de Sevilla,
Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

Abstract

This paper presents a generic natural language interface that can be applied to the teleoperation of di!erent kinds of complex
interactive systems. Through this interface the operators can ask for simple actions or more complex tasks to be executed by the
system. Complex tasks will be decomposed into simpler actions generating a network of actions whose execution will result in the
accomplishment of the required task. As a practical application, the system has been applied to the teleoperation of a real mobile
robot, allowing the operator to move the robot in a partially structured environment through natural language sentences.

Keywords: Natural language; Man}machine interfaces; Telerobotics; Mobile robots; Task planning

1. Introduction

Complex interactive systems are present in a great
variety of "elds. In these systems, sophisticated control
techniques are used in combination with human oper-
ators in order to satisfy some speci"c goals. The system's
operators act from a control room in two ways: on the
one hand, they are informed of the state of the system at
every moment and, on the other, they perform actions by
the system in order to satisfy some goals. The di$culty of
the operation depends on the complexity of the system,
which comes from three main sources: the complexity of
the domain, the complexity of control and the complexity
of interaction. Although the "rst of these can hardly be
reduced, it is possible to reduce the complexity of control
and interaction. In the "rst case, this is achieved by
automating the system, and in the second case designing
an adequate interface for communication between the

operator and the system. Nevertheless, completely auto-
mated systems are extremely problematic, because in
situations where surprises can lead to critical situations
and matters of life and death, responsible decisions can-
not be left to such systems alone. Instead, "nal decisions
must be left to humans, because people have the ability to
master unprecedented situations. Under these circum-
stances, the design of friendly interfaces which decrease
the complexity of interaction and allow the operators to
act in a simple and quick way in every kind of situation
becomes even more important.

Although it can be said that, in general, man}machine
interfaces of control centers are quite user friendly, they
have some drawbacks such as the need for an extensive
training period for operators and the great quantity of
information, some of it irrelevant, they tend to present to
the operator. Natural language interfaces can be used in
control centers to help the operator to manipulate the
system by entering commands in his own language.
A natural language interface (NLI) requires a short train-
ing period for the operator (just the time to learn the
grammatic rule s and the vocabulary) and gives him the
#exibility to focus attention on speci"c system elements
or consider wider parts of the system, modifying the

degree of abstraction in which the system is viewed as
a function of its current state. Natural language can also
be used to generate explanations about the causes of
a given situation: the operator can be given an explana-
tion of what is happening in his own language. Natural
language can be used alone or in combination with other
means of interaction such as hyper-text or graphics to
create a more #exible, multimodal interface. In con-
clusion, natural language can be, in general, of great
interest as a tool to simplify the work of control center
operators.

This paper presents a natural language-based interface
for man}machine communication in control centers.
This interface allows the operator to perform the usual
control center tasks during normal system operation,
which consist of issuing commands to the system ele-
ments or asking for information on its state. Commands
can be classi"ed into two groups: simple and complex
commands. The "rst ones correspond to actions that
apply directly to system elements, and are executed pro-
vided that the state of the elements allows for their
execution. Complex commands pursue the accomplish-
ment of a certain goal and involve, in general, several
system elements. The accomplishment of the goal implies
the execution of a set of actions in a predetermined order
by these elements. This will be called a plan of action.

The plan of action associated with a certain goal can
be known a priori or can be unknown. In the "rst case, it
is a part of the system's knowledge database and can be
applied immediately. In the second case it has to be
automatically generated. In order to do this the system
has to be adequately described, so that the functional
relations between its elements are known. Thus, given
a goal, it will be possible to "nd a plan of action that
allows for its accomplishment. The generated plan will be
appended to the system's knowledge database so it can
be reused later.

The plan of action is executed whilst it is being con-
structed, so it is not necessary to construct it before
its execution with complex planning techniques. This is
especially important in real-time systems, such as those
considered in this paper.

The paper is organized as follows: Section 2 analyses
the state of the art in man}machine interaction in com-
plex systems. Section 3 identi"es all the relevant informa-
tion involved in a generic complex system and selects
a formalism for its representation. In Section 4, the main
properties of a natural language interface designed to
operate a complex system are studied, focusing on the
process of generating plans of action to accomplish com-
plex goals. Section 5 presents the system that has been
developed and that has been applied to a mobile robot,
which navigates in a partially structured environment.
Section 6 shows the experimental results obtained.
Finally, Section 7 shows the conclusions and some
future work.

2. Related work

Natural language interfaces have been applied to
a great variety of "elds such as database access, inter-
facing with expert systems, knowledge acquisition, com-
munication with robots, human}computer dialog or
tutorial systems.

In the "eld of database access, NLI have proved them-
selves to be a very useful tool for simplifying access to
large amounts of information. As an example a geo-
graphical information system (Kasturi, FernaH ndez,
Amlani and Feng, 1989) or a multimedia database
(Stock, 1994) can be cited.

In the "eld of interaction with complex systems, there
are some works on the application of a NLI to commun-
ication with robots. Several researchers have developed
robotic systems that are controlled by means of natural
language sentences. The use of natural language allows
operations to be performed on robots and their environ-
ment and specify goals to be satis"ed without the need
for previous knowledge about robots or computers.

Amongst the "rst systems two classical cases must be
cited, ROBOT (Harris, 1977) and SHRDLU (Winograd,
1972). Both of them allow for robot interaction, although
they deal with a simulated robot rather than a real one.
SHRDLU allows the user to command a robot that
moves in a world made of blocks. With the improvement
of computational power it becomes possible to build
more powerful systems, which allow real-time interaction
with real robots. Selfridge and Vannoy (1986) present
a NLI to a robot assembly system which allows the user
to talk with the system in order to do manipulation and
visual tasks, such as recognizing the components that are
present in an image and putting them together to make
a more complex component. The knowledge base con-
sists of a set of if}then rules. When these rules are insu$-
cient to make a component, the system asks the user for
an explanation of the plan to make it. It uses a learning-
by-being-told technique instead of deducing new know-
ledge from the knowledge base.

Other NLI systems such as SAM (Brown, Buntschuh
& Wilpon, 1992) combine the use of written and spoken
natural language. The user can use a telephone or a key-
board to command the robot. The robot is a manipulator
arm with six axes and a grip, and has a mounted camera
with which it can recognize the objects placed on a sur-
face. The user can introduce a description of the objects.
This description will later be used to command the robot
to perform actions over them.

Torrance (1994) uses a NLI to command a robot to
move and memorize its environment. The user can con-
trol the robot with commands. A plan is a sequence of
actions to get the robot between two named places. Thus,
it is a very speci"c type of plan, valid for robot navigation
but not for other kinds of complex systems. This is
a common feature in the majority of systems designed for

natural language communication with robots. The one
proposed in this paper is designed to work with generic
complex systems instead, although the examples shown
correspond to a particular application.

Hwang, Cheng and Watterberg (1996) describe a learn-
ing user interface (LUI) for robot task-planning and
programming. The robot operator interacts with the LUI
with commands in a natural-language-like form. LUI has
a basic set of commands and can learn new commands
given a demonstration of how to execute the command
in terms of a sequence of known commands. In contrast,
the approach proposed here is to acquire all the know-
ledge in a previous phase through the same natural
language interface.

PRS (Ingrand, Chatila, Alami & Robert, 1996) is a set
of tools and methods used to represent and execute plans
and procedures. PRS has been adapted to autonomous
robots and has been used in di!erent implementations as
a high level supervision and control language for mobile
robots. PRS has a library of plans, each describing a par-
ticular sequence of actions and tests that may be per-
formed to achieve a given goal. The main di!erence
between PRS and the system presented in this paper is
that PRS uses a procedural representation, while the
proposed system uses frames to represent goals. In both
cases the representation preserves the control informa-
tion (i.e. the sequence of actions and tests) embedded in
the plans, while keeping some declarative aspects.

Knoll, Hildebrandt and Zhang (1997) present a system
that integrates natural language with vision to control an
assembly cell consisting of two cooperating robots and
a variety of sensors. The authors conclude that in a lim-
ited domain like assembly the use of natural language in
robotic systems may be of great help even to inexperi-
enced users.

In a review of the state of the art in human}robot
communication Klingspor, Demiris and Kaiser (1997)
conclude that it is necessary to develop techniques that
allow untrained users to make e$cient and safe use of
robots. The users do not want to operate the robot.
Instead, they want to use it to accomplish some task. For
this reason they need a friendly interface that allows them
to intuitively instruct the robot and that provides them
feedback in a way that they can understand.

Previous work on this subject carried out by the
authors led to the development of a system that was
applied to the operation of a pilot plant (GonzaH lez, Ter-
nero & Camacho, 1992; GonzaH lez & Camacho, 1993).
Through the NLI, the plant operator was able to perform
simple actions such as open or close valves, as well as
complex goals such as "lling a tank up to a given level or
maintaining the temperature of a tank. This system was
later applied to the operation of an electrical network
(GonzaH lez & Camacho, 1997), allowing the control center
operators to remotely perform actions over the network
elements: open/close switches, feed loads, regulate volt-

ages, etc. The behavior of the network was simulated by
software. The work presented in this paper shows the
application of the system to a new, real complex system,
which has allowed the system to be tested in a real
environment. Moreover, the mobile robot is very di!er-
ent from the other two systems, so several modi"cations
had to be made to the system, which has been enriched
with new features and is now able to deal with a larger
variety of systems.

The main di!erence between the system presented here
and the rest of the systems discussed in this section is its
generic nature. The developed system has not been spe-
ci"cally designed for human}robot communication but
for human}computer communication. For this reason it
can be applied to many di!erent complex systems and
not just to a speci"c kind of system.

3. The knowledge database

The knowledge database contains all the system's
knowledge, which can be divided into two parts: declar-
ative knowledge and procedural knowledge. The "rst one
contains the description of the di!erent entities that can
be distinguished in the domain being studied. The second
one deals with the behavior of the system, and includes
procedures or functions that allow the goals of the system
to be achieved.

3.1. Declarative knowledge

Declarative knowledge describes the static structure of
the system, and is structured as follows:

f Classes: di!erent categories of objects that can appear
in the domain.

f Objects: speci"c instances of a class.
f Connections: topological relations between objects.
f Groupings: set of objects related to each other for

functional or topological reasons.
f Measures: sensors that give access to the values of

some relevant magnitudes of the domain.

Classes are characterized by having some properties
and some associated actions, and have a hierarchical
structure. Higher level classes are more generic and lower
level ones are more speci"c. There is an inheritance
mechanism: the properties of a class are inherited by all
of its subclasses. Classes can be simple or compound. The
latter are those whose objects are a set of objects with
a certain structure. The introduction of compound
classes allows certain repetitive structures of the system
to be de"ned as classes, thus simplifying its description.
Another characteristic of a class is its connectors: objects
connect to each other through connection elements that
are attached to its connectors.

An object is a particular instance of a class. Objects
from a class have a value for each one of the class

properties. In addition, an object can have exclusive prop-
erties, de"ned by the object itself rather than by the class
it belongs to, that are not shared by the rest of the objects
of the class. Objects can be in di!erent states throughout
their lives, each one corresponding to a di!erent behavior
of the object. The state of an object is variable and can be
changed either by acting directly upon it or as a result of
the behavior of other related objects.

Objects connect to each other through special kinds of
objects called connections. A connection starts in a con-
nector of an object and "nishes in a connector of another
object. If an object is connected to several objects there
will be several connections which could start from the
same or di!erent connectors. A connection can either be
orientated or not. In the "rst case, a "rst (or input) end
and a second (or output) end of the connection exist. It is
then possible to refer to the input and output objects of
the connection.

Objects can be grouped into groupings according to
functional or topological criteria. In the "rst case, all the
objects share a common function. In the second case, the
objects are just placed next to one another. The objects
composing the grouping maintain their own personality,
but in certain cases the grouping can be taken as a whole,
being a special object with its own properties and a behav-
ior that will be a function of those of the component objects.

In general, there are a lot of measurable magnitudes in
a system, corresponding to the di!erent properties of
objects and groupings. However, not all of them will
usually be accessible to the operator, only those with an
associated sensor will. A measure is de"ned by the object
or grouping to which it is associated, the property of the
object or grouping it measures and the value of the
property.

3.2. Procedural knowledge

Declarative knowledge allows the state of the system at
a given moment and the state changes of every object in
the system to be described. Another kind of knowledge
to be represented is that of procedures, i.e., conditional
sequences of actions that can be run to achieve given
goals. Procedural knowledge includes a set of functions
that represent the means by which the goals of the system
can be ful"lled. These functions are related to the di!er-
ent entities found in the system (classes, objects, group-
ings) or to the whole system. A function has the following
components:

f Goal: is the goal ful"lled by the function.
f Prerequisites: are conditions that the system must

necessarily accomplish before applying the means for
the ful"llment of the goal of the function. They can
be conditions as to the state of a class or object or the
value of a property of a class, object or grouping, or
can be another function.

f Means: are the operations whose execution results in
the ful"llment of the goal of the function. They can be
simple actions on objects or classes, or other functions.
In general, several sequences of means in parallel will
exist: some means will be executed at the same time, as
they are independent, while others will have to be
executed in sequence, as every means depends on the
result of another.

f Criteria: is the criteria whose accomplishment implies
that the goal of the function has been ful"lled. It is
a condition on the value of some property of a class,
object or grouping, and will always be true provided
that the means have been correctly executed.

f Posterior actions: are operations that must be executed
once the goal of the function has been ful"lled in order
to leave the system in a speci"c state. They can be
simple actions on objects or classes, or other functions.
As in the case of the means, there can also be several
sequences of parallel posterior actions.

The execution of a function may need the previous execu-
tion of other functions that act as its means, and may
launch the execution of other functions that act as poste-
rior actions of it. When executing a function it will be
decomposed into its constituents until there are no func-
tions left, thus obtaining a network made of simple
actions and conditions that will be called the action
network.

Functions can have parameters that modify their
behavior. These parameters can appear either in
the means or in the prerequisites, the criteria or the
posterior actions. These will not be completely de"ned
until the function is executed and the parameter has
a de"nite value. It will then "ll in the corresponding
slot in the function structure and the function will be
executed.

3.3. Knowledge representation

All the knowledge has to be identi"ed, acquired and
represented in some way in order to have a complete
description of the system. After carefully analyzing
the kind of knowledge to be represented, the elected
formalism for its representation has been that of frames
(Minsky, 1975). This is due to the hierarchical organiza-
tion of their knowledge at the declarative level (structure
of classes) and at the procedural level (the means,
prerequisites and posterior actions of a function can be
other functions that can, in turn, be other functions,
and so on). Thus, the knowledge database will be com-
posed of class, object, connection, grouping, measure-
ment and function frames. With all these types of frames
it is possible to represent all the declarative and pro-
cedural knowledge of a system in a suitable and e$cient
way for its manipulation. Part of this knowledge is "xed,
whereas another part is variable. The state of objects, the

Fig. 2. A fragment of the recognition interface grammar.

Fig. 1. Interaction between the operator and the control system.

values of the properties of objects and groupings, and the
values of the measures can change during the system
operation, while the rest of the knowledge remains
the same.

4. Operation of complex systems

In this section the communication process between the
operator and the system to be controlled is studied. The
operator is usually placed in a control center, from which
he acts upon the system and is constantly kept informed
of its state. There are two kinds of communication: one
between the operator and the control system, and the
other between the control system and the physical sys-
tem. The communication studied here is of the "rst type,
which is done through an interface. This interface reads
the operator's commands, interprets them and generates
control actions that the control system will send to the
physical system. The results produced by these actions on
the system will be sent back to the operator through the
same interface.

The proposal of this paper is to use a NLI between the
operator and the control system that allows for interac-
tion in both senses: the operator will introduce sentences
representing commands to the physical system, which
will be analyzed and interpreted by the interface, result-
ing in the generation of commands in a control language
that will be sent to the physical system. These commands

will be executed, resulting in an updating of the system's
state. Finally, the control system will communicate to the
operator the new state and this will close the cycle. If
needed, the interface will request the operator to introduce
additional information in order to complete missing data,
setting up a dialog with him. Fig. 1 shows this process.

The following section shows the characteristics of the
NLI used for the recognition of the operator's com-
mands, which will be called the recognition interface.

4.1. Natural language interface

The two essential components of a NLI are the vo-
cabulary and the grammar. The vocabulary of the recog-
nition interface includes all the words the operator can
use to give his commands. It is composed of generic
words, valid for every kind of system, and words that are
speci"c to the system, such as the names of its particular
entities. The grammar is adapted to every possible phrase
the operator can use to give his commands. Fig. 2 shows
the representation in terms of a recursive transition net-
work (RTN), of a part of this grammar. In contrast to the
vocabulary, the grammar is "xed and cannot be modi"ed
by the operator.

4.2. Man}machine dialog

The dialog between the operator and the system
through the recognition interface are as follows (Fig. 3):

1. The operator introduces a phrase representing a com-
mand to the system from the keyboard.

2. The phrase is analyzed for correctness, using the lin-
guistic knowledge database (composed of the vocabu-
lary and the grammar).

3. The phrase is interpreted, identifying the kind of op-
eration requested by the operator and the element or
elements of the system a!ected by the operation.

4. The requested operation and the speci"ed elements
are checked for validity.

5. The control language command is generated and sent
to the physical system through the control system.

6. The knowledge database is updated and the operator
is informed of the result of the operation.

The interpreter transforms the natural language sentence
in an internal representation of its meaning after having
identi"ed the requested operation and the involved

Fig. 3. Man}machine dialog.

elements. As a result of this interpretation, two possibili-
ties can take place:

f Both the requested operation and the speci"ed elements
are valid: the operation is executed, the operator is pre-
sented its result, and the knowledge database is updated.

f The operation is not valid or the speci"ed elements do
not exist: the operator is informed of the impossibility
of executing the operation.

In the second case, the operator can be asked either to
give additional information or to solve possible con#icts,
through a dialogue that will "nish when the information
has been precisely speci"ed.

4.3. Types of commands

In this section the two types of commands, simple and
complex, the operator can give are studied in more detail.

4.3.1. Simple commands
Simple commands are those which apply directly to an

element or group of elements, and can be divided into two
categories: action execution commands and information
request commands. The "rst one includes commands with
which the user requests the execution of a speci"c action
over an object or set of objects. The recognition process of
these commands consists of identifying the action that has
to be made and the object to which it has to be applied.
Once this has been done, whether the action can be
applied to the object, and if the actual state of the object
allows for the application of that action should be
checked. If everything is correct, the action will be ex-
ecuted and the object will be set to its new state. The
following sentences, taken from the operation of an elec-
trical network, are examples of these kind of commands:

' open the cell C1S1.
' open the bus tie cell of generator G5.
' open the cell that joins G1 with the busbar BC1S1.
' open the cells associated to line L1.
' open all the cells connected to the main busbar of

substation sub1.
' open all the cells from substation sub1.

Information request commands are those commands
with which the user asks for speci"c information about
an object or a set of objects. The requested information
corresponds to the state or property value of an object or
grouping. The recognition process of these commands
consists of identifying the object or grouping whose state
or property is to be known and, in this latter case, the
corresponding property must be a valid property and
must have an associated measure. The following are
examples of information request commands:

' show the position of the nomad robot.
' show its velocity.
' show the voltage of the main busbar of substation

sub1.
' show the state of all the cells of sub1.
' show the state of all the cells connected to the main

busbar BC1S1.
' show the active power of all the loads of the net.

In both types of commands the object to which the
command is applied can be directly speci"ed or can be
speci"ed in an implicit way, by means of its topological
or functional relation to other objects, its pertinence to
a grouping or its location. In every case, the correspond-
ing frames will have to be retrieved from the knowledge
database in order to identify the object. On the other
hand, the object can be unspeci"ed, in which case it will
be obtained from the previous sentences of the dialog.
Finally, commands can be applied to multiple objects: all
the objects of a named class, all the objects belonging to
a grouping, all the objects related to a same object or all
the objects placed at a given location. In this case it will
be necessary to identify all of the objects, and it may
happen that the command can only be applied to some of
them, since not all the objects will, in general, have the
same state.

4.3.2. Complex commands
Complex commands are those that imply the execu-

tion of a sequence of simple actions to some objects in
a predetermined order, what will be called a plan of
action, in order to ful"ll a speci"c goal. To achieve this,

Fig. 4. Representation of a function frame.

Fig. 5. Structure of a simple command.

the goal has to be decomposed into simpler subgoals
until there are only simple actions that can be applied to
speci"c objects. The execution of these actions will result
in the accomplishment of the goal. The necessary know-
ledge to generate a plan of actions is stored in the func-
tion frames. These frames contain all the information
about the operations that can be performed on the sys-
tem, each one described in term of the others. Thus,
a frame representing a complex function can be expressed
in terms of other less complex functions that will also
have their corresponding frames. The process of generat-
ing a plan of actions consists then of exploring frames
that will call up other frames and so on, until frames that
only have direct actions over objects are found. The
execution of the simple action network built this way will
result in the accomplishment of the goal.

4.4. Generation of a plan of action

In order to understand the process of goal decomposi-
tion it is necessary to recall the concept of the function
frame. This frame describes a function that can be asso-
ciated to a class, an object, a grouping or the whole
system. Fig. 4 shows the graphical representation of
a function frame.

Given a goal, at least one function will exist in the
knowledge database which will have this goal as its goal
g. The frame for this function will be the starting point to
generate the plan of action that allows the command to
be ful"lled. Thus, the di!erent means, prerequisites and
posterior actions of this frame will be analyzed one by
one. Each means m

ij
and posterior action p

ij
from this

function can be a simple or complex command. Every
prerequisite r

i
can be a complex command or a condition

over a state or the value of a property. Simple and
complex commands, as well as conditions, have a struc-
ture represented by a Petri net. Each structure has at
least an input place and an output place. The input place
will be marked when the net is activated, whereas the
marking of the output place will mean the ending of its
traversal.

A simple command is represented by two places and
one transition (Fig. 5). The input place represents the
action to be executed on the object to which the com-

mand is applied, and will be marked when the command
starts up its execution. The transition represents the state
to which the object is to be taken, and will be "red when
the action on it has been made. At this moment the
output place representing the ful"llment of the simple
command will be marked.

For complex commands another function will exist in
the knowledge database whose goal corresponds to that
command, and that will have its own means, prerequi-
sites, criteria and posterior actions. The network repres-
enting this function will be a subnetwork of the one
corresponding to the main function, and should in turn
be expanded if it were to have another complex com-
mand between its means, prerequisites and posterior
actions. Its structure is shown in Fig. 6. There is an input
place that will be marked when the execution of the
complex command begins, and this mark will automati-
cally propagate to all of its prerequisites. The output
place of the net is the goal place. When the marks reach
this place the goal will be ful"lled.

Finally, a condition-type prerequisite is represented by
two places and a transition, as is shown in Fig. 7. The
input place will be marked when the evaluation of the
prerequisite starts. The transition represents the desired
state or property value, and will be "red once it has the
adequate value, resulting in the marking of the output
place.

If every means, posterior action and prerequisite is
successively divided until there are only simple actions
and conditions left, a network, the action network, will be
obtained. Places in this network represent actions being
executed on objects while transitions represent condi-
tions on the state of the objects or the value of their
properties. The initial marking corresponds to the "rst
simple actions to be executed and the "rst conditions to

Fig. 6. Structure of a complex command.

Fig. 7. Structure of a condition.

Fig. 8. Structure of an action network.
be checked. The marks will propagate as the transitions
are "red, as a result of the conditions being ful"lled, until
the mark reaches the goal place. Fig. 8 shows the generic
structure of an action network.

The action network can formally be de"ned as a 6-
tuple R"(P, ¹, c, o, a, b' where:

f P is a "nite and non-null set of places that represents
the states of the objects. These states are associated to
actions that are applied to the objects or conditions
that are evaluated on them.

f ¹ is a "nite and non-null set of transitions that repres-
ents certain conditions on the states or property values
of the objects and groupings of the system.

f c is a transition that represents the accomplishment
criteria of the function goal.

f o is a place that represents the goal to be ful"lled.
When this place is marked, the goal will have been
ful"lled.

f PW¹"0, i.e. places and transitions are disjoint sets.
f a : P]¹PN is the previous incidence function, which

speci"es the input places of the transitions. A place p is
an input place of a transition t if an orientated arc from
p to t exists, i.e. a(p, t)O0.

f b : P]¹PN is the posterior incidence function, which
speci"es the output places of the transitions. A place
p is an output place of a transition t if an orientated arc
from t to p exists, i.e. b(t, p)O0.

A marking M of the network R is an application from
P in N that gives the number of marks that exist at every
place of P.

The goal will be ful"lled when the place g is marked. In
order for this to happen, condition c should be true when
all of its input places are marked. This will happen once
the corresponding means m

ij
have been accomplished.

The initial marking of these means will in turn depend on

the marking of the ending places of the prerequisites r
i
.

On the other hand, once goal g has been ful"lled its
output transition will be "red marking the input places of
the posterior actions p

ij
. The initial marking of the net-

work will correspond to the initial places of the prerequi-
sites r

i
, and will propagate towards the goal as the

transitions are "red.
Every generated network is added to the knowledge

database so that it can be used later if needed. Thus, if
when generating a new action network one of the sub-
goals is a goal whose action network has already been
generated, it will be taken from the knowledge database
where it was stored and will be included in the action
network that is being generated. This way avoids
generating the same network again.

5. Application to a mobile robot

In order to practically apply all the ideas presented in
this paper, a system has been developed. This system is
composed of two di!erent parts: the acquisition module
and the operation module. The "rst one, described in
GonzaH lez (1997), works o!-line, while the second works
on-line. Both of them share a common knowledge
database. The acquisition module allows the knowledge
of di!erent types of systems to be introduced and stored
in di!erent knowledge bases. By using this knowledge,
the operation module allows the system to be operated.
The block diagram of the developed system is shown in
Fig. 9.

The developed system is connected to the real system
through its corresponding control system, which will

Fig. 9. Block diagram of the developed system.

Fig. 10. Connection of the developed system to the real system.

Fig. 11. Photograph of the NOMAD 200 robot.

receive the commands and will execute them over it
(Fig. 10). It is also possible to connect the developed
system to a program that simulates the behavior of the
real system if this one is not available or for operation
tests or operator training purposes.

This system has been applied to several complex
systems with di!erent characteristics: a pilot plant
(GonzaH lez et al., 1992; GonzaH lez & Camacho, 1993) an
electrical network (GonzaH lez & Camacho, 1997) and
a mobile robot that navigates in a partially structured
environment (GonzaH lez, GoH mez & Camacho, 1998). In
the "rst two applications the system behavior has been
simulated by software. In the mobile robot application,
which is presented in this paper, the system has been
connected to the real robot. A hierarchy of functions has
been developed that allows the operation of the robot
from a lower level represented by simple movements (go,
turn, etc.) to a higher level represented by more complex
operations (follow wall, avoid obstacle, etc.). In this way,
the robot can easily be teleoperated from a terminal
when moving in a partially structured environment.

5.1. System description

The robot, a Nomad 200 mobile robot (Nomadic
Technologies Inc, 1997), is composed of a base with

a turret mounted on it. The base has two driving and one
steering wheels, allowing forward and backwards dis-
placement movements and left and right turning. The
turret is capable of rotating 3603 over itself independently
of the base. The robot is equipped with a structured
light-based laser range sensor, ultrasounds and a
CCD camera. Fig. 11 shows a photograph of the robot,
while Fig. 12 shows a schematic representation of its
environment.

Fig. 12. The robot environment.
Fig. 13. Class structure of the robotic system.

Fig. 14. Structure of the robotic system functions.

The goal of the application is to teleoperate the robot
from a terminal through which it will be given commands
in order to perform certain tasks, such as walk to
a named place or walk forward avoiding all the obstacles
it may "nd along its way. The robot navigates in a par-
tially structured environment composed of walls, furni-
ture, doors and obstacles and the operator uses the
information provided by the camera for the teleoperation
of the robot. Fig. 13 shows the di!erent classes of objects.
As for connection classes, there exists a class door with
a superclass connection}element.

Every room of the environment in which the robot
moves is a grouping, and is made up of objects of the
types table, chair and bookcase. Rooms connect to each
other through objects of class door.

The hierarchical structure of some of the de"ned func-
tions is shown in Fig. 14. Level 0 corresponds to simple
actions over the robot. Functions begin at level 1 and
increase their complexity in upper levels. For example,
level 2 function avoid}obstacle, which consist of avoiding
an obstacle placed in front of the robot by going round it,
depends on level 1 function walk}D (move the robot
forward a "xed distance D) and level 0 functions turnright
and turnleft.

5.2. Robot operation

The Nomad 200 robot can be operated in two ways.
The "rst one consists of executing the programs which
control the robot in the robot itself, as it has its own
CPU. Programs are transferred to the robot through the
network, and are executed once they are inside it. The
second one consists of using the control system located in
another machine which is connected to the robot
through an Ethernet radio link. This second way is more
desirable, as it allows for a user friendly development
system and a graphical simulation environment that
allows the programs to be tested before executing them
on the real robot. Fig. 15 shows the network connections
between the developed system (located in workstation 1),

the control system (located in workstation 2) and the real
robot.

Since the control software of the robot is located in
a di!erent machine than the system, a method has to be
chosen that allows communication between both ma-
chines in order that commands can be sent to the robot
and its state can be received. For this purpose the UNIX
sockets have been used. There are two server processes
which run in the machine where the robot control soft-
ware is located, and two client processes that are laun-
ched by the system to send and receive information from
the robot. Fig. 16 shows a schema of the communication
between these processes.

The two possible communication types are:

(a) Execution of a command on the robot: the system
launches a client C1 which connects to the server S1
and sends the command, which is translated and in
turn sent to the robot for its execution. The client

Fig. 15. Connection between the system and the real robot.

Fig. 16. Communication between the developed system and the robot.

updates the system knowledge database and ends its
execution.

(b) Request for information about the robot: the system
launches a client C2 which connects to the server S2
and receives the actual state of the robot with which
it updates the system knowledge database. It shows
the user the requested information and ends its ex-
ecution.

As an example of simple commands a sequence of
actions on the robot is shown.
'where is nomad?

NOMAD IS CURRENTLY AT LABORATORY 1
'what is its velocity?

THE VALUE OF NOMAD’S VELOCITY IS 0
'go nomad.

NOMAD ROBOT GOING
' turnright.

NOMAD ROBOT TURNING
'stop.

NOMAD ROBOT STOPPED

'turnleft.
NOMAD ROBOT TURNING

'go.
NOMAD ROBOT GOING

' stop.
NOMAD ROBOT STOPPED

5.3. Example of a complex command

As an example of the execution of complex commands
the execution of the goal walk}watching, which consists of
making the robot walk forward avoiding possible ob-
stacles, is shown (Fig. 17). The function frames that are
necessary to execute this command are those of the
function walk}watching itself, the function avoid}obstacle,
which appears as its posterior action, the function walk,
which is a means of avoid}obstacle, and the function reset,
which is a means of the walk function. Fig. 18 shows the
relations between all these frames. Note that the function
walk}watching has a recursive de"nition. It just asks the

Fig. 17. Structure of the function walk}watching.

Fig. 18. Frame structure for the function walk}watching.

Fig. 19. Building process of the action network for the function
walk}watching.

robot to wander around until it gets blocked. This de"ni-
tion could be changed without problems; for instance,
once the robot has rounded the obstacle it could be asked
to walk a "xed distance and then stop. In any case, if
a new command is sent to the robot the movement will
end, as every time a command is given the previous one
"nishes (except for turns that can coexist with transla-
tional movements).

Fig. 19 shows the building process of the action net-
work. First, the knowledge base is checked in search of
a function that ful"lls the goal walk}watching. Once the
function has been found and its frame has been obtained,
every prerequisite, means and posterior action of the
function is analyzed in search of new goals. In the
example, two subgoals are found: avoid}obstacle and
walk}watching itself. For every found subgoal, the know-
ledge base is searched again to "nd a function that ful"lls
this goal. The prerequisites, means and posterior actions
of these functions are in turn analyzed for new subgoals.
In the example, avoid}obstacle has as a means the
subgoal walk. The process continues until there
are no subgoals left. The "nal result is shown in Fig. 20,
where the network corresponding to the function reset
has been placed into the network corresponding to the
function walk, this in turn has been placed into the
network corresponding to the function avoid}obstacle,
and this in turn has been placed into the original
network.

When the action network is executed the correspond-
ing actions will be sent to the robot one after another
until the goal is ful"lled. If the path is blocked the
goal will fail, the robot will stop and the system will
give an explanation of the problem. In general, if
some prerequisite or means cannot be accomplished the
goal will fail, causing the system to present the user
with an explanation of the reason for this failure. If

Fig. 21. Execution of experiment 1.

Fig. 22. Series of commands for experiment 1.

Fig. 20. Action network for the goal walk}watching.

there are other ways to ful"ll the goal they will be tried
in turn until one of them succeeds or until they
all fail.

6. Experimental results

The system has been practically tested with the
synchro-drive-type NOMAD 200 robot. Two experi-
ments have been carried out in a typical partially struc-
tured indoor environment (see Fig. 12). Several series of
simple and complex commands have been executed over
the robot in this environment.

As is well known, one of the problems that arise in
mobile robot navigation is the estimation of the robot
position and orientation (posture estimation). This prob-
lem is especially important in a teleoperated system such
as the one presented in this work, as the decisions and
commands given to the robot by the operator are based
on its estimated posture. In this work a sensor fusion-
based posture estimation system has been used. This
system makes an estimation based on the odometry and
a match between the map obtained by distance measure-
ments given by the laser range sensor and a map of the
environment previously stored in memory. Such estima-
tion is made every 7 m travelled by the robot or each time
a turning command is executed (commands turn and
rotate).

6.1. Experiment 1

The goal of the "rst experiment is to guide the robot
from a starting point (1) to a goal point (12) travelling
a total distance of about 27 m and avoiding all possible
obstacles. Fig. 21 shows the environment window used
by the operator as an interface for the execution of the
series of commands, which is listed in Fig. 22. The "gure
shows the points at which the commands are given to the
robot. There are simple (go, turnright) and complex (ro-
tate, estimate posture, walk}watching) commands. Every
time a new command is given the previous one "nishes,
except for turns that can coexist with translational move-
ments. In this way, when the robot is moving and a turn-

ing command is given, a circular movement is obtained
(see points 6, 9 and 10 in the "gure). The series ends with
the complex command walk}watching whose action net-
work was discussed in the previous section, followed by
a stop command. The posture is automatically estimated
every time the robot turns. In the "gure, the prime
numbers correspond to the corrected robot positions. An

Fig. 23. Function frames for experiment 2.

Fig. 24. Execution of experiment 2.

Fig. 25. Series of commands for experiment 2.

additional posture estimation command is given by the
operator at point 7@, before entering laboratory 1. The
operator then decides to correct the position with
the command walk}a}little to avoid collision with the
door.

6.2. Experiment 2

The second experiment shows how the system can be
extended in order to cope with new goals. In particular,
a new goal consisting of guiding the robot to a named
place has been considered. Some new functions have
been de"ned for this purpose, the most important being
the following:

f goto (object', a function that makes the robot face
an object and then makes it walk towards it avoiding
all possible obstacles along the way. The function ends
when the robot reaches the position where the object is
located. Then the robot stops and estimates its pos-
ture, correcting it if necessary.

f avoid}obstacle}left, a function which avoids an ob-
stacle located in the front of the robot by turning the
robot to the left and then moving it in that direction
until the obstacle has been avoided. A similar function
avoid}obstacle}right can also be de"ned so that the
operator can use the most appropriate one at each
moment.

f walk}watching (object', a new version of function
walk}watching with an object as a parameter.
The robot walks until an obstacle is found. Then the
obstacle is avoided by the left and the function goto is
called with the object as its parameter.

Fig. 23 shows the frames for these new functions. Fig. 24
shows the new experiment results obtained when execut-
ing the commands listed in Fig. 25, whose goal is to take
the robot from laboratory 2 to room 2.

7. Conclusions and future work

In this paper a structure for the operation of complex
interactive systems based on the use of natural language
processing techniques has been proposed. These tech-
niques can simplify work with such systems and allow for
its use in a comfortable and natural way by non-experts.

A natural language interface has been designed that
has been used for operating a system from its control
center. This interface has a grammar and a vocabulary
that covers almost every kind of dialog that can take
place in the system operation. The interface allows for
natural language communication between the operator
and the system, setting up a series of dialogs with which
the control center operator can perform every kind of
action on the system. These actions can be simple actions
over the system components, as well as more complex
goals that imply the generation and execution of a se-
quence of simple actions on some objects of the system in
a predetermined order.

In order to execute a goal a procedure has been estab-
lished that generates a plan of simple actions that accom-
plishes the goal from the information stored in the

knowledge database. This plan is added to the knowledge
database so it can be reused if the same goal, or another
goal from which this one is a subgoal, is executed.
Special attention has been paid to allow for system ma-
nipulation through high level user de"ned tasks. These
tasks are de"ned one after the other in a telescopic way
so that the operator has the possibility of using the level
of abstraction he considers most convenient at every
moment.

A system has been developed that has been applied to
several complex systems of great interest. In particular,
the application to a mobile robot that navigates in a par-
tially structured environment has been presented. A de-
scription of the robotic system is given, its knowledge
database has been generated and some typical operations
were performed. The behavior of the robotic system was
obtained by connecting the system to the real robot. The
developed system could be applied to simulate the execu-
tion of goals. In order to do this, it is su$cient to simulate
the behavior of the system through software and con-
struct the plan of action corresponding to the goal. If the
plan is successfully constructed the goal can be achieved
and could be executed on the real system, otherwise
a di!erent plan should be created. This method avoids
actions being initiated and then reaching a point at which
no more actions can be executed due to an unaccom-
plished prerequisite or an action that cannot be per-
formed, resulting in a half-executed plan and an
unachieved goal. This incomplete execution is a problem
as it could prevent the goal from being ful"lled with
another plan.

The contribution of this paper is the development of
a generic NLI that can be applied to di!erent kinds of
complex systems. The NLI allows the user to "rst de-
scribe the system and then to perform operations on it,
including the de"nition and execution of high-level tasks.
The system can be used to simulate the execution of
tasks, which is of great interest for operator training
purposes. To show the bene"ts of the system it has been
applied to the teleoperation of a real mobile robot, allow-
ing the user to move the robot in a partially structured
environment through natural language sentences.

As future research related to this work, the following
lines can be pointed out:

f Integration of natural language with other complement-
ary interaction types, such as hyper-text, graphics or
menus, in a multimodal interface that gives the user the
possibility of using the type of interaction he considers
the most adequate to the kind of operation he wants to
perform at all times. For instance, the system can present
the user with shorter sentences, hyper-linked between
themselves and possibly with term de"nitions, instead
of longer and harder to read sentences.

f Increase the goal types. In addition to the goals con-
sidered here, those of reaching a certain system state,

two other possible kinds of goals exist: to prevent or to
maintain a state.

f Choice amongst several action networks for ful"ll-
ing a goal. It will be necessary to specify an optimiza-
tion criteria in order to select the most adequate
network.

References

Brown, M. K., Buntschuh, B. M., & Wilpon, J. G. (1992). SAM:
A perceptive spoken language understanding robot. IEEE Transac-
tions on Systems, Man and Cybernetics, 22(6), 1390}1402.

GonzaH lez Romano, J. M., Ternero, J. A., & Camacho, E. F. (1992).
Natural language interface in control. Application to a pilot plant.
In A. Ollero, & E. F. Camacho, Proceedings of the IFAC symposium
on intelligent components and instruments for control applications
(SICICA'92) (pp. 199}204). Oxford: Pergamon Press.

GonzaH lez Romano, J. M., & Camacho, E. F. (1993). Goal-oriented
man machine interface in control. Application to a pilot plant.
Preprints of the 12th IFAC world congress, Sydney, Australia
(pp. 455}458).

GonzaH lez Romano, J. M. (1997). Application of natural language to
knowledge acquisition and operation of complex systems. Doctoral
Dissertation, University of Seville.

GonzaH lez Romano, J. M., & Camacho, E. F. (1997). Use of a natural
language interface to make operations in electrical networks control
centers. VII congress of the AEPIA (CAEPIA'97), MaH laga, Spain.

GonzaH lez Romano, J. M., GoH mez Ortega, J., & Camacho, E. F. (1998).
Application of a natural language interface to the teleoperation of
a mobile robot. IFAC workshop on intelligent components for vehicles
(ICV '98), Seville, Spain.

Harris, L. R. (1977). ROBOT: a high performance natural language
processor for data base query. ACM SIGART Newsletter, 61, 39}40.

Hwang, Y. K., Cheng, P. C., & Watterberg, P. A. (1996). Interactive task
planning through natural language. Proceedings of the IEEE inter-
national conference on robotics and automation, Minneapolis, MN,
USA (pp. 24}29).

Ingrand, F. F., Chatila, R., & Alami, R., & Robert, F. (1996). PRS:
A high level supervision and control language for autonomous
mobile robots. Proceedings of the international conference on robotics
and automation, Minneapolis, MN (pp. 43}49).

Kasturi, R., FernaH ndez, R., Amlani, M. L., & Feng, W. (1989). Map data
processing in geographic information systems. Computer, 22(12),
10}21.

Klingspor, V., Demiris, J., & Kaiser, M. (1997). Human}robot com-
munication and machine learning. Applied Artixcial Intelligence,
11(7}8), 719}746.

Knoll, A., Hildebrandt, B., & Zhang, J. (1997). Instructing cooperating
assembly robots through situated dialogues in natural language.
Proceedings of the IEEE international conference on robotics and
automation, Alburquerque, NM (pp. 888}894).

Minsky, M. (1975). A framework for representing knowledge. In P. H.
Winston, The psychology of computer vision (pp. 211}277). New
York: McGraw-Hill.

Nomadic Technologies Inc (1997). NOMAD Language Reference
Manual.

Selfridge, M., & Vannoy, W. (1986). A natural language interface to
a robot assembly system. IEEE Journal of Robotics and Automation,
RA-2(3), 167}171.

Stock, O. (1994). Natural language in multimodal human}computer
interfaces. IEEE Expert, 9(2), 40}44.

Torrance, M. C. (1994). Natural communication with robots. Doctoral
Dissertation, Massachusetts Institute of Technology.

Winograd, T. (1972). Understanding natural language. New York:
Academic Press.

