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ABSTRACT

OLIVEIRA SOUSA, A. N. Robustness of nonuniform and random exponential dichotomies
with applications to differential equations. 2021. 123 p. Tese (Doutorado em Ciências –
Matemática (ICMC-USP) e PhD (US)) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2021.

In this thesis, we study hyperbolicity for deterministic and random nonautonomous dynamical
systems and their applications to differential equations. More precisely, we present results for
the following topics: nonuniform hyperbolicity for evolution processes and hyperbolicity for
nonautonomous random dynamical systems. Concerning the first one, we study the robustness
of the nonuniform exponential dichotomy for continuous and discrete evolution processes. We
present an example of an infinite-dimensional differential equation that admits a nonuniform
exponential dichotomy and apply the robustness result. Moreover, we study the persistence of
nonuniform hyperbolic solutions in semilinear differential equations. Furthermore, we introduce
a new concept of nonuniform exponential dichotomy, provide examples, and prove a stability
result under perturbations for it. For the second topic, we introduce exponential dichotomies for
random and nonautonomous dynamical systems. We prove a robustness result for this notion of
hyperbolicity and study its applications to random and nonautonomous differential equations.
Among these applications, we study the existence and continuity of random hyperbolic solutions
and their associated unstable manifolds. As a consequence, we obtain continuity and topological
structural stability for nonautonomous random attractors.

Keywords: exponential dichotomies; evolution processes; nonautonomous random dynamical
systems; continuity of attractors; structural stability of attractors; bounded noises.





RESUMO

OLIVEIRA SOUSA, A. N. Robusteza de dicotomias exponenciais, não uniformes e aleatória,
com aplicações a equações diferenciais. 2021. 123 p. Tese (Doutorado em Ciências –
Matemática (ICMC-USP) e PhD (US)) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2021.

Nesta tese, estudamos hiperbolicidade para sistemas dinâmicos não autonomos determínisticos e
aleatórios e suas aplicações a equações diferencias. Mais precisamente, apresentamos resultados
nos seguintes tópicos: hiperbolicidade não uniforme para processos de evolução e hiperbo-
licidade para sistemas dinâmicos aleatórios não autônomos. No primiero tópico, estudamos
robusteza da dicotomia exponencial não uniforme para processos de evolução contínuous e
discretos. Apresentamos uma de equação diferencial em dimensão infinita que admite uma
dicotomia exponencial não uniforme e aplicamos o teorema de robusteza. Ademais, estudamos a
persistência de soluções hiperbólicas não uniformes em equações diferencias semilineares. Além
disso, introduzimos um novo conceito de dicotomia exponencial não uniforme, fornecemos
exemplos e provamos um teorema estabilidade sob perturbações. Na segundo tópico introduzi-
mos dicotomias exponencias para sistemas dinâmicos aleatórios e não autônomos. Provamos
um resultado de robusteza para essa noção de hiperbolicidade e estudamos suas aplicações a
equações diferencias aleatórias e não autônomas. Entre essas aplicações estudamos existência e
continuidade de soluções hiperbólicas aleatórias e suas variedades instaveis associadas. Como
consequência obtemos continuidade e estabilidade estrutural topológica para atratores aleatórios
não autônomos.

Palavras-chave: dicotomias exponencias; processos de evolução; sistemas dinâmicos não
autônomos aleatórios; continuidade de atratores; estabilidade estrutural de atratores; ruídos
limitados.





RESUMEN

OLIVEIRA SOUSA, A. N. Robusteza de dicotomias exponenciais, não uniformes e aleatória,
com aplicações a equações diferenciais. 2021. 123 p. Tese (Doutorado em Ciências –
Matemática (ICMC-USP) e PhD (US)) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2021.

En esta tesis, estudiamos la hiperbolicidad para sistemas dinámicos deterministas y aleatorios
no autónomos, y sus aplicaciones a ecuaciones diferenciales. Más precisamente, presentamos
resultados en los siguientes temas: hiperbolicidad no uniforme para procesos de evolución e
hiperbolicidad para sistemas dinámicos aleatorios no autónomos. En el primer tema, estudiamos
la robustez de la dicotomía exponencial no uniforme para procesos de evolución continuos
y discretos. Presentamos un ejemplo de una ecuación diferencial en dimensión infinita que
admite una dicotomía exponencial no uniforme y aplicamos el resultado de robustez. Además,
estudiamos la persistencia de soluciones hiperbólicas no uniformes en ecuaciones diferenciales
semilineales. Por otro lado, presentamos un nuevo concepto de dicotomía exponencial no unifor-
me, proporcionamos ejemplos y demostramos un resultado de estabilidad bajo perturbaciones
para él. En el segundo tema, presentamos dicotomías exponenciales para sistemas dinámicos
aleatorios y no autónomos. Demostramos un resultado de robustez para esta noción de hiperboli-
cidad y estudiamos sus aplicaciones a ecuaciones diferenciales aleatorias y no autónomas. Entre
estas aplicaciones estudiamos la existencia y continuidad de soluciones hiperbólicas aleatorias y
sus variedades inestables asociadas. Como consecuencia, obtenemos continuidad y estabilidad
estructural topológica para atractores aleatorios no autónomos.

Palabras clave: Dicotomías exponenciales; procesos de evolución; sistemas dinámicos no
autonomos aleatorios; continuidad de atractores; estabilidad estructural de atractores; ruidos
acotados.
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CHAPTER

1
INTRODUCTION

In the framework of dynamical systems, hyperbolicity plays a fundamental role (see, e.g.
(KATOK; HASSELBLATT, 1995; ROBINSON, 1995; SHUB, 1987) and the references therein).
It is the key property for most of the results on permanence under perturbations. The permanence,
on the other hand is an essential property for dynamical systems that model real life phenomena.
That importance is related to the fact that modelling always comes with approximations (due
to the empiric nature that it carries) and/or with simplifications (introduced to make models
treatable or simply because the complete set of variables that are related to the phenomenon is not
known). Therefore, in order that the mathematical model reflects, in some way, the phenomenon
modelled, it is essential that its dynamical structures are robust under perturbation. In this thesis,
we study robustness of hyperbolicity in two different contexts and we present several applications
to infinite-dimensional differential equations. These results are contained in (CARABALLO
et al., 2021a; CARABALLO et al., 2021b; CARABALLO et al., 2021c; LANGA; OBAYA;
OLIVEIRA-SOUSA, 2021).

First, let us introduce the notion of hyperbolicity. In the discrete case, xn+1 = Bxn,
hyperbolic dynamical systems appear when the spectrum of the bounded linear operator B does
not intercept the unit circle in the complex plane. This implies the existence of a hyperbolic

decomposition of the space, which means that exist two main directions: one where the evolution
of the dynamical system decays exponentially and another where it grows exponentially. The set
of operators that has such decomposition is an open set in the spaces of bounded linear operators
and the operators in this set are called hyperbolic operators. In other words, if B is hyperbolic
there is a neighborhood of B such that every operator in this neighborhood is hyperbolic. For
autonomous differential equations, when A is a bounded linear operator, ẋ = Ax, by the spectral
mapping theorem (KATO, 1995), hyperbolicity is associated with linear operators such that the
spectrum does not intersect the imaginary line.

Generally, in nonautonomous differential equations, the notion of hyperbolicity is referred
to as exponential dichotomy. More precisely, consider the following differential equation in a
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Banach space X ,

ẋ = A(t)x, x(s) = xs ∈ X . (1.1)

Under appropriate conditions, the solutions x(t,s;xs), t ≥ s, of this initial value problem define
an evolution process S := {S(t,s) ; t ≥ s}, where S(t,s)xs = x(t,s;xs). We say that the evolution
process S admits an exponential dichotomy if there exists a family of projections, {Πu(t) ; t ∈R}
such that for each t ≥ s we have that S(t,s)Πu(s) = Πu(t)S(t,s), S(t,s) is an isomorphism from
R(Πu(s)) onto R(Πu(t)), and

∥S(t,s)Πs(s)∥L (X) ≤ Ke−α(t−s), t ≥ s; (1.2)

∥S(t,s)Πu(s)∥L (X) ≤ Keα(t−s), t < s, (1.3)

for some constants K ≥ 1 and α > 0. Note that, since the vector field is changing in time, it
is natural to think that for each initial time we have a hyperbolic decomposition that resem-
bles the properties in the autonomous case. There is a long list of works through these last
decades about existence of exponential dichotomies and their stability properties, for instance
(AULBACH; MINH, 1996; CARVALHO; LANGA, 2007a; CHICONE; LATUSHKIN, 1999;
CHOW; LEIVA, 1995a; CHOW; LEIVA, 1996; HALE; ZHANG, 2004; HENRY, 1981; HENRY,
1994; PLISS; SELL, 1999; PöTZSCHE, 2015). In (HENRY, 1981, Section 7.6), see also (CAR-
VALHO; LANGA; ROBINSON, 2013, Chapter 7), a robustness result is proved for exponential
dichotomies, in the discrete case, by characterizing dichotomy via admissibility for the associated
difference equation and, in the continuous case, by a discretization method. This consists in
proving results to “move” between continuous and discrete exponential dichotomies. In this way,
one is able to use the robustness of the discrete case to prove a similar result for the continuous
case.

In Chapter 2 and Chapter 4 we apply Henry’s techniques to study nonuniform exponential

dichotomies for evolution processes and exponential dichotomies for nonautonomous random

dynamical systems under perturbation, respectively. In Chapter 3 we introduce a new notion
of nonuniform exponential dichotomy and provide a robustness result for it. In Chapter 5 we
apply the robustness of exponential dichotomy to study structure stability of attractors for
nonautonomous random dynamical systems. Thus we organize this thesis in two main parts:
In the first part (Chapter 2 and Chapter 3) we focus on nonuniform hiperbolicity for evolution
processes and in the second part (Chapter 4 and Chapter 5) we study exponential dichotomies
and applications for nonautonomous random dynamical systems.

A nonuniform exponential dichotomy appears when we allow the constant K in the above
definition to be a continuous function K(s) in (1.2) and (1.3). In this case we say that (1.1) admits
a nonuniform exponential dichotomy, see (BARREIRA; VALLS, 1998) for an introduction.
Usually, the nonuniform bound is given by K(s) = Deν |s| for some ν > 0. As in the uniform case,
there are many works concerning issues of existence and robustness for nonuniform exponential
dichotomies (ALHALAWA; DRAGICEVIĆ, 2019; BARREIRA; DRAGICEVIĆ; VALLS, 2016;
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BARREIRA; DRAGICEVIĆ; VALLS, 2014; BARREIRA; SILVA; VALLS, 2009a; BARREIRA;
VALLS, 1998; BARREIRA; VALLS, 2008; BARREIRA; VALLS, 2009; BARREIRA; VALLS,
2015; ZHOU; LU; ZHANG, 2013).

The robustness of nonuniform exponential dichotomy for equation (1.1) can be inter-
preted as follows: suppose that the associated solution operator (evolution process) admits a
nonuniform exponential dichotomy. The problem is to know for which family of bounded linear
operators {B(t) : t ∈ R}, the perturbed problem

ẋ = A(t)x+B(t)x, (1.4)

admits a nonuniform exponential dichotomy. In (BARREIRA; VALLS, 2008) the authors
studied under which conditions the nonuniform exponential dichotomy is robust in the case
of invertible evolution processes. Later, in (ZHOU; LU; ZHANG, 2013) the authors proved
a similar result for random difference equations for linear operators without the invertibility
requirement. More recently, it was proved that nonuniform exponential dichotomy is robust
for continuous evolution processes, also without invertibility, see (BARREIRA; VALLS, 2015).
They consider an evolution process that admits a nonuniform exponential dichotomy with some
growth rate ρ(·) satisfying some properties. They proved that if α > 0 is the exponent and
ν > 0 the exponential growth of the bound satisfy α > 2ν and B : R→ L (X) is continuous
satisfying ∥B(t)∥L (X) ≤ δe−3ν |ρ(t)|ρ ′(t), for all t ∈ R, then the perturbed problem (1.4) admits
a ρ-nonuniform exponential dichotomy.

In Chapter 2 we provide an interpretation of the robustness result as open property.
In fact, if an evolution process S admits a nonuniform exponential dichotomy, there is an
open neighborhood N(S ) of S such that every evolution process in N(S ) also admits a
nonuniform exponential dichotomy. We prove that if a continuous evolution process admits a
nonuniform exponential dichotomy, then each discretization also admits it. Then we use the
roughness of the nonuniform exponential dichotomy for discrete evolution processes to obtain
that each discretization of the perturbed evolution process also admits a nonuniform exponential
dichotomy. Thus, to obtain our robustness result, we have to guarantee that if each discretization
of a continuous evolution process S admits a nonuniform exponential dichotomy, then S also
admits it. Our proof is inspired by the ideas in (HENRY, 1981) and, later, the same technique is
applied in Chapter 4 for nonautonomous random dynamical systems.

With this method, we also obtain uniqueness and continuous dependence of projections,
and explicit expressions for the bound and exponent of the perturbed evolution process. Besides,
since our condition on the exponents is α > ν we obtain an improvement of (BARREIRA;
VALLS, 2015, Theorem 1). We consider only the case ρ(t) = t, as the other cases follow by a
change of scaling in time. Moreover, we do not assume that the evolution processes are invertible,
then it is possible to apply our result to evolutionary differential equations in Banach spaces, as
the ones that appears in (CARVALHO; LANGA, 2007a; CARVALHO; LANGA; ROBINSON,
2013; CHOW; LEIVA, 1996; HENRY, 1981).
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An important consequence of the robustness result regarding nonlinear evolution pro-
cesses is the persistence under perturbation of hyperbolic solutions, see (CARVALHO; LANGA;
ROBINSON, 2013, Chapter 8). More precisely, consider a semilinear differential equation

ẋ = A(t)x+ f (t,x), x(s) = xs ∈ X , (1.5)

and suppose that there for each s ∈ R and xs ∈ X there exists a solution x(·,s;xs) : [s,+∞)→ X ,
then there is a nonlinear evolution process S f = {S f (t,s) : t ≥ s} defined by S f (t,s)x = x(t,s;xs).
A map ξ : R→ X is called a global solution for S f if S f (t,s)ξ (s) = ξ (t) for every t ≥ s and
we say that ξ is a nonuniform hyperbolic solution if the linearized evolution process over ξ

admits a nonuniform exponential dichotomy. In the uniform case it was studied the existence of
hyperbolic solutions of S f obtained by nonautonomous perturbations of hyperbolic equilibria,
see (CARVALHO; LANGA, 2007a). We also applied this method of (CARVALHO; LANGA,
2007b) to the nonautonomous random case in Section 5.1.

Chapter 2 concludes with a result on the persistence of nonuniform hyperbolic solutions
under perturbations. In fact, if ξ is a nonuniform hyperbolic solution for S f = {S f (t,s) : t ≥ s}
and g is a map “close" to f , then there exists a nonuniform hyperbolic solution for Sg =

{Sg(t,s) : t ≥ s} “close" to ξ . Additionally, we also prove that bounded nonuniform hyperbolic
solutions are isolated in the space of bounded continuous functions Cb(R,X), i.e., if ξ is a
nonuniform hyperbolic solution, then there exists a neighborhood of ξ in Cb(R) such that ξ

is the only bounded solution for S f is this neighborhood. All the results of Chapter 2 can be
found in (CARABALLO et al., 2021c). In Section 5.1 we apply similar techniques to study not
only existence of hyperbolic solutions of nonautonomous random dynamical systems, but also
continuity with respect to a parameter.

In Chapter 3, we propose a new type of nonuniform exponential dichotomy. Let {S(t,s) :
t ≥ s} be a linear evolution process satisfying all the conditions to admit a nonuniform exponential
dichotomy, except that (1.2) and (1.3) are changed to

∥S(t,s)Πs(s)∥L (X) ≤K(t)e−ω(t−s), t ≥ s

∥S(t,s)Πu(s)∥L (X) ≤K(t)eω(t−s), t < s.
(1.6)

This means that the bound K(t) appears now depending on the final time t instead of the initial
time s and we refer to this notion as nonuniform exponential dichotomy of type II, or simply
NEDII, and to the standard one, presented in Chapter 2 as nonuniform exponential dichotomy
of type I, or simply NEDI. We prove that a NEDII is a different concept of nonuniform
hyperbolicity. In fact, we provide examples of evolution processes that admits NEDII and
does not admit any NEDI. We also show that NEDI and NEDII are complementary notions of
nonuniform hyperbolicity and under certain special conditions it is possible to relate them. One
important idea is that there is some dual correspondence between them. For instance, if a linear
evolution process admits a NEDI, it is expected that the dual evolution process admits a NEDII,
and vice-versa. The dual evolution process corresponds to the adjoint equation. In (BARREIRA;
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VALLS, 1998), they use this type of relation to obtain results for NEDI associated with invertible
evolution processes. Another relation is that that NEDI and NEDII are complementary in half
lines, R+ or R−, with one being more general than the other one depending in which half-line
they are defined.

The dual correspondence between NEDI and NEDII allows us to establish a robustness
result of NEDII for invertible evolution processes. As an application of the robustness result
of Chapter 2 we provide conditions to obtain that NEDII is stable under perturbation. This fact
guarantees that NEDII is an reasonable notion of nonuniform hyperbolicity. Furthermore, the
robustness result for NEDII can be applied even in situations where we do not know if the NEDI
is stable under perturbation. Therefore, one of our goals is to conclude that NEDII is a sensible
concept and that to study NEDII is to comprehend better the notion of nonuniform hyperbolicity.
The results of Chapter 3 are presented in (LANGA; OBAYA; OLIVEIRA-SOUSA, 2021), where
applications of nonuniform exponential dichotomies to the study of the asymptotic behavior of
evolution processes are also presented.

The second part of the thesis is concerned with nonautonomous random dynamical
systems. Our final goal is to conclude continuity and topological structural stability of attractors.
To this aim, in Chapter 4 we first need to establish robustness results of exponential dichotomies
for nonautonomous random dynamical systems and apply these results in Chapter 5 to study
existence of random hyperbolic solutions, which is the first step to study continuity and structural
stability of attractors, see (BORTOLAN; CARVALHO; LANGA, 2020) for the nonautonomous
deterministic case. Then we study existence and continuity of unstable sets associated to these
random hyperbolic solutions and we use these results to tackle the problem of continuity and
topological structural stability of nonautonomous random attractors.

To fix some ideas, we consider an autonomous semilinear problem in a Banach space X

ẏ = Ay+ f0(y), t > 0, y(0) = y ∈ X , (1.7)

and nonautonomous random perturbations of it

ẏ = Ay+ fη(t,θtω,y), t > τ, y(τ) = yτ ∈ X , η ∈ (0,1], (1.8)

where A generates a strongly continuous semigroup {eAt : t ≥ 0} ⊂ L (X), θt : Ω → Ω is a
random flow defined in a probability space (Ω,F ,P). We assume that there exists a hyperbolic
equilibrium for (1.7) y∗0, i.e., y∗0 is such that f (y∗0) =−Ay, and the linearized problem ż = Az+

f ′(y∗0)z admits an exponential dichotomy. Then, we provide conditions to prove existence and

continuity of “hyperbolic equilibria" for (1.8). In fact, we show that for each small perturbation
fη of (1.7) (see (5.3) for the condition) there exists a global solution of (1.8) ξ ∗

η that presents an
hyperbolic behavior, i.e., the linear nonautonomous random dynamical system generated by

ẏ = Ay+Dy fη(t,θtω,ξ ∗
η(t,θtω))y, t ≥ τ,
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admits an exponential dichotomy, and that these hyperbolic solutions ξ ∗
η converges to y∗0, as

η → 0.

To prove this result on the existence and continuity of hyperbolic solutions for semilinear
differential equations, we need first to study permanence of hyperbolicity for linear nonau-
tonomous random dynamical systems. Thus, in Chapter 4 we extend the concept of exponential
dichotomies to encompass random and nonautonomous dynamical systems and we provide
conditions to guarantee that they persists under perturbation. Accordingly, we consider a small
nonautonomous random perturbation B : R×Ω → L (X) of an hyperbolic problem ẏ = Ay, and
we provide conditions to prove that ẏ = Ay+B(t,θtω)y admits exponential dichotomy. Our
perturbation B(t,ω) depends on two parameters, the time t of deterministic nature and another ω

varying in a probability set (Ω,F ,P). This leads us to establish robustness results of exponential
dichotomies for nonautonomous random dynamical systems, which is a co-cycle (ϕ,Θ) driven
by Θ : R×Ω →R×Ω. Our proof was inspired by (ZHOU; LU; ZHANG, 2013) (for the discrete
case), and (CHOW; LEIVA, 1995b) (for the continuous case), where Henry’s techniques are
applied to co-cycles.

A natural application of the robustness of hyperbolicity appears in the continuity and
topological structural stability of attractors associated to equations (1.7) and (1.8). The proof of
continuity is done by proving upper and lower semicontinuity. On one hand, upper semiconti-
nuity means that the perturbed attractors do not become suddenly much larger than the limiting
attractor (non-explosion). On the other hand, lower semicontinuity means that the perturbed
attractors do not become suddenly much smaller than the limiting attractor (non-implosion). For
an introduction to the notion of continuity of attractors see (CARVALHO; LANGA; ROBINSON,
2013, Chapter 3).

For nonautonomous (deterministic) dynamical systems the continuity of attractors is
very well studied, see for instance (BORTOLAN; CARVALHO; LANGA, 2014; CARVALHO;
LANGA, 2007b; CARVALHO; LANGA; ROBINSON, 2009; LANGA et al., 2007). In the
nonautonomous random setting, the upper semicontinuity was proved in several examples,
see (BATES; LU; WANG, 2014; WANG, 2012b; WANG, 2012a) and the references therein.
However, the lower semicontinuity is more difficult to attain due to the fact that one has to
prove that the inner structure of the limiting attractor is “preserved” under perturbation, in
order to ensure that the perturbed attractor occupies a region ‘as large as’ the region occupied
by the limiting attractor. More precisely, the typical conditions one has to assume is that the
limiting attractor is the union of the unstable sets of the equilibria and then give conditions to
ensure that these equilibria and their unstable sets ‘persist’ under perturbation, see (ARRIETA;
CARVALHO, 2004; BABIN; VISHIK, 1983; BRUSCHI; CARVALHO; CHOLEWA, 2006;
HALE; RAUGEL, 1989) for the lower semicontinuity of global attractors, and (CARVALHO;
LANGA; ROBINSON, 2009; CARVALHO; LANGA, 2007b; LANGA et al., 2007) for the lower
semicontinuity of pullback attractors and (BORTOLAN; CARVALHO; LANGA, 2014) for the
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lower semicontinuity of uniform attractors. In (CARVALHO; LANGA, 2007b) the authors study
the permanence of hyperbolic global solutions and of their corresponding unstable and stable
sets, in the nonautonomous setting, and in (CARVALHO; LANGA; ROBINSON, 2009) the
authors prove a general result on the lower semicontinuity of pullback attractors allowing the
limiting pullback attractor to be given as the closure of a countable (possibly infinity) union of
unstable sets of hyperbolic global solutions.

Thus, to prove lower semicontinuity in a nonautonomous random framework we follow
this method of proving that the inner structure persists under perturbation. However, this is not
expected to happen for general types of noises. Actually, some works provides that the presence
of an additive noise destroys the continuity of the attractors (BIANCHI; BLöMKER; YANG,
2016; CRAUEL; FLANDOLI, 1998), see also (CALLAWAY et al., 2017) for an complementary
study of such problems. Hence, to obtain our results we will consider small bounded random
perturbations as the one introduced in Chapter 4, and then we study the existence and permanence
of hyperbolic solutions for (1.8) assuming that the perturbations are uniformly bounded in time.
Then, inspired by the results in (CARVALHO; LANGA, 2007b), we study the existence and
continuity of the unstable sets associated with this hyperbolic solutions, and we use these
results to conclude the lower semicontinuity for the attractors of {(ψη ,Θ) : η ∈ [0,1]}, see
Theorem 5.3.3. In our proofs, we show how to control the random parameter using techniques of
deterministic dynamical systems.

The idea of reproducing the internal structure in the perturbed attractor is not only
important to show continuity of attractors, but is also crucial to prove that the dynamics are
preserved under perturbation. For instance, in (CARVALHO; LANGA, 2009) the authors provide
conditions (permanence of the inner structure) to prove that dynamically gradient semigroups
are stable under perturbation. We refer to this property as topological structural stability.
Gradient dynamical systems were widely studied in the past years, see (ARAGãO-COSTA et al.,
2013; BORTOLAN et al., 2020; BORTOLAN; CARVALHO; LANGA, 2014; BORTOLAN;
CARVALHO; LANGA, 2020; CARVALHO; LANGA, 2007b; CARABALLO et al., 2010b) for
deterministic dynamical systems, and (CARABALLO; LANGA; LIU, 2012; JU; QI; WANG,
2018) for random dynamical systems. In this work, we obtain a result on the topological structural
stability for nonautonomous random differential equations, see Theorem 5.4.3. This will be also
a consequence of the careful study of the internal structure of these attractors.

We also obtain stronger results on the continuity and topological structural stability of
nonautonomous random attractors for the case when the random perturbations are uniformly
bounded with respect to the random parameter, see Remark 5.3.6 and Remark 5.4.4 for more
details. Moreover, see (BOBRYK, 2021; CARABALLO; LÓPEZ-DE-LA-CRUZ, 2021) for
examples of this types of noises.

We finish Chapter 5 with two applications of our abstract results. First, in a family of
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stochastic differential equations with a nonautonomous multiplicative white noise

dy = Bydt + f0(y)dt +ηκty◦dWt , t ≥ τ, y(τ) = yτ ∈ X , (1.9)

where η ∈ [0,1], and the mapping R ∋ t 7→ κt ∈ R is a real function that “controls” the growth
of the noise in time, see Subsection 5.5.1. Finally, a nonautonomous random perturbation on the
damping of a damped wave equation with Dirichlet boundary condition

utt +βη(t,θtω)ut −∆u = f (u), t ≥ τ, η ∈ [0,1], (1.10)

where {θt : Ω → Ω : t ∈ R} is a random flow in a probability space (Ω,F ,P) and there exists
β > 0 such that βη converges to β as η → 0, see Subsection 5.5.2.
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CHAPTER

2
ROBUSTNESS OF NONUNIFORM

EXPONENTIAL DICHOTOMY

In this chapter, we study stability properties of nonuniform hyperbolicity for evolution
processes associated with differential equations in Banach spaces according to (CARABALLO
et al., 2021c). We show that the nonuniform exponential dichotomy is stable under perturbation.
Moreover, we provide conditions to obtain uniqueness and continuous dependence of projections
associated with nonuniform exponential dichotomies. We also present an example of evolution
process in a Banach space that admits nonuniform exponential dichotomy and, for it, we study the
permanence of the nonuniform hyperbolicity under perturbation. Finally, we prove persistence
of nonuniform hyperbolic solutions for nonlinear evolution processes under perturbations.

2.1 Nonuniform exponential dichotomy: discrete case
In this section, we present some basic facts of nonuniform exponential dichotomy for

discrete evolution processes. We establish uniqueness of projections and continuous dependence
of projections and present a robustness of the nonuniform exponential dichotomy in the discrete
case. We start with the definition of a discrete evolution process in a Banach space (X ,∥ · ∥X) in
a particular case where the family of operators are linear bounded operators in X .

Definition 2.1.1. Let S = {Sn,m : n ≥ m with n,m ∈Z} be a family of bounded linear operators

in a Banach space X. We say that S is a discrete evolution process if

1. Sn,n = IdX , for all n ∈ Z;

2. Sn,mSm,k = Sn,k, for all n ≥ m ≥ k.

To simplify the notation, we write S = {Sn,m : n ≥ m} as an evolution process, whenever is

clear we are dealing with discrete ones.
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Remark 2.1.2. Given a discrete evolution process S = {Sn,m : n ≥ m} it is always possible to

associate S with the family {Sn : n ∈ Z}, where Sn := Sn+1,n for all n ∈ Z. Conversely, for any

family of bounded linear operators {Sn : n ∈ Z} ⊂ L (X) define Sn,m := Sn−1 · · ·Sm for n > m

and Sn,n := IdX so that S = {Sn,m : n ≥ m} is discrete evolution process. Therefore, we often

refer, indistinctly, to {Sn : n ∈ Z} or {Sn,m : n ≥ m} as the discrete evolution process.

Thus it is possible to associate the evolution process {Sn,m : n ≥ m} with the following

difference equation

xn+1 = Snxn, xn ∈ X , n ∈ Z, (2.1)

where Sn = Sn+1,n, n ∈ Z.

Now, we present the definition of nonuniform exponential dichotomy.

Definition 2.1.3. Let S = {Sn,m : n ≥ m} ⊂ L (X) be a discrete evolution process in a Banach

space X. We say that S admits a nonuniform exponential dichotomy if there is a family of

continuous projections {Πu
n; n ∈ Z} in L (X) such that

1. Πu
nSn,m = Sn,mΠu

m, for n ≥ m;

2. Sn,m : R(Πu
m)→ R(Πu

n) is an isomorphism, for n ≥ m, and we define Sm,n as its inverse;

3. There exists a function K : Z→ [1,+∞) with K(n)≤ Deν |n|, for some D ≥ 1 and ν > 0,

and α > 0 such that

∥Sn,mΠ
s
m∥L (X) ≤ K(m)e−α(n−m), ∀n ≥ m,

∥Sn,mΠ
u
m∥L (X) ≤ K(m)eα(n−m), ∀n ≤ m,

where Πs
n := (IdX −Πu

n) for all n ∈ Z.

In this theory, K and α are usually called the bound and the exponent of the exponential

dichotomy, respectively.

We will present a class of perturbations for this equation so that it will be possible
to guarantee existence of solutions for the perturbed problem. This study is usually called
admissibility.

Definition 2.1.4. Given two Banach spaces X and Y, we say that the pair of spaces (Y,X) is

admissible for equation (2.1) if for { fn}n∈Z ∈Y there is a solution {xn}n∈Z ∈X for the equation

xn+1 = Snxn + fn.

We now recall the definition of a Green’s function.
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Definition 2.1.5. Let S = {Sn : n ∈ Z} be a discrete evolution process which admits a nonuni-

form exponential dichotomy with family of projections {Πu
n}n∈Z. The Green’s function associated

to the evolution process S is given by

Gn,m =

{
Sn,mΠs

m, if n ≥ m,

−Sn,mΠu
m, if n < m.

As in the uniform case, the next result shows that it is possible to obtain the solution for

xn+1 = Snxn + fn, n ∈ Z. (2.2)

using the Green’s function. A space that appears naturally in this case when dealing with (2.2) is

l∞

1/K(Z) :=
{

f : Z→ X : sup
n∈Z

{
∥ fn∥X K(n+1)

}
= M f <+∞

}
,

where K :Z→R is such that K(n)≥ 1 for all n∈Z. Of course, with this notation, l∞
1 (Z) = l∞(Z).

Theorem 2.1.6. Assume that the evolution process S = {Sn : n ∈ Z} admits a nonuniform expo-

nential dichotomy with bound K(n)≤ Deν |n| and exponent α > ν . Then the pair (l∞

1/K(Z), l
∞(Z))

is admissible, i.e., if f ∈ l∞

1/K(Z) then Equation (2.2) possesses a unique bounded solution given

by

xn =
+∞

∑
−∞

Gn,k+1 fk, ∀ n ∈ Z.

Proof. First we fix n ∈ Z, take m < n and write

xn = Sn,mxm +
n−1

∑
k=m

Sn,k+1 fk.

Then apply Πs
n in this equation and note that the term Sn,mΠs

mxm satisfies

∥Sn,mΠ
s
mxm∥X ≤ K(m)e−α(n−m)∥xm∥X .

Therefore if {xn}n∈Z is a bounded sequence, this last term goes to zero when m →−∞, using
that K(m)≤ eν |m| and ν < α . Thus, we have that for each n ∈ Z

Π
s
nxn =

n−1

∑
k=−∞

Sn,k+1Π
s
k+1 fk.

Analogously, take now r > n and write

xr = Sr,nxn +
r

∑
k=n

Sr,k+1 fk,

Then apply the projection Πu
r and use the inverse operator Sn,r to obtain

Π
u
nxn = Sn,rΠ

u
r xr −

r

∑
k=n

Sn,k+1Π
u
k+1 fk,
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and just notice that

∥Sn,rΠ
u
r xr∥X ≤ K(r)eα(n−r)∥xr∥X , (2.3)

Again, as {xn}n∈Z is bounded, and ν < α , this last term goes to zero as r →+∞. Consequently,

Π
u
nxn =−

+∞

∑
k=n

Sn,k+1Π
u
k+1 fk.

Thus, for each n ∈ Z,

xn = Π
s
nxn +Π

u
nxn =

+∞

∑
−∞

Gn,k+1 fk.

It is easy to see that xn = ∑
+∞
−∞ Gn,k+1 fk is a solution for (2.2). Finally, we have that

∥xn∥X ≤
n−1

∑
k=−∞

∥Sn,k+1Π
s
k+1 fk∥X +

+∞

∑
k=n

∥Sn,k+1Π
u
k+1 fk∥X

≤ M f

(
n−1

∑
k=−∞

e−α(n−k−1)+
+∞

∑
k=n

eα(n−k−1)

)
.

Therefore, for every n ∈ Z,

∥xn∥X ≤ M f
1+ e−α

1− e−α
,

and existence and uniqueness of a bounded solution for (2.2) is ensured. The proof is complete.

As a consequence of Theorem 2.1.6, we obtain uniqueness of the family of projections
associated with the nonuniform exponential dichotomy.

Corollary 2.1.7 (Uniqueness of projections). If S = {Sn : n ∈ Z} admits a nonuniform expo-

nential dichotomy with bound K(n)≤ Deν |n| and exponent α > ν , then the family of projections

is uniquely determined.

Proof. Let {Π
u,(i)
n ; n ∈ Z}, for i = 1,2, projections associated with the evolution process S .

Given x ∈ X and m ∈ Z fixed, define fn = 0, for all n ̸= m− 1, and fm−1 = K(m)−1x. Thus,
f ∈ l∞

1/K(Z) and from Theorem 2.1.6 there exists a unique solution {xn}n∈Z for

xn+1 = Snxn + fn, n ∈ Z.

Hence, xm =∑
+∞
−∞ G(i)

m,k+1 fk =G(i)
m,m fm−1 =K(m)−1Π

s,(i)
m x, for i= 1,2. Therefore, Π

u,(1)
m =Π

u,(2)
m

for all m ∈ Z.

Next, we establish a result about continuous dependence of projections.
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Theorem 2.1.8 (Continuous dependence of projections). Suppose that {Tn}n∈Z and {Sn}n∈Z

admit a nonuniform exponential dichotomy with projections {Π
u,T
n }n∈Z and {Π

u,S
n }n∈Z, ex-

ponents αT and αS , respectively, and the same bound K(n) ≤ Deν |n|. If ν < min{αT ,αS }
and

sup
n∈Z

{
K(n+1)∥Tn −Sn∥L (X)

}
≤ ε,

then

sup
n∈Z

{
K(n)−1 ∥Π

u,T
n −Π

u,S
n ∥L (X)

}
≤ e−αS + e−αT

1− e−(αS +αT )
ε.

Proof. Let z ∈ X and m ∈ Z be fixed and consider

fn =

{
0, if n ̸= m−1,
K(m)−1z, if n = m−1.

Thus, by Theorem 2.1.6, there exist bounded solutions xk = {xk
n}n∈Z given by xk

n :=Gk
n,mzK(m)−1

for k = T ,S . Note that, for n ∈ Z,

xT
n+1 −SnxT

n = TnxT
n −SnxT

n + fn

and xS
n+1 − SnxS

n = fn. Then, if zn := xT
n − xS

n we obtain that zn+1 = Snzn + yn, where yn =

(Tn − Sn)xT
n for all n ∈ Z. Thanks to the boundedness of the sequence {xT

n }n∈Z and by the
hypothesis on Tn −Sn we have that {ynK(n+1)}n∈Z is bounded, and by Theorem 2.1.6 we have
that

zn =
∞

∑
k=−∞

GS
n,k+1(Tk −Sk)GT

k,mzK(m)−1,

and therefore, by the hypothesis on T −S , we deduce

∥zm∥X ≤
∞

∑
k=−∞

K(k+1)e−αS |m−k−1|∥Tk −Sk∥L (X)e
−αT |k−m|∥z∥X

≤ e−αS + e−αT

1− e−(αS +αT )
ε ∥z∥X .

The definition of z in m yields

zm = xT
m − xS

m = (GT
m,m −GS

m,m)K(m)−1z = (Πu,S
m −Π

u,T
m )K(m)−1z.

Consequently,

∥(Πu,S
m −Π

u,T
m )K(m)−1z∥X ≤ e−αS + e−αT

1− e−(αS +αT )
ε ∥z∥X ,

which concludes the proof of the theorem.

Finally, we state a robustness result for discrete evolution processes with nonuniform
exponential dichotomies.
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Theorem 2.1.9 (Robustness for discrete evolution processes). Let S = {Sn : n ∈ Z}, B =

{Bn : n ∈ Z} ⊂ L (X) be discrete evolution processes. Assume that S admits a nonuniform

exponential dichotomy with bound K(n)≤ Deν |n| and exponent α > ν , and that B satisfies

∥Bk∥L (X) ≤ δK(k+1)−1, ∀k ∈ Z,

where δ > 0 is such that δ < (1− e−α)(1+ e−α)−1. Then the perturbed evolution process

T = S +B admits a nonuniform exponential dichotomy with exponent

α̃ =− ln(coshα − [cosh2
α −1−2δ sinhα]1/2),

and bound

K̃(n) = K(n)
[

1+
δ

(1−ρ)(1− e−α)

]
max [D1,D2],

where ρ := δ (1+ e−α)(1− e−α)−1, D1 := [1−δe−α/(1− e−α−α̃)]−1, D2 := [1−δe−β̃/(1−
e−α−β̃ )]−1 and β̃ := α̃ + ln(1+2δ sinhα).

The proof of Theorem 2.1.9 follows, step by step, the proof (ZHOU; LU; ZHANG, 2013,
Theorem 1) with minimal changes, so it will be omitted. It is important to notice that all the
arguments of their proof still hold with the assumption α > ν . In Chapter 4 we present the main
ideas of the proof of Zhou et al. in a simpler case, see the proof of Theorem 4.2.5.

In the following section we will provide the continuous version of the theorems of this
section. We emphasize that one of our goals is to prove a robustness result of nonuniform
exponential dichotomy for continuous evolution processes with this same condition on the
exponents (α > ν).

2.2 Nonuniform exponential dichotomy: continuous case
In this section, we consider evolution processes with parameters in R. We apply Henry’s

techniques (HENRY, 1981, Section 7.6) to study the nonuniform exponential dichotomies. We
prove theorems that allow us to obtain the continuous versions of the results presented in Section
2.1. The main theorem of this section is the robustness for nonuniform exponential dichotomies,
namely Theorem 2.2.11. We also provide a version of it made suitable for applications to differ-
ential equations, Theorem 2.2.14. In addition, we establish results on uniqueness and continuous
dependence of projections associated with nonuniform exponential dichotomy, Corollary 2.2.8
and Theorem 2.2.9, respectively.

We first recall the definition of evolution process over a metric space (X ,d) with parame-
ters in an interval J= R,R+ := {t ∈ R : t ≥ 0} or R− := {t ∈ R : t ≤ 0}.

Definition 2.2.1. Let S := {S(t,s) : X → X ; t ≥ s, t,s ∈ J} be a family of continuous operators

in a Banach space X with parameters in J. We say that S is a continuous evolution process in

X if
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1. S(t, t) = IdX , for all t ∈ J;

2. S(t,s)S(s,τ) = S(t,τ), for t ≥ s ≥ τ;

3. {(t,s) ∈ J2; t ≥ s}×X ∋ (t,s,x) 7→ S(t,s)x is continuous.

To simplify we usually say that S = {S(t,s) : t ≥ s} is an evolution process, whenever

is implicit that S is a continuous evolution process.

If additionally, the operator S(t,s) is invertible for all t ≥ s, then we say that S is an

invertible evolution process. In this situation, we write S = {S(t,s) : t,s ∈ J}, where S(s, t) is

the inverse of S(t,s), for t ≥ s.

In this chapter, we only consider the the case where the evolution processes are defined
in the entire real line R= J. In Chapter 3 we also consider the cases of semilines J= R− and
J= R+.

Remark 2.2.2. Note that the operators S(t,s) : X → X, in the definition above, do not need to be

linear. In fact, in Section 2.4, we study permanence of the nonuniform hyperbolic behavior for

nonlinear evolution processes.

We also recall the notion of a global solution for an evolution process.

Definition 2.2.3. Let S = {S(t,s) : t ≥ s} be an evolution process. We say that ξ : R→ X is a

global solution for S if S(t,s)ξ (s) = ξ (t) for every t ≥ s.

We say that a global solution ξ is backwards bounded if there exists t0 ∈ R such that

ξ (−∞, t0] = {ξ (t) : t ≤ t0} is bounded.

Now, we present the definition of nonuniform exponential dichotomy for linear evolution
processes:

Definition 2.2.4. Let S = {S(t,s) ; t ≥ s} ⊂L (X) be a linear evolution process. We say that S

admits a nonuniform exponential dichotomy if there exists a family of continuous projections

{Πu(t) : t ∈ R} such that

1. Πu(t)S(t,s) = S(t,s)Πu(s), for all t ≥ s;

2. S(t,s) : R(Πu(s)) → R(Πu(t)) is an isomorphism, for t ≥ s, and we define S(s, t) as its

inverse;

3. There exists a continuous function K : R→ [1,+∞) and some constants α > 0, D ≥ 1 and

ν ≥ 0 such that K(s)≤ Deν |s| and

∥S(t,s)Πs(s)∥L (X) ≤ K(s)e−α(t−s), t ≥ s;

∥S(t,s)Πu(s)∥L (X) ≤ K(s)eα(t−s), t < s,
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where Πs(s) = IdX −Πu(s), for all s ∈ R.

Remark 2.2.5. This definition also includes uniform exponential dichotomies, when t 7→ K(t) is

bounded, and tempered exponential dichotomies, when t 7→ K(t) has a sub-exponential growth,

see (BARREIRA; DRAGICEVIĆ; VALLS, 2016; ZHOU; LU; ZHANG, 2013). From now on we

assume that K(t) = Deν |t|, t ∈ R.

In the following result we study each “discretization at instant t" of an evolution process
that admits a nonuniform exponential dichotomy.

Theorem 2.2.6. Let S be a continuous evolution process that admits a nonuniform exponential

dichotomy with bound K(t) = Deν |t| and exponent α > 0. Then for each t ∈ R and l > 0 the

discrete evolution process

{Sm,n(t) : m,n ∈ Zwith m ≥ n} := {S(t +ml, t +nl) : m,n ∈ Zwith m ≥ n}

admits a nonuniform exponential dichotomy with bound K̃t(m) := K(t +ml) and exponent

α̃ = αl.

Proof. Define, for each t ∈ R, the family of projections {Πu
m(t) = Πu(t +ml) : m ∈ N}, then

Π
u
m(t)Sm,n(t) = Π

u(t +ml)S(t +ml, t +nl)

= S(t +ml, t +nl)Πu(t +nl)

= Sm,n(t)Πu
n(t),

and the first property is proved. Note that, for m ≥ n,

Sm,n(t)|R(Πu
n(t)) = S(t +ml, t +nl)|R(Πu(t+nl))

and the right hand side of the equation is an isomorphism, so we define the inverse Sn,m(t) :
R(Πu(t +ml))→ R(Πu(t +nl)).

Finally, for n ≥ m,

∥Sn,m(t)(IdX −Π
u
m(t))∥L (X) = ∥S(t +ml, t +nl)(IdX −Π

u(t +nl))∥L (X)

≤ K(t +ml)e−αl(n−m),

and, for n < m,

∥Sn,m(t)Πu
m(t)∥L (X) = ∥Sn,m(t)Πu(t +ml)∥L (X)

≤ K(t +ml)eαl(n−m).

Therefore, {Sn,m(t) : n ≥ m} admits a nonuniform exponential dichotomy with exponent α̃ = αl

and bound K̃t(m) = K(t +ml)≤ Deν |t|eν l|m|, which concludes the proof.
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Remark 2.2.7. In Theorem 2.2.6, for a fixed t ∈ R, the discretized evolution process {Sn(t) :
n ∈ Z} appears with a bound Kt dependent of the time t and the exponent α̃ is independent of t.

This is an expected difference with the the case of uniform exponential dichotomy, where both,

the bound and the exponent of the discretization are independent of t, see (HENRY, 1981).

Now, as a consequence of Theorem 2.2.6 and Corollary 2.1.7, we obtain the uniqueness
of the family of projections.

Corollary 2.2.8 (Uniqueness of the family of projections). Let S be an evolution process which

admits a nonuniform exponential dichotomy with bound K(t) = Deν |t|, t ∈ R, and exponent

α > ν . Then the family of projections is unique.

As another application of Theorem 2.2.6, we prove a result on the continuous dependence
of projections.

Theorem 2.2.9 (Continuous dependence of projections). Suppose that S and T are linear

evolution processes with nonuniform exponential dichotomy with projections {Πu
S (t) : t ∈ R}

and {Πu
T (t) : t ∈ R} and exponents αT ,αS and with the same bound K(t) = Deν |t|, for t ∈ R.

If ν < min{αT ,αS } and

sup
0≤t−s≤1

{
K(t)∥T (t,s)−S(t,s)∥L (X)

}
≤ ε, (2.4)

then

sup
t∈R

{
K(t)−1∥Π

u
T (t)−Π

u
S (t)∥L (X)

}
≤ e−αS + e−αT

1− e−(αS +αT )
ε.

Proof. Let t ∈ R, from Theorem 2.2.6 for l = 1, {Tn(t) = T (t + n + 1, t + n) : n ∈ Z} and
{Sn(t) = S(t +n+1, t +n) : n ∈ Z} admit a nonuniform exponential dichotomy with exponents
αT and αS and the same bound Kt(n) := K(t +n). Now, from Theorem 2.1.8 we conclude that

K(t +n)−1∥Π
u
T (t +n)−Π

u
S (t +n)∥L (X) ≤

e−αS + e−αT

1− e−(αS +αT )
ε.

Since t is arbitrary and the right-hand side does not depend on t the proof is complete taking
n = 0.

Uniqueness and continuous dependence of projections are a simple consequence of
Theorem 2.2.6, and of course the results in the discrete case. However, to prove our robustness
result, we will need a sort of a reciprocal result of Theorem 2.2.6.

Theorem 2.2.10. Let S = {S(t,s) : t ≥ s} ⊂ L (X) be a continuous evolution process. Suppose

that

1. there exist l > 0 and ν ≥ 0 such that

L(ν , l) := sup
0≤t−s≤l

{
∥S(t,s)∥L (X) e−ν |t|}<+∞,
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2. for each t ∈ R the discretized process,

{Tn,m(t), n ≥ m}= {S(t +nl, t +ml), n ≥ m}

possesses a nonuniform exponential dichotomy with bound Kt(·) : Z → [1,+∞), with

Kt(m)≤ Deν |t+m| and exponent α > 0 independent of t.

If ν l < α , the evolution process S admits a nonuniform exponential dichotomy with exponent

α̂ = (α −ν l)/l and bound

K̂(s) = D2e2α max{L(ν , l),L(ν , l)2}e2ν |s|.

Proof. First, we fix t ∈ R and define the linear operator Tn(t) := Tn+1,n(t), for each n ∈ Z.
Then for each discrete evolution process {Tn(t) : n ∈ Z}, there exists a family of projections
{Πu

n(t) : n ∈ Z} such that the nonuniform exponential dichotomy conditions are satisfied.

For each fixed k ∈ Z we have

Tn+k(t) = Tn(t + kl), ∀n ∈ Z.

Then this linear operator generates the same evolution process with associated projections
{Πu

n+k(t)}n∈Z and {Πu
n(t + kl)}n∈Z. Thus by uniqueness of the projections for the discrete case,

namely Corollary 2.1.7, we obtain that for all n,k ∈ Z,

Π
u
n+k(t) = Π

u
n(t + kl).

Now, for all t ∈ R we define Πu(t) := Πu
0(t). These projections are the candidates to obtain the

nonuniform exponential dichotomy.

Let us now prove the boundedness in the case t ≥ s.

Claim 1: If t ≥ s, then

∥S(t,s)Πs(s)∥L (X) ≤ K̂(s)e−α̂(t−s),

where Πs(s) = IdX −Πu(s), s ∈ R and K̂ is defined in the statement of the theorem.

Indeed, choose n ∈ N, such that nl + s ≤ t < (n+1)l + s, then we write

S(t,s)Πs(s) = S(t,s+nl)S(s+nl,s)(IdX −Π
u
0(s)).

Thus, by hypothesis,

∥S(s+nl,s)(IdX −Π
u
0(s))∥L (X) = ∥Tn,0(s)(IdX −Π

u
0(s))∥L (X) ≤ Ks(0)e−αn,

which implies that

∥S(t,s)(IdX −Π
u(s))∥L (X) ≤ ∥S(t,s+nl)∥L (X)Ks(0)e−αn

= K(s)eα(t−nl−s)/l∥S(t,s+nl)∥L (X)e
−α(t−s)/l

≤ Deν |s| eα eν |t|L(ν , l)e−α(t−s)/l,
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where was used the fact that 0 ≤ t − s−nl < l.

Now, note that, if t ≥ s ≥ 0 we have

ν |t|−α(t − s)/l =−(α −ν l)(t − s)/l +ν |s|,

and, for s ≤ t ≤ 0,

ν |t|−α(t − s)/l =−(α +ν l)(t − s)/l +ν |s|,

then choose α̂ = (α −ν l)/l. Thus, we obtain for t ≥ s ≥ 0 and s ≤ t ≤ 0 that

∥S(t,s)Πs(s)∥L (X) ≤ Deν |s| eα eν |t|L(ν , l)e−α(t−s)/l

≤ DL(ν , l)eα e2ν |s|e−α̂(t−s).

Finally, for t ≥ 0 ≥ s we have

∥S(t,s)Πs(s)∥L (X) = ∥S(t,s)Πs(s)2∥L (X)

≤ ∥S(t,0)Πs(0)∥L (X) ∥S(0,s)Πs(s)∥L (X)

≤ D2L(ν , l)2 e2α e2ν |s|e−α̂(t−s).

Therefore, for t ≥ s,

∥S(t,s)Πs(s)∥L (X) ≤ D2e2α max{L(ν , l),L(ν , l)2}e2ν |s|e−α̂(t−s)

and the first claim is proved.

Now, to prove the other inequality, for t < s, we take n ≤ 0 such that s+ nl ≤ t <

s+(n+1)l, and define for z ∈ R(Πu(s)) the linear operator

S(t,s)z := S(t,s+nl)◦ [T0,n(s)|R(Πu
n(s))]

−1z.

In other words,

S(t,s)z = S(t,s+nl)◦Tn,0(s)z.

Claim 2: If t < s, we have

∥S(t,s)Πu(s)∥L (X) ≤ K̂(s)eα̂(t−s).

Indeed, for x ∈ X and s+nl ≤ t < s+(n+1)l, for n ≤ 0, by hypothesis,

∥Tn,0(s)Πu
0(s)x∥X ≤ Ks(0)eαn∥x∥X .

Hence, by a similar argument to that in the proof of Claim 1 we obtain that

∥S(t,s)Πu(s)x∥X ≤ ∥S(t,s+nl)∥L (X)Deν |s|eαn∥x∥X ≤ K̂(s)eα̂(t−s)∥x∥X .

Now, to conclude the assertion we take the supremum for ∥x∥X = 1.
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Claim 3: For all t0 ∈ R we characterize the kernel of Πu(t0), N(Πu(t0)) = {z ∈ X :
Πu(t0)z = 0}, as

N(Πu(t0)) = {z ∈ X : [t0,+∞) ∋ t 7→ S(t, t0)z is bounded}.

Let z ∈ N(Πu(t0)), so by definition Πu(t0)z = 0 and for t ≥ t0 we can use Claim 1 to obtain

∥S(t, t0)z∥X = ∥S(t, t0)(IdX −Π
u(t0))z∥X ≤ K̂(t0)e−α̂(t−t0)∥z∥X .

Therefore, [t0,+∞) ∋ t 7→ S(t, t0)z is bounded.

On the other hand, if z /∈ N(Πu((t0))) and n > 0,

∥Π
u(t0)z∥X ≤ ∥T0,n(t0)Πu

n(t0)∥L (X)∥Tn,0(t0)z∥X

≤ Deν |t0|eν |n|e−αn∥S(t0 +nl, t0)z∥X .

Thus, we obtain

∥Π
u(t0)z∥X D−1e−ν |t0|en(α−ν) ≤ ∥S(t0 +nl, t0)z∥X .

Consequently, as ν < α we have that [t0,+∞) ∋ t 7→ S(t, t0)z is not bounded.

Note that the last assertion implies that

S(t, t0)N(Πu(t0))⊂ N(Πu(t)).

Claim 4: The linear operator

S(t, t0) : R(Πu(t0))→ X

is injective for all t ≥ t0.

Indeed, let z ∈ R(Πu(t0)) with S(t, t0)z = 0. Choose n ∈ N so that t ≤ nl + t0, then

0 = S(t0 +nl, t)0 = S(t0 +nl, t)S(t, t0)z = Tn,0(t0)z,

this implies that z ∈ N(Tn,0(t0)|R(Πu
0(t0))

) = {0}.

Claim 5: For all t0 ∈ R the range of Πu(t0) is

R(Πu(t0)) = {z ∈ X : there exists a backwards bounded solution ξ with ξ (t0) = z}.

Let z ∈ R(Πu(t0)) and t < t0, then take n ∈ Z such that t ∈ [t0 +nl, t0 +(n+1)l] and define

ξ (t) := S(t, t0 +nl)Tn,0(t0)z = S(t, t0)z.

Now, choose x ∈ X so that z = Πu(t0)x, thus by Claim 2

∥ξ (t)∥X ≤ K̂(t0)eα̂(t−t0)∥x∥X .
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Thus, ξ is a backward bounded solution such that ξ (t0) = z. Suppose that z /∈ R(Πu(t0)) and
that there exists ξ : R → X a global solution such that ξ (t0) = z. For n ≤ 0 we can write
z = S(t0, t0 +nl)ξ (t0 +nl), thus

∥(IdX −Π
u(t0))z∥X ≤ ∥S(t0, t0 +nl)(IdX −Π

u(t0 +nl))∥L (X) ∥ξ (t0 +nl)∥X

≤ Deν |t0|eν |n|eαn∥ξ (t0 +nl)∥X .

Therefore,

∥(IdX −Π
u(t0))z∥X D−1e−ν |t0|en(ν−α) ≤ ∥ξ (t0 +nl)∥X .

Since ν < α , it follows that ξ is not backwards bounded, and the proof of Claim 5 is complete.

Claim 6: S(t, t0)R(Πu(t0)) = R(Πu(t)).

Indeed, if z ∈ R(Πu(t0)), then there exists a backwards bounded solution ξ through z in
t = t0. Thus, ξ is also a solution through S(t, t0)z in time t and we see that S(t, t0)z ∈ R(Πu(t)).
On the other hand, if z ∈ R(Πu(t)), there is a backwards bounded solution ξ with ξ (t) = z.
Therefore, if n ∈ Z such that nl + t ≤ t0 ≤ t, define

x = S(t0,nl + t)S(nl + t, t)z ∈ R(Πu(t0)).

Therefore, S(t, t0)x = z and we conclude that S(t, t0)|R(Πu(t0)) is an isomorphism.

Finally, we prove that the family of projections commutes with the evolution process.

Claim 7: Πu(t)S(t,s) = S(t,s)Πu(s). For z ∈ X , we have that

S(t, t0)z = S(t, t0)(IdX −Π
u(t0))z+S(t, t0)Πu(t0)z.

Now, as (IdX −Πu(t0))z ∈ N(Πu(t0)) and S(t, t0)Πu(t0)z ∈ R(Πu(t)), applying Πu(t) we obtain

Π
u(t)S(t, t0)z = S(t, t0)Πu(t0)z.

We are ready to present the main result of this section.

Theorem 2.2.11 (Robustness for continuous evolution processes). Let S = {S(t,s) : t ≥ s} ⊂
L (X) be an evolution process that admits a nonuniform exponential dichotomy with bound

K(s) = Deν |s| and exponent α > ν . Assume that

LS (ν) := sup
0≤t−s≤1

{
e−ν |t|∥S(t,s)∥L (X)

}
<+∞. (2.5)

Then there exists ε > 0 such that if T = {T (t,s) : t ≥ s} is an evolution process such that

sup
0≤t−s≤1

{
K(t)∥S(t,s)−T (t,s)∥L (X)

}
< ε, (2.6)
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then T admits a nonuniform exponential dichotomy with exponent α̂ := α̃ −ν and bound

K̂(s) = D̃2e2α̃ max{LT (ν),LT (ν)2}e2ν |s|, (2.7)

where D̃ := D(1+ ε/(1−ρ)(1− e−α))max{D1,D2}, and ρ, α̃,D1 and D2 are the same as in

Theorem 2.1.9.

Proof. Let n ∈ Z and t0 ∈ R, then, by Theorem 2.2.6, the discrete evolution process {Sn(t0) :=
S(t0 +n+1, t0 +n) : n ∈ Z} admits a nonuniform exponential dichotomy with bound Kt(n)≤
Deν(|t+n|) and exponent α > 0. Let ε > 0 be such that ε < (1− e−α)/(1+ e−α) and T =

{T (t,s) : t ≥ s} an evolution process that satisfies (2.6). Let {Tn(t0) : n ∈ Z} be the discretization
of T at t0 and define, for each n ∈ Z and t0 ∈ R, the linear bounded operator

Bn(t0) := Tn(t0)−Sn(t0).

Hence, from (2.6), we have that

∥Bn(t0)∥L (X) < εKt0(n+1)−1.

Therefore, by Theorem 2.1.9, the discrete evolution process Tn(t0) = Sn(t0)+Bn(t0) admits a
nonuniform exponential dichotomy with exponent

α̃ :=− ln(coshα − [cosh2
α −1−2ε sinhα]1/2),

and bound
K̃t0(n) := Kt0(n)

[
1+

ε

(1−ρ)(1− e−α)

]
max [D1,D2],

where D1,D2,ρ are constants that can be found in Theorem 2.1.9.

Since each discretization at time t has the same exponent α > 0 we see that ε can be
choose independent of t. Thus for each t ∈ R, the discrete evolution process {Tn(t) : n ∈ Z}
admits nonuniform exponential dichotomy with bound K̃t(n) and exponent α̃ defined above.
Then Condition 2 of Theorem 2.2.10 holds true for T .

Moreover, from (2.6), T satisfies

∥T (t,s)∥L (X) ≤ εK(t)−1 +∥S(t,s)∥L (X)

≤ ε +∥S(t,s)∥L (X), for 0 ≤ t − s ≤ 1

then sup0≤t−s≤1{e−ν |t|∥T (t,s)∥L (X)} is finite. Finally, note that it is possible to choose ε > 0
small such that α̃ > ν . Therefore, Theorem 2.2.10 implies that T admits nonuniform exponential
dichotomy with bound K̂ defined in (2.7) and exponent α̂ = α̃ −ν > 0.

Remark 2.2.12. Assumption (2.5) on the growth of S (analogous to that of (HENRY, 1981,

Theorem 7.6.10) with ν = 0, that is, the uniform case) is expected for evolution processes that

admit nonuniform exponential dichotomies, see (BARREIRA; VALLS, 1998) or Example 2.11 in

Section 2.3.
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Remark 2.2.13. Theorem 2.2.11 allows us to see the robustness as an open property. In fact, let

Sν be the space of all evolutionary processes that satisfy (2.5) and define a distance in Sν as

dν(S ,T ) := sup
0≤t−s≤1

{
eν |t|∥S(t,s)−T (t,s)∥L (X)

}
.

Then, from Theorem 2.2.11 we see that if S ∈Sν admits a nonuniform exponential dichotomy

with bound K(t) = Deν |t| and exponent α > ν , then there exists ε > 0 such that every evolution

process T in a ε-neighborhood of S admits a nonuniform exponential dichotomy with bound

and exponent given in Theorem 2.2.11.

Now, we present another formulation of Theorem 2.2.11 that allows us to apply the result
for differential equations in Banach spaces.

Theorem 2.2.14. Let S = {S(t,s) : t ≥ s} ⊂ L (X) be an evolution process that admits a

nonuniform exponential dichotomy with bound K(t) = Deν |t|, t ∈ R, and exponent α > ν , and

assume that S satisfies (2.5). Let {B(t) : t ∈ R} ⊂ L (X) so that R ∋ t 7→ B(t)x is continuous

for all x ∈ X and

∥B(t)∥L (X) < δe−3ν |t|, ∀ t ∈ R.

Then any evolution process that satisfies the integral equation

T (t,s) = S(t,s)+
∫ t

s
S(t,τ)B(τ)T (τ,s)dτ ∈ L (X), t ≥ s, (2.8)

admits a nonuniform exponential dichotomy for suitably small δ > 0, with bound and exponent

given in Theorem 2.2.11.

Proof. Let T = {T (t,s) : t ≥ s} be a evolution process satisfying (2.8). Then

∥T (t,s)∥L (X) ≤ ∥S(t,s)∥L (X)+
∫ t

s
∥S(t,τ)∥L (X)∥B(τ)∥L (X) ∥T (τ,s)∥L (X)dτ.

Thus, fix s and define the function φ(t) = e−ν |t|∥T (t,s)∥L (X), for t ≤ s+1,

φ(t)≤ LS (ν)+LS (ν)
∫ t

s
∥B(τ)∥L (X)e

ν |τ|
φ(τ)dτ

By Grönwall’s inequality, we obtain that

φ(t)≤ LS (ν)e
LS (ν)

∫ t

s
∥B(τ)∥L (X)e

ν |τ|dτ
, for t ≤ s+1.

Therefore,
LT (ν) := sup

0≤t−s≤1

{
e−ν |t|∥T (t,s)∥L (X)

}
<+∞.

Now, for 0 ≤ t − s ≤ 1,

∥S(t,s)−T (t,s)∥L (X) ≤
∫ t

s
eν(|t|+|τ|)LS (ν)∥B(τ)∥L (X)LT (ν)dτ

= LT (ν)LS (ν)eν |t|
∫ t

s
eν |τ|∥B(τ)∥L (X)dτ.
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Then

K(t)∥S(t,s)−T (t,s)∥L (X) ≤ LT (ν)LS (ν)Dδ ,

and choose δ > 0 suitably small in order to use Theorem 2.2.11 and conclude the proof.

Theorem 2.2.14 is very useful when dealing with differential equations. In fact, let
{A(t) : t ∈ R} be a family of linear operators, possibly unbounded, and consider

ẋ = A(t)x, x(s) = xs ∈ X . (2.9)

Suppose that, for each s ∈ R and xs ∈ X , there exists a unique solution x(·,s,xs) : [s,+∞)→ X .
Thus there exists an evolution process S = {S(t,s) : t ≥ s} defined by S(t,s)xs := x(t,s,xs) for
each t ≥ s.

To study robustness of nonuniform exponential dichotomy of problem (2.9), we suppose
that S admits a nonuniform exponential dichotomy with a exponential growth (2.5) and exhibit
a class of {B(t) : t ∈ R} ⊂ L (X) so that the perturbed problem

ẋ = A(t)x+B(t)x, x(s) = xs ∈ X , (2.10)

admits a nonuniform exponential dichotomy. In this way, Theorem 2.2.14 ensures that the
nonuniform hyperbolicity is preserved for exponentially small perturbations, i.e., if the norm
of the perturbation of B does not grow more than e−3ν |t| for ν < α , then the perturbed problem
(2.10) admits a nonuniform exponential dichotomy.

Remark 2.2.15. In (BARREIRA; VALLS, 2015) a version of Theorem 2.2.14 is proved un-

der different assumptions. They considered a general growth rate ρ(t) for the nonuniform

exponential dichotomy and proved that if α > 2ν and B : R → L (X) is continuous satisfy-

ing ∥B(t)∥L (X) ≤ δe−3ν |ρ(t)|ρ ′(t), for all t ∈ R, then the perturbed problem (2.10) admits

ρ-nonuniform exponential dichotomy. We note that our method does not work for general growth

rates ρ(t). We treat the case ρ(t) = t, since the other cases can be achieved by a change of

scaling in time, and since our condition on the exponents is only α > ν we obtain an improvement

of their robustness result.

For A(t) bounded and B satisfying ∥B(t)∥L (X) ≤ δe−2ν |t|, for all t, in (BARREIRA;

VALLS, 2008) it was proved a result similar to Theorem 2.2.14. However they assume that the

evolution process S is invertible. In their proof, thanks to invertibility, they can write explicit

expressions of the projections for the perturbed evolution process. In applications to partial

differential equations, in general, A(t) is not bounded, see Section 2.3.
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2.3 An application to infinite-dimensional differential equa-
tions

In this section, we show an application of the robustness result in order to obtain examples
of evolution processes that admits nonuniform exponential dichotomies. Inspired in an example
of (BARREIRA; VALLS, 1998, Proposition 2.3), we provide an evolution process defined on a
Banach space that admits a nonuniform exponential dichotomy. Then, we apply Theorem 2.2.14
to study for which class of perturbations the nonuniform hyperbolicity will be preserved.

Let X and Y be two Banach spaces. Suppose that A is a generator of a C0-semigroup
{eAt : t ≥ 0} in X and B ∈L (Y ) with σ(A)⊂ (−∞,−ω) and σ(B)⊂ (ω,+∞), for some ω > 0,
and there exists M ≥ 1 such that

∥eA(t−s)∥L (X) ≤ Me−ω(t−s), t ≥ s;

∥eB(t−s)∥L (Y ) ≤ Meω(t−s), t < s.

Remark 2.3.1. Let C be a generator of a hyperbolic C0-semigroup {eC t : t ≥ 0}, i.e., the

associated evolution processes {eC (t−s) : t ≥ s} admits an uniform exponential dichotomy with a

single projection Πu(t) =Q∈L (X) for every t ∈R. Then, there is a decomposition X =Xu⊕X s

such that A := C |X s and B = C |Xu satisfy the conditions above over X s and Xu, respectively, see

(CARVALHO; LANGA; ROBINSON, 2013; CHOW; LEIVA, 1995a; HENRY, 1981).

Let ω > a > 0 and define the linear operator in Z = X ×Y

A (t) :=

[
A−at sin(t)IdX 0

0 B+at sin(t)IdY

]
.

Consider the differential equation

ż = A (t)z, z(s) = zs ∈ Z. (2.11)

Then, the evolution process associated with problem (2.11) is defined by

T (t,s) = (U(t,s),V (t,s))

where

U(t,s) = eA(t−s) exp
{
−
∫ t

s
aτ sin(τ)dτ

}
and

V (t,s) = eB(t−s) exp
{∫ t

s
aτ sin(τ)dτ

}
are evolution processes in X and Y, respectively.

Theorem 2.3.2. Let T = {T (t,s) : t ≥ s} be the evolution process defined above. Then T admits

a nonuniform exponential dichotomy with bound K(t) = Me2a(1+|t|) and exponent α = ω −a > 0.
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Proof. Define the linear operators Πu
X(t) = PX and Πu

Y (t) = PY for all t ∈ R where PX and
PY are the canonical projections onto X and Y , respectively. Then T (t,s)Πu

X(s) = U(t,s) and
T (t,s)Πu

Y (s) =V (t,s) for all t ≥ s.

In this way we have that PX commutes with T (t,s), for all t ≥ s and since B ∈ L (Y)
generates a group in Y we have that V (t,s) is an isomorphism over Y. Now, we claim that

∥U(t,s)∥L (X) ≤ Me2a+(−ω+a)(t−s)+2a|s|,

∥V (t,s)∥L (X) ≤ Me2a+(ω+a)(t−s)+2a|s|,

for some t ≥ s. Indeed, note that

∥U(t,s)∥L (X) = exp
{
−
∫ t

s
aτ sin(τ)dτ

}
∥eA(t−s)∥L (X)

≤ Me−ω(t−s)+at cos(t)−ascos(s)−asin(t)+asin(s),

and write the exponents as following

−ω(t − s)+at cos(t)−ascos(s) =−(ω −a)(t − s)+at(cos(t)−1)−as(cos(s)−1).

Hence, for t ≥ 0 and s > 0, we see that at(cos(t)− 1) ≤ 0, and as(1− cos(s)) ≤ 2as = 2a|s|.
Thus, for t ≥ s ≥ 0, we have that

∥U(t,s)∥L (X) ≤ Me−(ω+a)(t−s)+2a|s|+2a.

Now, for s ≤ 0, as(1− cos(s))≤ 0. Thus, for t ≥ 0 ≥ s,

∥U(t,s)∥L (X) ≤ Me(−ω+a)(t−s)+2a.

Finally, if s ≤ t ≤ 0, we see that

−at(1− cos(t))≤ 2a|t| ≤ 2a|s|.

Then

∥U(t,s)∥L (X) ≤ Me(−ω+a)(t−s)+2a|s|+2a, for t ≥ s. (2.12)

Similarly, we obtain that

∥V (t,s)∥L (Y ) ≤ Me2a+2a|s|e(ω+a)(t−s) for t < s. (2.13)

Therefore, T admits a nonuniform exponential dichotomy with bound K(t) = Me2a(1+|t|) and
exponent α = ω −a > 0.

Now, apply Theorem 2.2.14 to Equation (2.11).
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Theorem 2.3.3. Consider for each ε > 0 an operator Bε(t) ∈ L (Z) such that ∥Bε(t)∥ ≤
εe−6a|t|, and define

Aε(t) := A (t)+Bε(t), ∀ t ∈ R.

If ω > 3a, there exists ε > 0 such that the evolution process associated with the problem

ẋ = Aε(t)x, x(s) = xs ∈ Z. (2.14)

admits a nonuniform exponential dichotomy.

Proof. Let us prove first that the evolution problem associated with (2.11) satisfies

sup
0≤t−τ≤1

{
e−ν |t|∥T (t,τ)∥L (Z)

}
<+∞. (2.15)

In fact, we have for t ≥ s that

∥T (t,s)∥L (Z) ≤ ∥U(t,s)∥L (X)+∥V (t,s)∥L (Y ),

where U and V are the evolution processes defined in the proof of Theorem 2.3.2. Then it is
enough to prove that each evolution process satisfies (2.15) in the corresponding space. From
(2.12) we have that

e−2a|t|∥U(t,s)∥L (X) ≤ Me2a+2a(|s|−|t|)e−(ω−a)(t−s) ≤ Me2ae−(ω−3a)(t−s).

Therefore

sup
0≤t−s≤1

{e−2a|t|∥U(t,s)∥L (X)}<+∞, for all t ≥ s.

Now, since ∥eB(t−s)∥L (Y ) ≤ M̃eβ (t−s) for some M̃ ≥ 1 and β > 0, for every t ≥ s, we have that

∥V (t,s)∥L (Y ) = exp
{∫ t

s
aτ sin(τ)dτ

}
∥eB(t−s)∥L (Y ) ≤ M̃e4a+2a|t|e(β+a)(t−s),

which implies that

sup
0≤t−s≤1

{e−2a|t|∥V (t,s)∥L (Y )}<+∞.

Now, from Theorem 2.3.2, T admits a nonuniform exponential dichotomy where the
bound is K(s) = Me2a+2a|s| and exponent α = ω − a > 0. Since ν := 2a is such that α > ν ,
we apply Theorem 2.2.14 to conclude that the evolution process generated by (2.14) admits a
nonuniform exponential dichotomy.

Remark 2.3.4. Note that, in Theorem 2.2.14 the assumption α > ν of Theorem 2.3.3 is expressed

by ω > 3a. On the other hand, to apply Theorem 1 of (BARREIRA; VALLS, 2015) the hypothesis

must be ω > 5a, because their condition is α > 2ν .
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2.4 Persistence of nonuniform hyperbolic solutions

In this section, we study nonlinear evolution processes associated with a semilinear
differential equation. We study persistence of nonuniform hyperbolic solutions under perturbation
for evolution processes in Banach spaces, Our approach is inspired by the uniform case, see
(CARVALHO; LANGA; ROBINSON, 2013, Chapter 8). More precisely, we use Green’s function

to characterize bounded global solutions for semilinear differential equations and conclude that
nonuniform hyperbolic solutions are isolated in the set of bounded continuous functions, see
Theorem 2.4.3. Finally, in Theorem 2.4.4, we provide conditions to prove that nonuniform
hyperbolic solutions persist under perturbations.

Consider a semi-linear differential equation

ẏ = A(t)y+ f (t,y), y(s) = ys. (2.16)

Assume that f is continuous in the first variable and locally Lipschitz in the second and that
{A(t) : t ∈ R} is a family of linear (possibly unbounded) operators associated with an evolution
process T = {T (t,s) : t ≥ s} ⊂ L (X), i.e., for each s ∈ R and x0 ∈ X the mapping [s,+∞) ∋
t → T (t,s)x0 is the solution of

ẋ = A(t)x, x(s) = x0.

Then we have a local mild solution for problem (2.16), that is, for each (s,ys) ∈ R×X there
exist σ = σ(s,ys)> 0 and a solution y of the integral equation

y(t,s;ys) = T (t,s)ys +
∫ t

s
T (t,τ) f (τ,y(τ,s;ys))dτ, (2.17)

for all t ∈ [s,s+σ).

If for each (s,ys) ∈ R× X , σ(s,ys) = +∞, we can consider the evolution process
S f (t,s)ys = y(t,s;ys). We refer to S f = {S f (t,s) : t ≥ s} as the evolution process obtained
by a non-linear perturbation f of T .

Suppose additionally that f : R×X → X is differentiable with continuous derivatives. Let
ξ be a global solution of S f (see Definition 2.2.3), and L f = {L f (t,s) : t ≥ s} is the linearized
evolution process of S f on ξ . Thus L f satisfies

L f (t,s) = T (t,s)+
∫ t

s
T (t,τ)Dx f (τ,ξ (τ))L f (τ,s)dτ.

Definition 2.4.1. If L f admits a nonuniform exponential dichotomy we say that ξ is a nonuni-
form hyperbolic solution for S f .

In (BARREIRA; VALLS, 1998) this type of solution is called nonuniformly hyperbolic

trajectory.
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Remark 2.4.2. Let ϕ be a global solution for S f . Then

ϕ(t) = L f (t,s)ϕ(s)+
∫ t

s
L f (t,τ)[ f (τ,ϕ(τ))−Dx f (τ,ξ (τ))ϕ(τ)]dτ, t ≥ s. (2.18)

In particular, the global bounded solution ξ satisfies the integral equation (2.18), see (CAR-

VALHO; LANGA; ROBINSON, 2013, pages 224-225).

The next result allows us to characterize bounded nonuniform hyperbolic solutions.

Theorem 2.4.3. Assume that there is a global nonuniform hyperbolic solution ξ for S f and

that L f admits a nonuniform exponential dichotomy with bound K(s) = Deν |s|, s ∈ R, exponent

α > ν , and family of projections {Πu(t) : t ∈ R}. If ϕ is a bounded global solution for S f , then

ϕ satisfies

ϕ(t) =
∫ +∞

−∞

G f (t,τ)[ f (τ,ϕ(τ))−Dx f (τ,ξ (τ))ϕ(τ)]dτ,

where G f is the Green’s function associated with the evolution process L f ,

G f (t,s) =

{
L f (t,s)(IdX −Πu(s)), if t ≥ s,

−L f (t,s)Πu(s) if t < s.

Moreover, if ξ is a bounded nonuniform hyperbolic solution of S f and

ρ(ε) = sup
∥x∥≤ε

sup
t∈R

eν |t| ∥ f (t,ξ (t)+ x)− f (t,ξ (t))−Dx f (t,ξ (t))x∥
∥x∥

→ 0, as ε → 0, (2.19)

then ξ is isolated in the set of bounded and continuous functions Cb(R,X), i.e., there is a

ε-neighborhood of ξ , namely

Nε = {ϕ ∈Cb(R,X) : sup
t∈R

∥ϕ(t)−ξ (t)∥X < ε}, ε > 0,

such that ξ is the only bounded global solution of S f in Nε .

Proof. If τ > t we have that

ϕ(τ) = L f (τ, t)ϕ(t)+
∫

τ

t
L f (τ,s)[ f (s,ϕ(s))−Dx f (s,ξ (s))ϕ(s)]ds. (2.20)

Thus, applying Πu(τ) in the previous equation we obtain

Π
u(τ)ϕ(τ) = L f (τ, t)Πu(t)ϕ(t)+

∫
τ

t
L f (τ,s)Πu(s)[ f (s,ϕ(s))−Dx f (s,ξ (s))ϕ(s)]ds. (2.21)

Now, use that L f (τ, t)|R(Πu(t)) is invertible with inverse L f (t,τ) so we obtain

L f (t,τ)Πu(τ)ϕ(τ) = Π
u(t)ϕ(t)+

∫
τ

t
L f (t,s)Πu(s)[ f (s,ϕ(s))−Dx f (s,ξ (s))ϕ(s)]ds. (2.22)
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Since L f admits a nonuniform exponential dichotomy with exponent α > ν and ϕ is bounded,
we obtain that

∥L f (t,τ)Πu(τ)ϕ(τ)∥ ≤ Deν |τ|eα(t−τ) sup
s∈R

∥ϕ(s)∥→ 0, as τ →+∞.

Then
Π

u(t)ϕ(t) =−
∫ +∞

t
L f (t,s)Πu(s)[ f (s,ϕ(s))−Dx f (s,ξ (s))ϕ(s)]ds. (2.23)

Similarly, for t > τ , as

∥L f (t,τ)(IdX −Π
u(τ))ϕ(τ)∥ ≤ Deν |τ|e−α(t−τ) sup

s∈R
∥ϕ(s)∥→ 0, as τ →−∞,

thus

(IdX −Π
u(t))ϕ(t) =

∫ t

−∞

L f (t,s)(IdX −Π
u(s))[ f (s,ϕ(s))−Dx f (s,ξ (s))ϕ(s)]ds. (2.24)

Therefore, the result follows by writing ϕ(t) = (IdX −Πu(t))ϕ(t)+Πu(t)ϕ(t) and using the
previous expressions.

Finally, we prove that ξ is isolated. Let ϕ ∈Cb(R,X) be a bounded global solution of
S f with supt∈R ∥ϕ(t)− ξ (t)∥ ≤ ε . Since ξ and ϕ are bounded we apply the first part of the
proof for each and obtain

ϕ(t)−ξ (t) =
∫ +∞

−∞

G f (t,τ)[ f (τ,ϕ(τ))− f (τ,ξ (τ))−Dx f (τ,ξ (τ))(ϕ(τ))−ξ (τ)]dτ.

Note that, the Green’s function G f satisfies

∥G f (t,τ)∥L (X) ≤ Deν |τ|e−α|t−τ|, for all t,τ ∈ R,

this together with condition (2.19) we obtain

sup
t∈R

∥ϕ(t)−ξ (t)∥ ≤ 2Dρ(ε)α−1 sup
t∈R

∥ϕ(t)−ξ (t)∥.

For ε > 0 such that 2Dρ(ε)α−1 < 1 we see that ϕ(t) = ξ (t) for all t ∈R. Therefore, ξ is isolated
and the proof is complete.

Now, as an application of Theorem 2.2.11 we prove a result on the persistence of

nonuniform hyperbolic solutions.

Theorem 2.4.4 (Persistence of nonuniform hyperbolic solutions). Let f : R×X → X be a

continuous map with continuous first derivative with respect to the second variable, T be a

linear evolution processes and S f be the evolution process generated by f and T . Assume that

1. T satisfies

sup
0≤t−s≤1

{e−ν |t|∥T (t,s)∥L (X)}<+∞, (2.25)
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2. there is a global nonuniform hyperbolic solution ξ for S f , i.e., L f admits a nonuniform

exponential dichotomy with bound K(s) = Deν |s|, for all s ∈ R, and exponent α > ν .

3. ξ is bounded with supt∈R ∥ξ (t)∥< M;

4. f satisfies Condition (2.19);

5. the derivative of f satisfies

sup
∥x∥≤M

sup
t∈R

{eν |t|∥Dx f (t,x)∥L (X)}<+∞;

6. g : R×X → X is differentiable with continuous first derivative with respect to the second

variable and satisfies

sup
∥x∥X≤ε

sup
t∈R

e3ν |t|∥Dxg(t,ξ (t)+ x)−Dxg(t,ξ (t))∥L (X) <
δ

2
, and (2.26)

sup
t∈R

∥x∥X≤M

e3ν |t|{∥ f (t,x)−g(t,x)∥X+∥Dx f (t,x)−Dxg(t,x)∥L (X)

}
<

εα

4D
, (2.27)

for 0 < ε < ε0 := min{M− supt∈R ∥ξ (t)∥X ,2δDα−1} suitable small, where δ > 0 is the

same as in Theorem 2.2.14 applied for L f .

Then there exists a unique nonuniform hyperbolic solution ψ for Sg such that

sup
t∈R

∥ξ (t)−ψ(t)∥< ε.

Proof. If y is a global bounded solution for Sg, then, as in Remark 2.4.2, we have that

y(t) = L f (t,s)y(s)+
∫ t

s
L f (t,τ)[g(τ,y(τ))−Dx f (τ,ξ (τ))y(τ)]dτ,

ξ (t) = L f (t,s)ξ (s)+
∫ t

s
L f (t,τ)[ f (τ,ξ (τ))−Dx f (τ,ξ (τ))ξ (τ)]dτ.

(2.28)

Thus φ(t) = y(t)−ξ (t) satisfies the following integral equation

φ(t) = L f (t,s)φ(s)+
∫ t

s
L f (t,τ)h(τ,φ(τ))dτ, (2.29)

where h(t,φ(t)) = g(t,φ(t)+ξ (t))− f (t,ξ (t))−Dx f (t,ξ (t))φ(t).

Then , by Theorem 2.4.3, there exists a bounded solution of (2.29) in

Bε := {φ : R→ X : φ is continuous and sup
t∈R

∥φ(t)∥< ε},

if and only if, the operator

(Fϕ)(t) =
∫ +∞

−∞

G f (t,s)h(s,ϕ(s))ds
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has a fixed point in the space Bε .

Now, we use the fact that L f admits a nonuniform exponential dichotomy to show that
F has a unique fixed point in Bε , for suitable small ε > 0. In order to use the Banach fixed point
Theorem, we have to prove that F is a contraction and that FBε ⊂ Bε .

For 0 < ε < ε0 and φ ∈ Bε , we have

∥(Fφ)(t)∥X ≤ D
∫ +∞

−∞

eν |s|e−α|t−s|∥h(s,φ(s))∥X ds

≤ 2Dα
−1 sup

t∈R
eν |t| ∥g(t,ξ (t)+φ(t))− f (t,ξ (t)+φ(t))∥X

+ 2Dα
−1

ε sup
∥x∥≤ε

sup
t∈R

eν |t| ∥ f (t,ξ (t)+ x)− f (t,ξ (t))−Dx f (t,ξ (t))x∥X

∥x∥X

≤ ε/2+2α
−1Dρ(ε)ε.

Thus, choosing ε ∈ (0,ε0) such that 4α−1Dρ(ε)< 1, we see that Fφ ∈ Bε . Now, we show that
F is a contraction. In fact, with similar computations we are able to prove for φ1,φ2 ∈ Bε that

∥(Fφ1)(t)− (Fφ2)(t)∥X ≤ 1
2

sup
t∈R

∥φ1(t)−φ2(t)∥X .

Therefore, there is a unique fixed point φ in Bε and we obtain ψ = φ +ξ a global solution of
Sg.

Finally, we prove that ψ is a nonuniform hyperbolic solution, that means, the linear
evolution process Lg := {Lg(t,s) : t ≥ s} that satisfies

Lg(t,τ) = T (t,τ)+
∫ t

τ

T (t,s)Dxg(s,ψ(s))Lg(s,τ)ds

admits a nonuniform exponential dichotomy.

To that end, we show that L f satisfies conditions of Theorem 2.2.14 and we see Lg as a
small perturbation of L f . Indeed, since T satisfies (2.25) and

L f (t,s) = T (t,s)+
∫ t

s
T (t,τ)Dx f (τ,ξ (τ))L f (τ,s)dτ,

from a Grönwall’s inequality and assumption (5) we see that

sup
0≤t−τ≤1

{e−ν |t| ∥L f (t,τ)∥L (X)}<+∞.

Finally, note that

Lg(t,τ) = L f (t,τ)+
∫ t

τ

L f (t,s)[Dxg(s,ψ(s))−Dx f (s,ξ (s))]Lg(s,τ)ds.

Now, define B(s) := Dxg(s,ψ(s))−Dx f (s,ξ (s)) for all s ∈ R. Since

∥B(s)∥L (X) ≤ ∥Dxg(s,ψ(s))−Dxg(s,ξ (s))∥L (X)

+∥Dxg(s,ξ (s))−Dx f (s,ξ (s))∥L (X),
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hypotheses (2.26) and (2.27) imply that ∥B(t)∥ ≤ δe−3ν |t|, t ∈ R. Therefore B : R → L (X)

satisfies conditions of Theorem 2.2.14 and we conclude ψ is a nonuniform hyperbolic solution
of Sg.

Remark 2.4.5. Note that, in Theorem 2.4.4, f and g have to be C1-close with an exponential

weight. In fact, the functions one has to consider are of the form h : R×X → X such that

h(t,x) = e−3ν |t|h0(t,x) for some h0 that satisfy the conditions for the uniform case (with ν = 0
see (CARVALHO; LANGA; ROBINSON, 2013, Lemma 8.3)), and this exponential weight has to

be considered on the C1-proximity of the functions as in (2.27).

Remark 2.4.6. We point out that the existence of a nonuniform hyperbolic solution can be

achieved by an application of Theorem 2.4.4 in the special case where f = 0, so ξ ≡ 0 is a

nonuniform hyperbolic solution of ẏ = A(t)y.
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CHAPTER

3
NONUNIFORM EXPONENTIAL DICHOTOMY

OF TYPE II

In this Chapter, we propose a new type of nonuniform exponential dichotomy. We study
the relations between this new concept and the standard one, namely Definition 2.2.4. Moreover,
we provide several examples and prove a robustness result for it.

3.1 Nonuniform exponential of type II: introduction

One of our goals is to provide a quantitative analysis of the growth rates of the exponential
dichotomies, so now we define again nonuniform exponential dichotomy with different growth
rates and in a fixed interval J, to distinguish precisely the exponents and interval where it is
defined. The next one we will refer to as nonuniform exponential dichotomy of type I.

Definition 3.1.1. Let S = {S(t,s) ; t ≥ s} ⊂ L (X) be a linear evolution process in a Banach

space (X ,∥ · ∥X). We say that S admits nonuniform exponential dichotomy of type I on J, or
simply NEDI, if there exists a family of continuous projections {Πu(t) ; t ∈ J} such that

1. Πu(t)S(t,s) = S(t,s)Πu(s), for all t ≥ s;

2. S(t,s)|R(Πu(s)) is an isomorphism for all t ≥ s, and the inverse over R(Πu(t)) we denote by

S(s, t);

3. there exist M,α,β > 0, and δ ,ν ≥ 0 such that

∥S(t,s)Πs(s)∥L (X) ≤ Meδ |s|e−α(t−s), t ≥ s,

where Πs(s) := (I −Πu(s)) for all s ∈ J and

∥S(t,s)Πu(s)∥L (X) ≤ Meν |s|eβ (t−s), t < s.
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Of course, Definition 2.2.4 and Definition 3.1.1 are equivalent whenever J=R. Indeed, if
υ = max{δ ,ν} and ω = min{α,β}, then K(t) = Meυ |t| and ω > 0 are the bound and exponent,
respectively.

We present another notion of nonuniform exponential dichotomy with a slight modifica-
tion over Item 3 of Definition 3.1.1.

Definition 3.1.2. Let S = {S(t,s) ; t ≥ s} ⊂ L (X) be a linear evolution process in a Banach

space (X ,∥ · ∥X). We say that S admits nonuniform exponential dichotomy of type II on J , or
simply NEDII, if there exists a family of continuous projections {Πu(t) ; t ∈ J} such that

1. Πu(t)S(t,s) = S(t,s)Πu(s), for all t ≥ s;

2. S(t,s)|R(Πu(s)) is an isomorphism for all t ≥ s and the inverse over R(Πu(t)) we denote by

S(s, t);

3. there exist M,α,β > 0 and ν ,δ ≥ 0 such that

∥S(t,s)Πs(s)∥L (X) ≤ Meδ |t|e−α(t−s), t ≥ s (3.1)

where Πs(s) := IdX −Πu(s), for all s ∈ J, and

∥S(t,s)Πu(s)∥L (X) ≤ Meν |t|eβ (t−s), t < s. (3.2)

In this work, we will use the following notations.

Remark 3.1.3. Let S be an evolution process that admits a nonuniform exponential dichotomy

of type i ∈ {I, II}, families of projections Πs
i and Πu

i . Then we introduce the following notation

1. the stable set at instant t, X s
i (t) := Πs

i (t)X and the unstable set at the instant t; Xu
i (t) :=

Πu
i (t)X for all t ∈ J;

2. the stable family X s
i := {X s

i (t) : t ∈ J}, and the unstable family Xu
i := {Xu

i (t) : t ∈ J};

3. X s
i (α,δ ) = {X j

i (t) : t ∈ J} to mean that over stable family the bound is given by Ms(t) =

Meδ |t| and the exponent by α > 0, see (3.1);

4. Xu
i (β ,ν) = {X j

i (t) : t ∈ J} to mean that over the unstable family the bound is given by

Mu(t) = Meν |t| and the exponent by β > 0, see (3.2).

In the case that J= R, the names “stable" and “unstable" in NEDII have the standard
sense of exponential dichotomy, only when α > δ and β > ν . In fact, at this situation, for every
s ∈ R fixed, we see that S(t,s)Πs(s)→ 0 as t →+∞ and S(t,s)Πu(s)→ 0 as t →−∞. However,
there are examples of evolution processes that admits NEDII with α < δ or β < ν with some
interesting properties to be explored. For instance, even in this “pathological situation”, it is
possible to obtain applications on the asymptotic behavior for evolution processes.
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The following result provides a simpler way to relate both types of nonuniform exponen-
tial dichotomies.

Theorem 3.1.4. Let S be an evolution process.

On R+:

1. there exists a NEDI with X s
I (α,δ ), if and only if, there exists a NEDII with X s

II(α +δ ,δ );

2. there exists a NEDI with Xu
I (β +ν ,ν), if and only if, there exists a NEDII with Xu

II(β ,ν).

On R−:

1. there exists a NEDII with X s
II(α,δ ), if and only if, there exists a NEDI with X s

I (α +δ ,δ );

2. there exists a NEDII with Xu
II(β +ν ,ν), if and only if, there exists a NEDI with Xu

I (β ,ν).

Proof. Note that, if t,s ∈ R+ we have

−α(t − s)+δ s =−(α +δ )(t − s)+δ t.

Hence, for an evolution process S that admits NEDI with bound on the stable set Ms(s) =Meδ |s|,
for some M,δ > 0 (the case δ = 0 is trivial), and exponent α > 0 we have that

∥S(t,s)Πs(s)∥L (X) ≤ Me−α(t−s)+δ |s| = Me−(α+δ )(t−s)+δ |t|,

which finishes the proof of Item 1. Similarly, Item 2 follows from the relation

α(t − s)+δ |t|= (α +δ )(t − s)+δ |s|, t,s ∈ R+.

The proof on R− is similar to the case on R+.

Next corollary summarize the relations of Theorem 3.1.4.

Corollary 3.1.5. Let S be an evolution process in a semi-line, i.e., J= R+ or R−. If S admits

NEDI (or NEDII) with bound M(t) = Meυ |t| and exponent and ω > υ , then S admits NEDII

(NEDI) with bound M(t) = Meυ |t| and exponent ω −υ > 0.

The analysis as in Corollary 3.1.5 is not optimal, we lose information when unifying the
exponents α,β and the growth of the bound or order eδ |t| or eν |t|. Note that the same problem
occurs when we study the exponents in the whole line. Hence, to provide an “optimal” analysis
on the relation of the exponents and the growth of the bound, we sometimes consider different
exponents, even in the half-lines R+ and R−.
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3.2 Examples of NEDII

In this section, we provide examples of scalar evolution processes that admit nonuniform
exponential dichotomies (of type I and II). Our goal is to guarantee that NEDII is a new concept
and explore the differences with the standard notion.

Proposition 3.2.1. Let a,b > 0 and S = {S(t,s) : t ≥ s} be the evolution process defined by

x(t,s;x0) := S(t,s)x0, where x is the solution for ẋ = −bx−at sin(t)x, t ≥ s at the initial data

x(s) = x0 ∈ R. We have that

1. S admits a NEDII on R+ with X s
II(b+a,2a) and Πu(t) = 0 for all t ≥ 0.

2. S admits a NEDI on R− with X s
I (b+a,2a) and Πu(t) = 0 for all t ≥ 0.

Additionally, if b > a, then

1. S admits a NEDI on R+ with X s
I (b−a,2a) and Πu(t) = 0 for all t ≥ 0.

2. S admits a NEDII on R− with X s
II(b−a,2a) and Πu(t) = 0 for all t ≥ 0.

3. S admits NEDI and NEDII on R, with X s
j (b−a,2a), j = I, II, and Πu(t) = 0 for all t ≥ 0.

Proof. Note that S(t,s)x = e−b(t−s)+at cos(t)−ascos(s)−asin(t)+asin(s)x, t,s ∈ R and x ∈ R. Hence

∥S(t,s)∥L (R) = S(t,s)1 = e−(b+a)(t−s)+at(cos(t)+1)−as(cos(s)+1)−asin(t)+asin(s).

By similar arguments to those presented in the proof of Theorem 2.3.2, we conclude that

S(t,s)1 ≤ e2a−(b+a)(t−s)+2at , t ≥ s ≥ 0,

S(t,s)1 ≤ e2a−(b+a)(t−s)+2a|s|, s ≤ t ≤ 0.

which finishes the prove of the first two items. The proof of the remaining items follows from
Theorem 3.1.4.

Remark 3.2.2. Let S be the evolution process defined in Proposition 3.2.1 Note that, if b < 3a,

S admits a NEDII on R+ with X s
II(α2,δ2), where α2 := b+ a => 2a =: δ2 and a NEDI on

R+ with X s
I (α1,δ1) α1 := b−a < 2a =: δ1. Hence, in some situations, it is possible to choose

NEDII with “better” relation in the exponents than NEDI. Of course, an analogous relation its

obtained over R−, but S admits NEDI and NEDII, where NEDI has the “better” relation on

the exponents for NEDI.

Next, we provide an example of an evolution process that admits NEDII with two
different projections and does not admit any NEDI.
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Proposition 3.2.3. Define f0 : R→ R by

f0(t) =

{
1 if t ≥ 0,
−1 if t < 0,

(3.3)

and consider the Caratheodory differential equation

ẋ = f0(t)x, for t ∈ R.

Then, the induced evolution process S0 = {S0(t,s) : t,s ∈ R} admits a NEDII on R with two

different families of projections, and does not admit any NEDI on R.

Proof. For each t ∈ R define the real function T (t) : R→ R as

T (t)x =

{
etx if t ≥ 0,
e−tx if t ≤ 0,

for each x ∈ R. Note that T (t) is an homeomorphism on R and that S0(t,s) = T (t)T (s)−1 for
every t,s ∈ R.

First we show that S0 admits a NEDII with the Πu(t) = 0 for all t ∈ R, i.e., we prove
that S0 satisfies

∥S0(t,s)∥L (R) = S0(t,s)1 ≤ e−(t−s)+2|t|, for all t ≥ s. (3.4)

Indeed, if s ≤ 0 ≤ t we are able to write S0(t,s)1 = es+t = e−(t−s)+2(t+s). Now, let t ≥ s ≥ 0 then

t − s ≤−(t − s)+2t =−(t − s)+2|t|.

Thus S0(t,s)1 = et−s ≤ e−(t−s)+2|t|, for t ≥ s ≥ 0. Finally, if s ≤ t ≤ 0 then S0(t,s)1 = e−(t−s)

and S0 satisfies (3.4).

Similarly, it is possible to prove that

S0(t,s)1 ≤ et−s+2|t|, t ≤ s. (3.5)

Therefore, S0 = {S0(t,s) : t ≥ s} admits a NEDII with Πu(·) = 0 and Πu(·) = IdR.

Finally, suppose that S0 admits a NEDI on R, then exists {Π̃u(t) : t ∈ R} a family of
projections so that satisfies all the conditions from the Definition 3.1.1. It is straightforward to
verify that Π̃u(·) must be constant equal to the identity map IdR or the null operator 0.

Assume that Π̃u = IdR. Then there are M̃, β̃ > 0, and ν̃ ≥ 0 such that

S0(t,s)1 ≤ M̃eβ̃ (t−s)+ν̃ |s|, t ≤ s. (3.6)

Then, for each s ∈ R fixed, S0(t,s)1 → 0 as t →−∞, which is a contradiction.

Similarly, we prove that we can not have Π̃u = 0, and therefore S0 does not admit any
NEDI.
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Proposition 3.2.4. Let f : R→ R be a continuous function such that

1. limt→+∞ f (t) = 1;

2. limt→−∞ f (t) =−1.

Then, the evolution process S f = {S f (t,s) : t,s ∈ R}, induced by ẋ = f (t)x, admits a NEDII on

R with two different projections. Moreover, S f does not admits any NEDI on R.

Proof. Let f0 be the function defined in (3.3). Note that

lim
|t−s|→+∞

1
t − s

∫ t

s
| f (r)− f0(r)|dr = 0.

Then, for any ε ∈ (0,1), there exists Kε > 0 such that∫ t

s
| f (r)− f0(r)|dr ≤ Kε + ε|t − s|, for each t,s ∈ R,

which yields to ∫ t

s
f (r)dr ≤

∫ t

s
f0(r)dr+Kε + ε|t − s|, for each t,s ∈ R. (3.7)

Thus
S f (t,s)1 ≤ MεS0(t,s)eε(t−s), t ≥ s, (3.8)

where Mε = eKε . Hence, by the proof of Proposition 3.2.3,

S f (t,s)1 ≤ Mεe−(1−ε)(t−s)+2|t|, t ≥ s.

Therefore, S f admits a NEDII with projections Πu(t) = 0 for every t ∈ R.

We now use (3.7) and Proposition 3.2.3, with t ≥ s replaced by t ≤ s, to obtain that S f

admits a NEDII with projections Πu(t) = IdR, for every t ∈ R.

Let us prove now that S f does not admit NEDI. Suppose that S f admits a NEDI with
projections Πu(t) for t ∈ R. Then, Πu(t) must be constant equal to the null operator or the
identity map. First, assume that Π̃u(t) = 0, for every t ≥ 0. Thus there exist M̃, α̃ > 0 and δ̃ ≥ 0
such that

S f (t,s)1 ≤ M̃e−α̃(t−s)+δ̃ |s|, t ≥ s. (3.9)

By similar arguments used to prove (3.8), it is possible to verify that

S0(t,s)1 ≤ MεS f (t,s)eε(t−s), t ≥ s. (3.10)

Then for ε ∈ (0, α̃), inequality (3.10) implies that S0 admits a NEDI, which is a contradiction
with Proposition 3.2.3. By a similar analysis, it is possible to see that if S f admits a NEDI
with projections Π̃u(t) = IdR, for t ∈ R, then S0 will also admits a NEDI, which will be a
contradiction with Proposition 3.2.3. The proof is complete.
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The next proposition provides an example of an evolution process with NEDII that do
not admit any NEDI over a half-line.

Proposition 3.2.5. Consider the ordinary differential equation

ẋ = g(t)x, for t ≥ 0,

where g is the real function defined as

g(t) =


0 if t ∈ (0,1],
1 if t ∈ (n!,(n+1)! ], for n = 2k,k = 0,1, · · · ,
−n if t ∈ (n!,(n+1)! ], for n = 2k+1,k = 0,1, · · · .

Then there exists an evolution process Sg = {Sg(t,s) : t,s ≥ 0} such that:

1. Sg admits a NEDII in R+ with X s
I (1,2) and projection Πu(t) = 0, t ≥ 0.

2. Sg does not admit any NEDI on R+.

Proof. Note that

Sg(t,s)1 ≤ et−s, t ≥ s ≥ 0.

Since t − s ≤ −(t − s) + 2t, for t ≥ s ≥ 0, Sg admits a NEDII with projection Πu = 0 and
exponents α = 1 and δ = 2.

Now, we prove that Sg does not admit any NEDI. Indeed, if Sg admits NEDI with
projection Πu(·) constant equal to 0 or IdR. Suppose that Πu(t) = 0, for each t ≥ 0. This means
that there are M,α,δ > 0 such that

Sg(t,s)1 ≤ Meδ |s|−α(t−s), for all t ≥ s ≥ 0. (3.11)

For n = 2k for some k ∈ N, we choose tn = (n+1)! and sn = n!, thus tn − sn = nsn. Thus, from
(3.11)

Sg(tn,sn)1 = ensn ≤ Meδ sn−α(tn−sn), for all even n.

Hence,

ensn(1+α)−δ sn ≤ M, for all even n ∈ N.

which is a contradiction, because the sequence on the right-hand side is not bounded. Therefore,
Sg does not admit NEDI with projection Πu = 0.

Now, if we assume that Sg admits a NEDI with projection Πu := IdR, following the
same line of arguments above we will obtain a contraction. Therefore, Sg does not admit any
NEDI and the proof is complete.
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3.3 NED for invertible evolution processes

In this section, we study nonuniform exponential dichotomies for invertible evolution
processes. We provide a relationship between NEDI and NEDII. As an application we establish
a robustness result of NEDII.

Before proving the next result we recall the concept of dual operator of a linear operator in
a Banach space. For an arbitrary bounded linear functional x∗ ∈ X∗ we write x∗(x) := ⟨x,x∗⟩ ∈R.

Definition 3.3.1. Let A : D(A)⊂ X → X be a linear operator such that D(A) is dense in X. The

dual operator A∗ : D(A∗)⊂ X∗ → X∗ of A is defined by: D(A∗) is the set of x∗ ∈ X∗ such that

there exists z∗ ∈ X∗ such that

⟨Ax,x∗⟩= ⟨x,z∗⟩, x ∈ D(A). (3.12)

For x∗ ∈ X∗ we define A∗x∗ = z∗ as the only element of X∗ that satisfies (3.12).

For the next result, we only need to consider the dual operator of an bounded linear
operator A ∈ L (X). Of course, in this situation, D(A∗) = X∗ and A∗ ∈ L (X∗).

The next result provides a fundamental relation between these two notions of nonuniform
exponential dichotomies for invertible evolution processes.

Theorem 3.3.2. Let S = {S(t,s) : t,s ∈ J} ⊂ L (X) be an invertible evolution process in a

Banach space X. Define the bounded linear operator in the dual space X∗

T (t,s) = [S(s, t)]∗, for all t,s ∈ J.

Then T := {T (t,s) : t,s ∈ J} defines a invertible evolution process in X∗.

Additionally, if S admits a NEDI (NEDII) with bound M(t) = Meυ |t|, for t ∈ J, exponent

ω > 0, and families of projections Πu and Πs, for some M,υ > 0. Then T admits a NEDII (NEDI)

with bound M(t) and exponent ω > 0, and family of projections Π̃u = [Πs]∗ and Π̃s = [Πu]∗,

where

[Πk]∗ := {[Πk(t)]∗ : t ∈ J}, k = u,s. (3.13)

Proof. Lets first show that T defines an evolution process in X∗. Let t,s,τ ∈ J then

T (t, t) = [S(t, t)]∗ = [IdX ]
∗ = IdX∗,

and also

T (t,s)T (s,τ) = [S(s, t)]∗[S(τ,s)]∗ = [S(τ,s)S(s, t)]∗ = T (t,τ),

where we use duality properties and that S is an evolution process. Now, let (tn,sn,x∗n) be a
sequence in J2 ×X∗ such that (tn,sn)xn → (t,s,x∗) as n →+∞, we will prove that T (tn,sn)x∗n →
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T (t,s)x∗ as n →+∞. First, note that

∥T (tn,sn)x∗n −T (t,s)x∗∥L (X∗) = sup
∥x∥X=1

|⟨x,T (tn,sn)x∗n⟩−⟨x,T (t,s)x∗⟩|

= sup
∥x∥X=1

|⟨S(sn, tn)x,x∗n⟩−⟨S(s, t)x,x∗⟩|.

For any x ∈ X , we have that

|⟨S(sn, tn)x,x∗n⟩−⟨S(s, t)x,x∗⟩|

≤ |⟨S(sn, tn)x−S(s, t)x,x∗n⟩|+ |⟨S(s, t)x,x∗n − x∗⟩|

≤ ∥x∗n∥X∗ ∥S(sn, tn)x−S(s, t)x∥X +∥S(s, t)x∥X ∥x∗n − x∗∥X∗ .

Since {x∗n} is a bounded sequence in X∗, to obtain that

lim
n→+∞

∥T (tn,sn)x∗n −T (t,s)x∗∥L (X∗) = 0.

Therefore, T define an invertible evolution process in X∗.

Now, assuming that S admits a NEDI and we claim that T admits a NEDII.

Indeed, since S admits a NEDI, there exists a family of projections {Πu(t) : t ∈ J} such
that satisfies the conditions in Definition 3.1.1 for S .

Define Π̃s(t) := [Πu(t)]∗ for all t ∈ J. Then {Π̃s(t) : t ∈ J} is a family of projections on
X∗ such that

T (t,s)Π̃s(s) = [S(s, t)]∗[Πu(s)]∗ = [Πu(s)S(s, t)]∗, (3.14)

Since Πu(s)S(s, t) = S(s, t)Πu(t), we conclude that T (t,s)Π̃s(s)Π̃s(t)T (t,s).

Moreover,

∥T (t,s)Π̃s(s)∥L (X∗) = ∥[S(s, t)Πu(t)]∗∥L (X∗)

= ∥S(s, t)Πu(t)∥L (X)

≤ Meυ |t|eω(s−t), for t ≥ s,

and, if Π̃u(t) = IdX∗ − Π̃s(t), we obtain that

∥T (t,s)Π̃u(s)∥L (X∗) = ∥[S(s, t)Πs(t)]∗∥L (X∗)

≤ Meυ |t|e−ω(s−t), for t ≤ s.

Then, according to the inequalities above, T admits NEDII on J with exponent ω > 0 and bound
Meυ |t|, t ∈ R.

Finally, if S admits a NEDII following the same line of arguments of the above proof
we conclude that T admits a NEDI, with the same relations between projections, bound and
exponent.
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Now, as a consequence of Theorem 2.2.11 and Theorem 3.3.2 we prove a robustness
result for NEDII.

Theorem 3.3.3 (Robustness of NEDII). Let S1 = {S1(t,s) : t,s ∈ R} be an invertible evolution

process that admits a NEDII with bound M(t) = Meυ |t|, t ∈R, for some M,ω > 0, and exponent

ω > υ . Suppose that S1 satisfies

sup
0≤t−s≤1

{e−υ |t| ∥S1(t,s)∥L (X)}<+∞. (3.15)

Then there exists ε > 0 such that if S2 is another invertible evolution process such that

sup
0≤t−s≤1

{eυ |s| ∥S1(t,s)−S2(t,s)∥L (X)}< ε. (3.16)

Then T2 := {T2(t,s) = [S2(s, t)]∗ : t,s ∈ R} admits a NEDI with exponent ω̂ > 0 and bound M̂

provided in Theorem 2.2.11 for ε small enough.

Additionally, if X is reflexive, then S2 admits a NEDII with the same bound and exponent

of T2.

Proof. Let T1 = {T1(t,s) : t,s ∈ R} be the evolution process over X∗ defined by T1(t,s) :=
[S1(s, t)]∗ for all t,s ∈ R.

Then, from Theorem 3.3.2, T1 admits a NEDI with bound M(t) = Meυ |t| and exponent
ω > υ . From (3.15), T1 satisfies

sup
0≤t−s≤1

{e−υ |t| ∥T1(t,s)∥L (X∗)}= sup
0≤t−s≤1

{e−υ |t| ∥S1(s, t)∥L (X)}<+∞.

Therefore, by Theorem 2.2.11, there exists ε > 0 such that if T = {T (t,s) : t,s ∈ R} is an
evolution process over X∗ such that

sup
0≤t−s≤1

{eυ |s| ∥T1(t,s)−T (t,s)∥L (X∗)}< ε, (3.17)

then T admits NEDI with exponents ω̂ and bound M̂, given by Theorem 2.2.11.

Let S2 be an evolution process over X such that satisfies equation (3.16). Hence
T2(t,s) := [S2(s, t)]∗ defines an evolution process T2 over X∗ satisfying (3.17). Thus T2 ad-
mits a NEDI with exponent ω̂ > 0 and bound M̂, which finishes the first part of the proof.

Finally, we assume that X is reflexive. Let J : X → X∗∗ be the evaluation map, i.e., J is
defined by x 7→ Jx ∈ X∗∗, where ⟨x∗,Jx(x∗∗)⟩= ⟨x,x∗⟩, for every x∗ ∈ X∗. Since X is reflexive,
J is an isometric isomorphism, and S2 satisfies

S2(t,s) = J−1[S2(t,s)]∗∗J, for every t,s ∈ R. (3.18)

Now, from the first part of the proof S ∗
2 = {[S2(t,s)]∗ : t,s ∈R} admits a NEDI. Hence Theorem

3.3.2 implies that S ∗∗
2 = {[S2(t,s)]∗∗ : t,s ∈R} admits a NEDII with bound M̂, exponent ω̂ > 0,
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and family of projections {Π̂u(t) : t ∈ R}. Then, it is straightforward to verify that S2 admits a
NEDII with bound M̂ and exponent ω̂ , and projections Πu(t) = J−1Π̂u(t)J for t ∈ R, and the
proof is complete.

Remark 3.3.4. There are evolution processes such that has a NEDII with bound M2(t) = Meυ2|t|

and exponent ω2 > υ2 and admits a NEDI bound K1(t) = Meυ1|t| and exponent ω1 < υ1. For

those it is possible apply the robustness result of NEDII, Theorem 3.3.3, and it is not possible to

apply the robustness result of NEDI, Theorem 2.2.11, because of the conditions on the exponents

ω1 < δ1, see Example 3.3.5.

Therefore, we established a robustness result of NEDII that can be applied in a situation

where the robustness of NEDI, Theorem 2.2.11, cannot be applied, which emphasizes the

importance of the nonuniform exponential dichotomy of type II.

Next, we provide an example of an invertible evolution process in R, with the proprieties
describe in Remark 3.3.4.

Example 3.3.5. Let a,b,c,d > 0 with b > a and d > c. Consider the real function

f (t) =

{
−b−at sin(t), if t ≥ 0,
−d − ct sin(t), if t < 0.

Let T = {T (t,s) : t,s ∈ R} be the evolution process associated to ẋ(t) = f (t)x(t). Then, from

Example 3.2.1, it is straightforward to verify that T admits NEDII with X s
II(α2,δ ) and Πu

II = 0,

and a NEDI with X s
I (α1,δ ), and Πu

I = 0, where

α2 = min{b+a,d − c}, α1 = min{b−a,d + c} and δ = max{2a,2c}.

In particular, T satisfies condition 3.15.

Note that it is possible to choose a,b,c,d such that α2 > δ and α1 < δ , for instance:

d < 1/2, a > 1, and b ∈ (a+1,3a). Thus, for these choices, it is possible to apply the Robustness

of NEDII, namely Theorem 3.3.3, and it is not possible to apply the Robustness of NEDI, Theorem

2.2.11. Therefore, in this case, we know for sure that NEDII is persists under perturbation and

we do not know if NEDI does.

Of course, a symmetric claim holds for NEDI: there are a,b,c,d such that α1 > δ and

α2 < δ . Therefore, together, NEDI and NEDII, provides an completely analysis of existence

of an nonuniform exponential dichotomy for ẋ = f (t)x and whenever this type of nonuniform

hyperbolicity is preserved under perturbation.
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CHAPTER

4
EXPONENTIAL DICHOTOMIES FOR

NONAUTONOMOUS RANDOM DYNAMICAL
SYSTEMS

In this chapter, we introduce the notion of hyperbolicity for linear nonautonomous
random dynamical systems. This concept is expressed precisely by exponential dichotomies and
it is introduced in this nonautonomous random setting in (CARABALLO et al., 2021b). The
proofs of this chapter also are applications of Henry’s method, thus we follow the same line of
arguments of Chapter 2, and some of the arguments are included for those readers interested
only in the hyperbolicity for nonautonomous random dynamical systems.

4.1 Exponential dichotomy for nonautonomous random
dynamical systems

First, we introduce the notion of nonautonomous random dynamical systems in a metric
space (X ,d). We start with random flow defined in a probability space.

Definition 4.1.1. Let (Ω,F ,P) be a probability space. We say that a family of maps {θt : Ω →
Ω : t ∈ R} is a random flow if

1. θ0 = IdΩ;

2. θt+s = θt ◦θs, for all t,s ∈ R;

3. θt : Ω → Ω is measurable for all t ∈ R.

Definition 4.1.2. Let {θt : Ω → Ω : t ∈R} be a random flow. Define Θt(τ,ω) := (t +τ,θtω) for

each (τ,ω) ∈ R×Ω, and t ∈ R. We say that a family of maps {ψ(t,τ,ω) : X → X ;(t,τ,ω) ∈
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R+×R×Ω} is a nonautonomous random dynamical system (NRDS) or co-cycle driven by Θ

if

1. the mapping R+×Ω×X ∋ (t,ω,x) 7→ ψ(t,τ,ω)x ∈ X is measurable for each fixed τ ∈R;

2. ψ(0,τ,ω) = IdX , for each (τ,ω) ∈ R×Ω;

3. ψ(t + s,τ,ω) = ψ(t,Θs(τ,ω))◦ψ(s,τ,ω), for every t,s ≥ 0 in R, and (τ,ω) ∈ R×Ω;

4. ψ(t,τ,ω) : X → X is a continuous map for each (t,τ,ω) ∈ R+×R×Ω.

We usually denote the pair (ψ,Θ)(X ,R×Ω), or (ψ,Θ), to denote the co-cycle ψ driven by Θ.

Remark 4.1.3. We will write ωτ := (τ,ω) ∈ R×Ω, and Θt(ωτ) := (t + τ,θtω) = (θtω)τ+t .

Throughout this work we will assume that a nonautonomous random dynamical system
(ψ,Θ) satisfies

R+×X ∋ (t,x) 7→ ψ(t,ωτ)x ∈ X is continuous, for each ωτ ∈ R×Ω. (4.1)

This assumption is sensible in the applications, e.g., when the co-cycle is induced by a well-posed
stochastic/random differential equation. Hence, we can associate our co-cycle with a family of
evolution processes.

Remark 4.1.4. Let (ψ,Θ)(X ,R×Ω) be a nonautonomous random dynamical system which satisfies

(4.1). Then, for each ωτ ∈ R×Ω, we define the following evolution process

Ψωτ
:= {ψt,s(ωτ) := ψ(t − s,Θsωτ) ; t ≥ s}.

Recall the definition of strongly measurable:

Definition 4.1.5. Let Ω be a measurable space, and X a Banach space. A map P : Ω → L (X) is

said to be strongly measurable if for every x ∈ X the map Ω ∋ ω 7→ P(ω)x ∈ X is measurable.

Definition 4.1.6. A map D : T×Ω → R is said to be Θ-invariant if for each ωτ ∈ R×Ω we

have that D(Θtωτ) = D(ωτ), for every t ∈ T.

Now, we define the notion of exponential dichotomy for linear nonautonomous random
dynamical systems.

Definition 4.1.7. A nonautonomous random dynamical system (ϕ,Θ) such that ϕ(t,τ,ω) ∈
L (X), for all (t,τ,ω) ∈ T+ ×T× Ω, is said to admit an exponential dichotomy if there

exists a θ -invariant subset Ω̃ of Ω with full measure, P(Ω̃) = 1, and a family of projections,

Πs := {Πs(ωτ) : ωτ ∈ T× Ω̃} such that

1. for each τ ∈ T the map Πs
τ(·) := Πs(τ, ·) : Ω̃ → L (X) is strongly measurable;
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2. Πs(Θtωτ)ϕ(t,ωτ) = ϕ(t,ωτ)Π
s(ωτ), for every t ∈ T+ and ωτ ∈ T× Ω̃;

3. ϕ(t,ωτ) : R(Πu(ωτ))→ R(Πs(Θtωτ)) is an isomorphism, where Πu
τ := IdX −Πs

τ for all

τ ∈ T;

4. there exist Θ-invariant maps α : T×Ω → (0,+∞) and K : T×Ω → [1,+∞) such that

∥ϕ(t,ωτ)Π
s(ωτ)∥L (X) ≤ K(ωτ)e−α(ωτ )t , for every t ≥ 0;

∥ϕ(t,ωτ)Π
u(ωτ)∥L (X) ≤ K(ωτ)eα(ωτ )t , for every t ≤ 0,

for every ωτ ∈ T× Ω̃

In this case, the function K is called a bound and α an exponent for the exponential dichotomy.

We refer to the exponential dichotomy as: continuous if T := R, and discrete if T := N.

Remark 4.1.8. If for each ωp the map R ∋ t → K(Θtωp) is not constant we say that (ϕ,Θ)

admits an nonuniform (with respect to t) exponential dichotomy. In the special case when

the mapping R ∋ t → K(Θtωp) is tempered (or sub-exponential) we say that (ϕ,Θ) admits a

tempered exponential dichotomy.

Remark 4.1.9. If a co-cycle (ϕ,Θ) admits an exponential dichotomy, then for each fixed

ωp ∈ T× Ω̃ the associated evolution process Φωp also admits it in the sense of (HENRY, 1981,

Section 7.6).

Indeed, let Πs be a family of projections associated with the exponential dichotomy, then

for each fixed ωp ∈ T× Ω̃ define Pt(ωp) := Πs(Θtωp), for every t ∈ T. Thus

1. for every t,s ∈ T with t ≥ s we have

Pt(ωp)ϕt,s(ωp) = Π
s(Θt−sΘsωp)ϕ(t − s,Θsωp)

= ϕ(t − s,Θsωp)Π
s(Θsωp)

= ϕt,s(ωp)Ps(ωp).

2. if Q = IdX −P and Πu = IdX −Πs, then ϕt,s(ωp)|R(Qs(ωp)) = ϕ(t − s,Θsωp)|R(Πu(Θsωp)) is

an isomorphism for all t ≥ s in T.

3. Finally,

∥ϕ(t − s,Θsωp)Π
s(Θsωp)∥L (X) ≤ K(Θsωp)e−α(ωp)(t−s), for every t ≥ s; (4.2)

∥ϕ(t − s,Θsωp)Π
u(Θsωp)∥L (X) ≤ K(Θsωp)eα(ωp)(t−s), for every t ≤ s, (4.3)

where K :T×Ω̃→ [1,+∞) is the bound of the exponential dichotomy, which is Θ-invariant,

i.e., K(Θsωp) = K(ωp).
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The interpretation of a nonautonomous random dynamical system as a family of evolution
processes with a parameter provides also a special function usually called as Green’s function:

Definition 4.1.10. Let (ϕ,Θ) be a co-cycle which admits an exponential dichotomy with family

of projections Πs. A Green’s function associated to (ϕ,Θ) and family of projection Πs is given

by

Gωp(t,s) =

{
ϕt,s(ωp)Π

s(Θsωp), if t ≥ s,

−ϕt,s(ωp)Π
u(Θsωp), if t < s,

for each ωp fixed.

4.2 Exponential dichotomy for NRDS: discrete case

In this section, we study a discrete nonautonomous random dynamical system with expo-
nential dichotomy. The goal is to present a summary of results concerning exponential dichotomy
for discrete co-cycles driving by flows over non-compact symbols spaces that we are going to
need in order to establish robustness results of hyperbolicity for differential equations. We prove
that the property of admitting a discrete exponential dichotomy is stable under perturbation
(Theorem 4.2.5), a type of admissibility result (Theorem 4.2.2), and uniqueness and continuous
dependence of projections (see Corollary 4.2.3 and Theorem 4.3.6, respectively).

The techniques presented in this section are the same used in (HENRY, 1981) for
deterministic dynamical systems and in (ZHOU; LU; ZHANG, 2013) for random dynamical
systems.

A linear discrete nonautonomous random dynamical systems (ϕ,Θ) can be associated
with nonautonomous random difference equations. In fact, for each ωp ∈ Z×Ω we study

xn+1 = A(Θnωp)xn, xn ∈ X and n ∈ Z, (4.4)

where A : T×Ω → L (X) and ϕ(n,ωp) := A(Θn−1ωp)◦ · · · ◦A(ωp) for n > 0 and ϕ(0,ωp) =

IdX .

Theorem 4.2.1. Assume that a nonautonomous random dynamical system (ϕ,Θ) admits an

exponential dichotomy with bound K and exponent α . Let ωp ∈ Z×Ω be fixed and f be a

sequence in l∞(Z). Then

xn+1 = A(Θnωp)xn + fn, xn ∈ X and n ∈ Z, (4.5)

possesses a unique bounded solution x(·,ωp) given by

x(n,ωp) =
+∞

∑
−∞

Gωp(n,k+1) fk, ∀ n ∈ Z.



4.2. Exponential dichotomy for NRDS: discrete case 69

Proof. Let ωp be an arbitrary parameter in Z× Ω̃. First fix n ∈ Z, take m < n and write

xn = ϕn,m(ωp)xm +
n−1

∑
k=m

ϕn,k+1(ωp) fk.

Then apply Πs(Θnωp) in this equation and note that the term ϕn,m(ωp)Π
s(Θmωp)xm satisfies

∥ϕn,m(ωp)Π
s(Θmωp)xm∥X ≤ K(ωp)e−α(ωp)(n−m)∥xm∥X .

Therefore, if {xn}n∈Z is a bounded sequence, this last term goes to zero when m →−∞. Thus,
we have that for each n ∈ Z

Π
s(Θnωp)xn =

n−1

∑
k=−∞

ϕn,k+1(ωp)Π
s(Θk+1ωp) fk.

Analogously, take now r > n and write

xr = ϕr,n(ωp)xn +
r

∑
k=n

ϕn,k+1(ωp) fk,

Then apply the projection Πu(Θrωp) and use the inverse operator ϕn,r(ωp) to obtain

Π
u(Θnωp)xn = ϕn,r(ωp)Π

u(Θrωp)xr −
r

∑
k=n

ϕn,k+1(ωp)Qk+1 fk,

and now just notice that

∥ϕn,r(ωp)Π
u(Θrωp)xr∥X ≤ K(ωp)eα(ω)(n−r)∥xr∥X . (4.6)

Again, as {xn}n∈Z is bounded, this last term goes to zero as r →+∞. Consequently,

Π
u(Θnωp)xn =−

+∞

∑
k=n

ϕn,k+1(ωp)Π
u(Θk+1ωp) fk.

Thus, for each n ∈ Z,

xn = Π
s(Θnωp)xn +Π

u(Θnωp)xn =
+∞

∑
−∞

Gωp(n,k+1) fk.

Therefore, if x is a bounded solution of (4.5) then xn = ∑
+∞
−∞ Gωp(n,k+1) fk. Conversely, it is

easy to see that xn(ωp) := ∑
+∞
−∞ Gωp(n,k+1) fk is a solution for (4.5) for every ωp. Finally, we

have that

∥xn(ωp)∥X ≤
n−1

∑
k=−∞

∥ϕn,k+1(ωp)Π
s(Θk+1ωp) fk∥X +

+∞

∑
k=n

∥ϕn,k+1(ωp)Π
u(Θk+1ωp) fk∥X

≤ ∥ f∥l∞K(ωp)

[
n−1

∑
k=−∞

e−α(ωp)(n−k−1)+
+∞

∑
k=n

eα(ωp)(n−k−1)

]
.

Therefore, for every n ∈ Z

∥xn(ωp)∥X ≤ ∥ f∥l∞K(ωp)
1+ e−α(ωp)

1− e−α(ωp)
,

and the existence and uniqueness of a bounded solution for (4.5) is ensured. The proof is
complete.
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We prove existence of solutions for the non-homogeneous problem

xn+1 = A(Θnωp)xn +B(Θnωp)xn + fn, for every n ∈ Z. (4.7)

Theorem 4.2.2. Let (ϕ,Θ) be a co-cycle generated by A : Z×Ω → L (X) and assume that it

admits an exponential dichotomy with bound K and exponent α . Then there exists a Θ-invariant

map δ with

0 ≤ δ (ωp)<
1− e−α(ωp)

1+ e−α(ωp)
, for each ωp ∈ Z×Ω,

for which, if B : Z×Ω → L (X) satisfies

∥B(Θkωp)∥L (X) ≤ δ (ωp)K(ωp)
−1,∀k ∈ Z, (4.8)

then, for each ωp fixed and { fn} ∈ l∞(Z) the difference equation

xn+1 = A(Θnωp)xn +B(Θnωp)xn + fn, for every n ∈ Z, (4.9)

possesses a unique bounded solution x(·,ωp).

Proof. Let ωp ∈Z×Ω̃ and f ∈ l∞(Z). As a standard procedure, see for instance (HENRY, 1981;
ZHOU; LU; ZHANG, 2013), we only need to prove that the operator

(Γ f x)(n,ωp) :=
+∞

∑
k=−∞

Gωp(n,k+1)(B(Θkωp)xk + fk), ∀n ∈ Z

has a unique fixed point x(·,ωp) in l∞(Z).

First, let us prove that Γ f x(·,ωp) ∈ l∞(Z), for x ∈ l∞(Z).

∥(Γ f x)(n,ωp)∥X ≤
+∞

∑
k=−∞

∥Gωp(n,k+1)∥L (X)(∥B(Θkωp)∥L (X) ∥xk∥X +∥ fk∥X)

≤
+∞

∑
k=−∞

K(Θk+1ωp)e−α(ωp)|n−1−k|(δ (ωp)K(ω)−1∥xk∥X +∥ fk∥X)

≤
+∞

∑
k=−∞

e−α(ωp)|n−1−k|(δ (ωp)∥x∥l∞ +∥ f∥l∞K(ωp))

≤ 1+ e−α(ωp)

1− e−α(ωp)
(δ (ωp)∥x∥l∞ +∥ f∥l∞K(ωp))<+∞.

Then, Γ f (·,ωp)(l∞(Z))⊂ l∞(Z). Finally, if x,y ∈ l∞(Z), we have that

∥(Γ f x)(n,ωp)− (Γ f y)(n,ωp)∥X

≤
+∞

∑
k=−∞

∥Gωp(n,k+1)∥L (X) ∥B(Θkωp∥L (X)∥xk − yk∥X

≤
+∞

∑
k=−∞

K(Θk+1ωp)e−α(ωp)|n−1−k|
δ (ωp)K(ωp)

−1∥xk − yk∥X

≤ 1+ e−α(ωp)

1− e−α(ωp)
δ (ωp)∥x− y∥l∞.
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Therefore,

∥Γ f x(·,ωp)−Γ f y(·,ωp)∥l∞ ≤ 1+ e−α(ωp)

1− e−α(ωp)
δ (ωp)∥x− y∥l∞ ,

thus, we choose δ (ωp) <
1−e−α(ωp)

1+e−α(ωp) , thus Γ f (·,ωp) is a contraction in l∞(Z). In this way, we
obtain x ∈ l∞(Z) such that xn(ωp) = (Γ f x)(n,ωp) for each n ∈ Z, in other words, x(·,ωp) is the
only solution for (4.9).

The following corollary establishes uniqueness for the family of projections.

Corollary 4.2.3. If (ϕ,Θ) admits an exponential dichotomy, then the family of projections are

uniquely determined.

Proof. Let Πu,(i), for i = 1,2, be projections associated with an exponential dichotomy of (ϕ,Θ).

Given ωp ∈ Z× Ω̃ and z ∈ X , define fn = 0, for all n ̸=−1, and f−1 = z. From Theorem
4.2.2 with B = 0, there exists {x(n,ωp) : n ∈ Z} the unique bounded solution of

xn+1(ωp) = A(Θnωp)xn + fn, n ∈ Z.

From the proof of Theorem 4.2.2 (with B = 0), we know that this solution is given by

xn(ωp) =
+∞

∑
k=−∞

G(i)
ωp(n,k+1) fk, for i = 1,2, (4.10)

where G(i) is the Green’s function associated with Πu,(i), for i = 1,2. By uniqueness of the
solution, we must have that x0(ωp) = ∑

+∞
−∞ G(i)

ωp(0,k+ 1) fk = G(i)
ωp(0,0) f−1 = Πu,(i)(ωp)z, for

i = 1,2. Therefore, Πu,(1)(ωp) = Πu,(2)(ωp) for all ωp ∈ T× Ω̃.

For later, we will need a type of Grönwall’s inequality, see (BARREIRA; SILVA; VALLS,
2009b) for a proof.

Lemma 4.2.4. Let a and D be positive constants and γ,δ nonnegative constants. Suppose that

u := {un}n∈J is a nonnegative bounded sequence on J= Z+
N (or Z−

N ), such that

un ≤ γDe−a(n−N)+δD
+∞

∑
k=N

e−a|n−k−1|uk, n ∈ J= Z+
N ,

( or un ≤ γDe−a(n−N)+δD
N−1

∑
k=−∞

e−a|n−k−1|uk, n ∈ J= Z−
N ,)

where δ < D−1(1− e−a)/(1+ e−a).

Then

un ≤
γD

1−δDe−a/(1− e−(a+ã))
e−ã(n−N), n ∈ J= Z+

N ,

( or un ≤
γD

1−δDe−b̃/(1− e−(a+b̃))
e−b̃(N−n), n ∈ J= Z−

N ),

where ã :=− ln(cosha− [cosh2 a−1−2δ sinha]1/2) and b̃ := ã+ ln(1+2δDsinha).
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Now, we prove a robustness result of exponential dichotomies for nonautonomous random
dynamical systems.

Theorem 4.2.5. Let (ψ,Θ) be a discrete nonautonomous random dynamical system with an

exponential dichotomy with bound K and exponent α . There exists a Θ-invariant map with

0 ≤ δ (ωp)<
1− e−α(ωp)

1+ e−α(ωp)
, for each ωp ∈ Z×Ω,

for which, if (ϕ,Θ) is a discrete nonautonomous random dynamical system such that

sup
n∈N

{K(ωp)∥ψ(1,Θnωp)−ϕ(1,Θnωp)∥L (X)} ≤ δ (ωp), (4.11)

then (ϕ,Θ) admits an exponential dichotomy with bound

M(ωp) := K(ωp)

(
1+

δ (ωp)

(1−ρ(ωp))(1− e−α(ωp))

)
max{D1(ωp),D2(ωp)},

and exponent

α̃(ωp) :=− ln(coshα(ωp)− [cosh2
α(ωp)−1−2δ (ωp)sinhα(ωp)]

1/2),

where
ρ(ωp) := δ (ωp)(1+ e−α(ωp))/(1− e−α(ωp)),

D1(ωp) := [1−δ (ωp)e−α(ωp)/(1− e−α(ωp)−α̃(ωp))]−1,

D2(ωp) := [1−δ (ωp)e−β̃ (ωp)/(1− e−α(ωp)−β̃ (ωp))]−1,

β̃ (ωp) := α̃(ωp)+ ln(1+2δ (ωp)sinhα(ωp))

To prove Theorem 4.2.5 we first prove a lemma that provides a decomposition of the
space X associated with the linear nonautonomous random dynamical system generated by the
perturbed homogeneous problem (4.7).

Lemma 4.2.6. Assume conditions of Theorem 4.2.2 are satisfied. Then, for each ωp ∈ Z× Ω̃, X

admits a decomposition

X =V+(ωp)
⊕

V−(ωp).

Furthermore, ψ(n,ωp)V+(ωp)⊂V+(Θnωp), ψ(n,ωp)V−(ωp) =V−(Θnωp) and

ψ(n,ωp)|V−(ωp) is an isomorphism for each n ≥ 0, where (ψ,Θ) is the co-cycle associated with

A+B in problem (4.7).

Proof. Thanks to Theorem 4.2.2, there exists a Θ-invariant measurable map δ such that for each
perturbation satisfying (4.8), the pair (l∞(Z), l∞(Z)) is admissible for (4.9), for each ωp ∈ Z× Ω̃.

Hence, take (ψ,Θ) a co-cycle satisfying (4.11) and let B(ωp) := ψ(1,ωp)−ϕ(1,ωp)

be a linear bounded perturbation and consider problem (4.7). Also, for each ωp we define the
evolution process Ψωp := {ψn,m(ωp) : n ≥ m} associated with (ψ,Θ).
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Define the following sets

V+(ωp) := {z ∈ X ; sup
n∈N

∥ψ(n,ωp)z∥L (X) <+∞},

V−(ωp) := {z ∈ X ; there is a backwards bounded solution for Ψωp through z}.

These are the candidates to be the subspaces that provide the desired decomposition. We prove
this fact in four steps.

Step 1: V+(ωp) and V−(ωp) are closed subspaces, for each ωp ∈ Z× Ω̃.

First, note that as ψ(n,ωp) is a bounded linear operator it follows that for each ωp fixed
we have that V+(ωp) is a subspace of X . We prove now that it is closed. Let z ∈V+(ωp), then
xn(ωp) := ψ(n,ωp)z is a bounded solution of (4.7) for n ∈ N. Then x(·,ωp) satisfies

xn(ωp) = ϕ(n,ωp)Π
s(ωp)z+

n−1

∑
k=0

ϕ(n− k−1,Θk+1ωp)Π
s(θk+1ωp)B(Θkωp)xk(ωp)

+
+∞

∑
k=n

ϕ(n− k−1,Θk+1ωp)Π
u(θk+1ωp)B(Θkωp)xk(ωp), n ∈ N.

Hence

∥xn(ωp)∥X ≤ K(ωp)e−α(ωp)n∥z∥X +δ (ωp)
+∞

∑
k=0

e−α(ωp)|n−1−k|∥x(k,ωp)∥X , n ∈ N.

Since δ (ωp)≤ (1− e−α(ωp))/(1+ e−α(ωp)), by Lemma 4.2.4, we obtain

∥xn(ωp)∥X ≤
K(ωp)∥z∥X

1−δ (ωp)e−α(ωp)/(1− eα(ωp)+α̃(ωp))
e−α(ωp)n, n ∈ N.

Let {z j} j∈N be a sequence in V+(ωp) such that z j → z as j →+∞. Note that

∥ψ(n,ωp)z j∥X ≤ K(ωp)D1(ωp)e−α(ωp)n∥z j∥X , n ∈ N,

Then
∥ψ(n,ω)z∥X ≤ D1(ωp)K(ωp)e−α(ωp)n∥z∥X , for n ∈ N,

and therefore z ∈V+(ωp). Thus V+(ωp) is closed for each ωp ∈ Z× Ω̃.

Now we show that V−(ωp) is a closed subspace. Note that, since ψ(n,ωp) is a linear
operator for all n ∈ N, it follows that V−(ωp) is subspace of X . Let us prove that it is closed; it
will be very similar to the proof for V+(ωp) and, for this reason, some steps will be omitted. We
claim that each z ∈V−(ωp) satisfies

∥ξ (n)∥X ≤ D2(ωp)K(ωp)eβ̃ (ωp)n∥z∥X , n ≤ 0, (4.12)

where ξ is a backwards bounded solution of Ψωp := {ψ(t − s,Θsωp)} through z, D2, and β̃ are
in Theorem 4.2.5. Indeed, note that

ξ (n) = ϕ(n,ωp)Π
u(ωp)z−

−1

∑
k=n

ϕ(n− k−1,Θk+1ωp)Π
u(θk+1ωp)B(Θkωp)ξ (k)

+
n−1

∑
k=−∞

ϕ(n− k−1,Θk+1ωp)Π
s(θk+1ωp)B(Θkωp)ξ (k).



74 Chapter 4. Exponential dichotomies for nonautonomous random dynamical systems

Thus

∥ξ (n)∥X ≤ K(ωp)eα(ωp)n∥z∥X +δ (ωp)
−1

∑
k=−∞

e−α(ωp)|n−1−k|∥ξ (k)∥X , n ≤ 0,

and Lemma 4.2.4 implies (4.12). Then, for a sequence {z j} j∈Z in V−(ωp) such that z j → z as
j →+∞, we will show that z ∈V−(ωp). In fact, for each j ∈N there exists a backwards bounded
solution ξ j of Ψωp such that ξ j(0) = z j. Thanks to (4.12) it is possible to construct a backwards
solution ξ through z, such that ξ (n) = lim j→+∞ ξ j(n) for each fixed n ≤ 0.

To see that z ∈V−(ωp) we have to show that ξ is bounded. In fact, for all fixed n ≤ 0
we have

∥ξ (n)∥X ≤ ∥ξ (n)−ξ j(n)∥X +∥ξ j(n)∥X

≤ ∥ξ (n)−ξ j(n)∥X +K(ωp)D2(ωp)eβ̃ (ωp)n∥z j∥X ,

which yields to
∥ξ (n)∥X ≤ K(ωp)D2(ωp)eβ̃ (ωp)n∥z∥X , n ≤ 0,

and concludes the proof of the first step.

Step 2: V+(ωp) is positively invariant and V−(ωp) is invariant.

Note that if z ∈V+(ωp), then {ψ(k,ωp)z}k∈N is a bounded sequence, then for a fixed
m ≥ 0, by the co-cycle property

ψ(k,Θmωp)ψ(m,ωp)z = ψ(m+ k,ωp)z

is an element of the bounded sequence {ψ(k,ωp)z}k∈N for each k > 0, and therefore is also
bounded. Thus

ψ(m,ωp)z ∈V+(Θmωp), and ψ(m,ωp)V+(ωp)⊂V+(Θmωp).

Let us prove now that ψ(k,ωp)V−(ωp)⊂V−(Θkωp), for all k ≥ 0. Let z ∈V−(ωp) and
ξ a backwards bounded solution of Ψωp such that ξ (0) = z.

For fixed k ≥ 0 define z̃ = ψ(k,ωp)z and

ξ̃ (n) =

{
ψ(n,ωp)z, if n ∈ {0,1, · · · ,k}
ξ (n), if n ≤ 0.

Notice that ξ̃ is a backwards bounded solution for ΨΘkωp and ξ̃ (k) = z̃, which implies that
z̃ ∈V−(Θkωp).

Now, let z ∈V−(Θkωp), then there is ξ̂ a backwards bounded solution for Ψθkωp such
that ξ̂ (0) = z. In particular

z = ψ0,−k(Θkωp)ξ̂ (−k) = ψ(k,ωp)ξ̂ (−k),
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thus it is enough to prove that ξ̂ (−k) ∈V−(ωp). Define ξ (n) := ξ̂ (n− k) for n ≤ 0. It is clear
that ξ is a backwards bounded solution for Ψωp and through ξ̂ (−k). By definition we conclude
that ξ̂ (−k) ∈V−(ωp) and Step 2 is complete.

Step 3: X =V+(ωp)⊕V−(ωp).

Let z ∈V+(ωp)∩V−(ωp). Then by the definition of these subspaces we see that there is
a bounded global solution ξ for Ψωp through z. On the other hand, applying Theorem 4.2.2 with
f = 0, we know that the only complete bounded solution is the ξ = 0, thus by uniqueness we
have that ξ (n) = 0, for all n ∈ Z, in particular z = 0. Then V+(ωp)∩V−(ωp) = {0}.

Let z ∈ X and define fn = 0 for all n ̸=−1, and f−1 = z/K(ωp). Thus by Theorem 4.2.2
there exists x(·,ωp) = {xn(ωp)}n∈Z ∈ l∞(Z) the solution of (4.7). This solution satisfies for
n ≥ m

xn(ωp) = ψn,m(ωp)xm(ωp)+
n−1

∑
k=m

ψ(n− k−1,Θk+1ωp) fk.

Rewriting this we obtain

xn(ωp) = ψ(n,ωp)x0(ωp), n ≥ 0,

x0(ωp) = ψ(1,Θ−1ωp)x−1(ωp)+ z/K(ωp),

xn(ωp) = ψn,m(ωp)xm, m ≤ n ≤−1.

Thus, since x is bounded, we see that x0(ωp) ∈V+(ωp).

Note that ψ(1,Θ−1ωp)x−1(ωp)∈V−(ωp). In fact, define ξ (0) := x0(ωp)−z/K(ωp) and
ξ (n) := xn(ωp) for n≤−1. Then ξ is a backwards bounded solution through ψ(1,Θ−1ωp)x−1(ωp)=

x0(ωp)− z/K(ωp), which means that x0(ωp)− z/K(ωp) ∈V−(ωp).

Therefore,

z = x0(ωp)K(ωp)− (x0(ωp)K(ωp)− z) ∈V+(ωp)+V−(ωp),

which completes the proof of Step 3.

Step 4: ψ(m,ωp)|V−(ωp) : V−(ωp)→V−(Θmωp) is an isomorphism, for m ≥ 0.

By Step 2, we already have that ψ(m,ωp)|V−(ωp) is surjective, so now we show that
is injective. Given z ∈ V−(ωp), then from the proof of Step 2, we know that there exists a
backwards bounded solution ξ̃ of ΨΘmωp such that ξ̃ (0) = ψ(m,ωp)z and ξ̃ (−m) = z. Thus,
from (4.12)

∥ξ̃ (n)∥X ≤ D2(ωp)K(Θmωp)eβ̃ (ωp)m∥ψ(m,ωp)z∥X , n ≤ 0.

In particular,

∥z∥X ≤ D2(ωp)K(Θmωp)e−β̃ (ωp)m∥ψ(m,ωp)z∥X .

Hence, ψ(m,ωp)|V−(ωp) is injective, and the proof of the lemma is complete.
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Now, we are ready to prove our result on the robustness of exponential dichotomies for
discrete nonautonomous random dynamical systems.

Proof of Theorem 4.2.5. From Lemma 4.2.6, for each ωp ∈ Z× Ω̃, we have X = V+(ωp)⊕
V−(ωp), so define Π̃s(ωp) as the projection from X onto V+(ωp), and Π̃u(ωp) := IdX − Π̃s(ωp).
By the invariance of V−(ωp) and positively invariance of V+(ωp) we have that

ψ(n,ωp)Π̃
s(ωp) = Π̃

s(Θnωp)ψ(n,ωp), for all n ∈ N.

Again, by Lemma 4.2.6, ψ(n,ωp)|R(Π̃u(ωp))
is an isomorphism and we define

ψ(−n,Θnωp) as the inverse of the map ψ(n,ωp)|V−(ωp).

Let z ∈ X and define fn = 0 for all n ̸=−1, and f−1 = z/K(ωp). Then Equation (4.9) has
a unique bounded solution x(·,ωp), with xn(ωp)∈V+(Θnωp) for all n ∈N, xn(ωp)∈V−(Θnωp)

for all n ≤−1, and x0(ωp)− z/K(ωp) ∈V−(ωp). Note that

xn(ωp) =
1

K(ωp)
ψ(n,ωp)Π̃

s(ωp)z, for all n ∈ N, (4.13)

and

xm(ωp) =
−1

K(ωp)
ψ(m,ωp)Π̃

u(ωp)z, for all m ≤−1. (4.14)

Now, since x(·,ωp) is a solution of xn+1 = A(Θnωp)xn +B(Θnωp)xn + fn, for all n ∈ Z
we have that

xn(ωp) = Gωp(n,0) f−1 +
+∞

∑
−∞

Gωp(n,k+1)B(Θkωp)xk(ωp),

where G is the Green’s function associated with the co-cycle (ϕ,Θ) and family of projections
Πs. Hence,

∥xn(ωp)∥X ≤ e−α(ωp)|n|∥z∥X +
+∞

∑
−∞

K(ωp)e−α(ωp)|n−k−1|∥B(Θkωp)∥L (X)∥xk(ωp)∥X

≤ e−α(ωp)|n|∥z∥X +∥x(·,ωp)∥l∞(Z)δ (ωp)
1+ e−α(ωp)

1− e−α(ωp)
.

Thus,

∥x(·,ωp)∥l∞(Z) ≤
∥z∥X

1−ρ(ωp)
,

where ρ(ωp) = δ (ωp)(1+ e−α(ωp))/(1− e−α(ωp)). In particular, from (4.13)

∥ψ(n,ωp)Π̃
s(ωp)z∥X ≤

K(ωp)

1−ρ(ωp)
∥z∥X , n ≥ 0, (4.15)

and from (4.14)

∥ψ(m,ωp)Π̃
u(ωp)z∥X ≤

K(ωp)

1−ρ(ωp)
∥z∥X , m ≤−1. (4.16)
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Now, we use (4.16) to obtain a better estimate than (4.15) for the norm of ψ(n,ωp)Π̃
s(ωp).

Since Π̃s(ωp)z ∈V+(ωp), we know that ψ(n,ωp)Π̃
s(ωp)z defines a bounded solution for

xn+1(ωp) = A(Θnωp)xn(ωp)+B(Θnωp)xn(ωp), n ≥ 0,

and since Π̃u(ωp)z ∈V−(ωp), there exists ξ : (−∞,0]∩Z→ X backwards bounded solution of
Ψωp such that ξ (0) = Π̃u(ωp)z. In particular, ξ (n) := ψ(n,ωp)Π̃

u(ωp)z, for n ≤−1. Hence

ψ(n,ωp)Π̃
s(ωp)z = ϕ(n,ωp)Π

s(ωp)Π̃
s(ωp)z

+
+∞

∑
k=0

Gωp(n,k+1)B(Θkωp)ψ(k,ωp)Π̃
s(ωp)z, n ≥ 0,

and

ψ(n,ωp)Π̃
u(ωp)z = ϕ(n,ωp)Π

u(ωp)Π̃
u(ωp)z

+
−1

∑
k=−∞

Gωp(n,k+1)B(Θkωp)ψ(k,ωp)Π̃
u(ωp)z, n ≤ 0.

For n = 0 we obtain

Π̃
u(ωp)z = Π

u(ωp)Π̃
u(ωp)z (4.17)

+
−1

∑
k=−∞

ϕ(−k−1,Θk+1ωp)Π
s(Θk+1ωp)B(Θkωp)ψ(k,ωp)Π̃

u(ωp)z. (4.18)

Thus

ψ(n,ωp)Π̃
s(ωp)z = ϕ(n,ωp)Π

s(ωp)z−ϕ(n,ωp)Π
s(ωp)Π̃

u(ωp)z

+
+∞

∑
k=0

Gωp(n,k+1)B(Θkωp)ψ(k,ωp)Π̃
s(ωp)z, n ≥ 0,

hence, from (4.17)

ψ(n,ωp)Π̃
s(ωp)z = ϕ(n,ωp)Π

s(ωp)z

−
−1

∑
k=−∞

ϕ(n− k−1,Θk+1ωp)Π
s(Θk+1ωp)B(Θkωp)ψ(k,ωp)Π̃

u(ωp)z

+
+∞

∑
k=0

Gωp(n,k+1)B(Θkωp)ψ(k,ωp)Π̃
s(ωp)z, n ≥ 0.

Thus, from (4.16)

∥ψ(n,ωp)Π̃
s(ωp)∥L (X) ≤ K(ωp)

(
1+

δ (ωp)

(1−ρ(ωp))(1− eα(ωp))

)
e−α(ωp)n

+ δ (ωp)
+∞

∑
k=0

e−α(ωp)|n−k−1|∥ψ(k,ωp)Π̃
s(ωp)∥L (X), n ≥ 0.

Again, from (4.16) we have that

∥ψ(n,ωp)Π̃
s(ωp)∥L (X) ≤ K1(ωp) := 1+K(ωp)/(1−ρ(ωp)), ∀n ≥ 0.
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Hence, un := K1(ωp)
−1∥ψ(n,ωp)Π̃

s(ωp)∥L (X) is uniformly bounded for each n ≥ 0 and ωp.
Thus,

un ≤
K(ωp)

K1(ωp)

[
1+

δ (ωp)

(1−ρ(ωp))(1− e−α(ωp))

]
e−α(ωp)n +δ (ωp)

+∞

∑
k=0

e−α(ωp)|n−k−1|uk.

Then, by Lemma 4.2.4

∥ψ(n,ωp)Π̃
s(ωp)∥L (X) ≤

K(ωp)

[
1+ δ (ωp)

(1−ρ(ωp))(1−e−α(ωp))

]
1−δ (ωp)e−α(ωp)/(1− e−α(ωp)−α̃(ωp))

e−α̃(ωp)n, n ≥ 0.

Similarly, we use (4.15) and

ψ(n,ωp)Π̃
u(ωp)z = ϕ(n,ωp)Π

u(ωp)z

+
+∞

∑
k=0

ϕ(n− k−1,Θk+1ωp)Π
u(Θk+1ωp)B(Θkωp)ψ(k,ωp)Π̃

s(ωp)z

+
−1

∑
k=−∞

Gωp(n,k+1)B(Θkωp)ψ(k,ωp)Π̃
u(ωp)z, n ≤ 0

to obtain

∥ψ(n,ωp)Π̃
u(ωp)∥L (X) ≤ K(ωp)

(
1+

δ (ωp)e−α(ωp)

(1−ρ(ωp))(1− eα(ωp))

)
eα(ωp)n

+δ (ωp)
−1

∑
k=−∞

e−α(ωp)|n−k−1|∥ψ(k,ωp)Π̃
u(ωp)∥L (X), n ≤ 0;

and from Lemma 4.2.4

∥ψ(n,ωp)Π̃
u(ωp)∥L (X) ≤

K(ωp)

[
1+ δ (ωp)e−α(ωp)

(1−ρ(ωp))(1−e−α(ωp))

]
1−δ (ωp)e−β̃ (ωp)/(1− e−α(ωp)−β̃ (ωp))

eβ̃ (ωp)n, n ≤ 0.

Finally, we prove that, for each p ∈ Z, the operator Πs(p, ·) : Ω → L (X) is strongly
measurable. Note that

G̃ωp(n,0)z = Gωp(n,0)z+
+∞

∑
k=−∞

Gωp(n,k+1)B(Θkωp)G̃ωp(k,0)z,∀n ∈ Z, z ∈ X , (4.19)

where G̃ is the Green’s function of (ψ,Θ) and family of projection Π̃s. Let T (ω, p,z) be the
operator defined on l∞(Z) by

T (ω, p,z)gn := Gωp(n,0)z+
+∞

∑
k=−∞

Gωp(n,k+1)B(Θkωp)gk.

Note that T (ω, p,z) has a unique fixed point g ∈ l∞(Z), and from (4.19) we know that g =

{G̃ωp(n,0)z}n∈Z. Moreover, since T (·, p,z) is (F ,B(X))-measurable and {G̃ωp(n,0)z}n∈Z is a
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limit of the iteration of T (·, p,z) starting at 0 ∈ l∞(Z) we conclude that {G̃(p,·)(n,0)z}n∈Z is a
(F ,B(X))-measurable sequence, which implies that Πs(p, ·) is strongly measurable.

Therefore (ψ,Θ) admits an exponential dichotomy on a Θ-invariant subset Ω̃ of full
measure with projection Π̃s, exponent α̃ , and bound K̃.

Our proof of Theorem 4.2.5 follows the same line of arguments of Theorem 1 presented
in (ZHOU; LU; ZHANG, 2013). One of the differences is that we use the evolution processes
Φωp associated with a given co-cycle ϕ , see Remark 4.1.4. This simple fact provides fundamental
ideas for the proof on the continuous case (Subsection 4.3), and makes the writing much simpler
in the discrete case.

Remark 4.2.7. Actually, the proof of (ZHOU; LU; ZHANG, 2013, Theorem 1) works for any

co-cycle defined of a non-compact symbol space. In fact, let ϕ be a linear co-cycle driving by a

flow Σ×Ω ∋ (σ ,ω) 7→ Θt(σ ,ω) = (θ 1
t σ ,θ 2

t ω), where θ 1
t : Σ → Σ is a flow in a metric space Σ

and θ 2
t : Ω → Ω is a random flow, and t ∈ Z. Then, following the ideas of (ZHOU; LU; ZHANG,

2013), it is possible to provide a suitable definition of tempered exponential dichotomy for a

general linear co-cycle (ϕ,Θ)(X ,Σ×Ω) and to prove a robustness result for it.

In our case, we choose to deal with the case where the bound K is Θ-invariant because

we want to understand the effect of a bounded noise on the hyperbolicity of an autonomous

problem, and therefore it is not expected to obtain tempered exponential dichotomies.

Remark 4.2.8. We provide explicit expressions for the bound K̃ and exponent α̃ for the obtained

exponential dichotomy. This can also be done in the continuous case.

Now, we prove a continuous dependence result of the projections associated with expo-
nential dichotomy for co-cycle.

Theorem 4.2.9 (Continuous dependence of projections). Suppose that (ϕ,Θ) and (ψ,Θ) are

nonautonomous random dynamical systems and that admit an exponential dichotomy with

projections Πs
ϕ and Πs

ψ , exponents αϕ and αψ , respectively, with the same bound K. If

sup
n∈Z

{K(ωp)∥ϕn(ωp)−ψn(ωp)∥L (X)} ≤ ε,

then

sup
n∈Z

∥Π
s
ϕ(Θnωp)−Π

s
ψ(Θnωp)∥L (X) ≤

e−αψ (ωp)+ e−αϕ (ωp)

1− e−(αψ (ωp)+αϕ (ωp))
ε.

Proof. Let z ∈ X , ω ∈ Ω̃, and m, p ∈ Z be fixed and consider

fn(ωp) =

{
0, if n ̸= m−1,
z, if n = m−1.

Thus by Theorem 4.2.2 for each ωp ∈Z×Ω̃ there exists a bounded solution x(ωp)= {xn(ωp)}n∈Z

given by x j
n(ωp) := G j

ωp(n,m)z−1 for j = ϕ,ψ . Note that

xϕ

n+1 −ψn(ωp)xϕ
n = ϕn(ωp)xϕ

n −ψn(ωp)xϕ
n + fn(ωp)
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and xψ

n+1 −ψn(ωp)x
ψ
n = fn(ωp). Then, if zn := xϕ

n − xψ
n we obtain that zn+1 = ϕnzn + yn, where

yn := (ϕn(ωp)− ψn(ωp)x
ϕ
n (ωp) for all n ∈ Z. Thanks to the boundedness of the sequence

{xϕ
n (ωp)}n∈Z and by the hypotheses on ϕn − ψn we have that {yn}n∈Z is bounded and by

Theorem 4.2.2 we have that

zn =
∞

∑
k=−∞

Gψ

ωp(n,k+1)(ωp)(ϕk(ωp)−ψk(ωp))G
ϕ

ωp(k,m)z

and therefore, by the hypotheses on Ψ−Φ, we deduce

∥zm∥X ≤
∞

∑
k=−∞

K(ωp)e−αψ (ωp)|m−k−1|e−αψ (ωp)|k−m|∥ϕk(ωp)−ψk(ωp)∥L (X)∥z∥X

≤ e−αψ (ωp)+ e−αϕ (ωp)

1− e−(αψ (ωp)+αϕ (ωp))
ε ∥z∥X .

The definition of z in m yields

zm = xϕ
m − xψ

m = (Gϕ

ωp(m,m)−Gψ

ωp(m,m))z = (Πs
ϕ(Θmωp)−Π

s
ψ(Θmωp))z.

Consequently,

∥(Πs
ϕ(Θmωp)−Π

s
ψ(Θmωp))z∥X ≤ e−αψ (ωp)+ e−αϕ (ωp)

1− e−(αψ (ωp)+αϕ (ωp))
ε ∥z∥X ,

which concludes the proof of the theorem.

4.3 Exponential dichotomy: continuous case

We study exponential dichotomies for a continuous nonautonomous random dynamical
system (ϕ,Θ). Our goal is to prove a robustness result for nonautonomous random dynamical
systems that possesses a uniform exponential dichotomy. This section follows closely the ideas of
(CHOW; LEIVA, 1995b). However, while they consider a driving flow θt : Σ → Σ on a compact
Hausdorff space Σ in a deterministic context, we deal with a nonautonomous random dynamical
systems driven by a flow R×Ω ∋ (τ,ω) 7→ Θt(τ,ω) = (t +τ,θtω) ∈R×Ω, where θt : Ω → Ω

is a random flow defined on a probability space Ω.

We first prove results to compare existence of exponential dichotomies between con-
tinuous and discrete nonautonomous random dynamical systems (Theorem 4.3.1 and Theorem
2.2.10). As applications of these results we obtain a robustness result of exponential dichotomies
for continuous nonautonomous random co-cycles (Theorem 4.3.4), and uniqueness and con-
tinuous dependence of the family of projections associated with the exponential dichotomy
(Corollary 4.3.2 and Theorem 4.3.6, respectively).

We first prove that if a co-cycle possesses an exponential dichotomy, then its discretization
also admits an exponential dichotomy.
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Theorem 4.3.1. Let (ϕ,Θ)(X ,R×Ω) be a linear co-cycle that admits an exponential dichotomy

with bound K, exponent α and family of projections Πu := {Πu(ωp) : ωp ∈ R× Ω̃}, where

P(Ω̃) = 1 and Ω̃ is θ -invariant. Then for each ωp ∈ R× Ω̃ the sequence of linear operators

{ϕn(ωp) := ϕ(1,Θnωp) ; n ∈ Z} admits an exponential dichotomy with bound K(ωp) and expo-

nent α(ωp).

Proof. Let Πs be a family of projections associated with the exponential dichotomy. Define, for
each n ∈ Z and ωp, the projector Pn(ωp) := Πs(Θnωp). Then

Pn+1(ωp)ϕn(ωp) = Π
s(Θn+1(ωp))ϕ(1,Θn(ωp))

= ϕ(1,Θn(ωp))Π
s(Θn(ωp))

= ϕn(ωp)Pn(ωp),

and the first property is proved. Note that, if Q = IdX −P, we have that

ϕn(ωp)|R(Qn(ωp))) = ϕ(1,Θn(ωp))|R(Πu(Θn(ωp)))

is an isomorphism onto R(Qn+1(ωp)).

Finally, for n ≥ m we see that

∥ϕn,m(ωp)Pm(ωp)∥L (X) ≤ K(Θmωp)e−α(ωp)(n−m),

and for n < m

∥ϕn,m(ωp)Qm(ωp)∥L (X) ≤ K(Θmωp)eα(ωp)(n−m),

where ϕn,m(ωp) is the inverse of ϕm,n(ωp) over R(Qm(ωp)), and the proof follows by the Θ-
invariance property of K.

As a corollary of Theorem 4.3.1 and Corollary 4.2.3 we obtain uniqueness of projectors
for the continuous case.

Corollary 4.3.2. If (ϕ,Θ) admits an exponential dichotomy, then the family of projections are

uniquely determined.

Now, we provide conditions to prove a kind of converse result of Theorem 4.3.1. If the
discretization admits an exponential dichotomy then the continuous co-cycle also possesses it.

Theorem 4.3.3. Let (ϕ,Θ)(X ,R×Ω) be a co-cycle and for each ωp consider the associated

sequence of operators

{ϕn(ωp) := ϕ(1,Θnωp)}n∈Z.

Suppose that there is a full measure set Ω̃ such that for each ωp ∈ R× Ω̃
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• we have that

L(ωp) := sup
0≤t≤1

∥ϕ(t,ωp)∥L (X) <+∞,

satisfies L(Θtωp)≤ L(ωp), for all t ∈ R.

• there exists Θ-invariant maps K,α such that the sequence {ϕn(ωp)}n∈Z admits an ex-

ponential dichotomy with bound K(ωp), exponent α(ωp), and family of projections

{Pn(ωp) : n ∈ Z} such that for each (n, p) ∈ Z×R the map Pn(p, ·) : Ω̃ → L (X) is

strongly measurable.

Then (ϕ,Θ) admits an exponential dichotomy with exponent α , and bound

K̂(ωp) = K(ωp) sup
0≤t≤1

{∥ϕ(t,ωp)∥L (X)e
α(ωp)t }.

Proof. Let {Pn(ωp);n∈Z} be the family of projectors associated with the exponential dichotomy
of {ϕn(ωp)}n∈Z. Define Πs : R× Ω̃ → L (X) by

Π
s(ωp) := P0(ωp).

Thus for each p ∈ R fixed Πs(p, ·) : Ω̃ → L (X) is strongly measurable.

Claim 1: For each k ∈ Z fixed, we have that Pk(ωp) = Πs(Θkωp).

Indeed, for each k ∈ Z fixed the sequence {ϕn(Θkωp)}n∈Z admits an exponential di-
chotomy with projections {Pn(Θkωp);n ∈ Z}. Note that,

ϕn(Θkωp) = ϕ(1,Θn(Θkωp)) = ϕn+k(ωp).

Then, from Lemma 4.2.3 we have that Pn(Θkωp) = Pn+k(ωp) for all n,k ∈ Z. In particular,
Pk(ωp) = Πs(Θkωp).

Next, we prove that this projector operator is the candidate to obtain the exponential
dichotomy.

Claim 2: For all t ≥ 0 and ωp ∈ Z× Ω̃, we have that

∥ϕ(t,ωp)Π
s(ωp)∥L (X) ≤ K̂(ωp)e−α(ωp)t ,

where K̂(ωp) = K(ωp)sup0≤t≤1{eα(ωp)t∥ϕ(t,ωp)∥L (X)}.

Indeed, choose n ∈ N, such that n ≤ t < n+1, then we write

ϕ(t,ωp) = ϕ(t −n,Θnωp)ϕ(n,ωp).

Therefore

∥ϕ(t,ωp)Π
s(ωp)∥L (X) ≤ K(ωp)e−α(ωp)n∥ϕ(t −n,Θnωp)∥L (X)

≤ K̂(ωp)e−α(ωp)t .
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Claim 3: Let x ∈ R(Πu(ωp)), t < 0 and choose n ≤ 0 such that n ≤ t < n+1. Define the
linear operator

ϕ(t,ωp)x := ϕ(t −n,Θnωp)ϕ(n,ωp)x,

where ϕ(n,ωp) is the inverse of ϕ(−n,Θnωp)|R(Πu(Θnωp)). Then for all t ≤ 0

∥ϕ(t,ωp)Π
u(ωp)∥L (X) ≤ K̂(ωp)eα(ωp)t .

The proof of Claim 3 follows by a similar argument used on the proof of Claim 2.

Claim 4: The range of Πs(ωp) is characterized as follows

R(Πs(ωp)) = {z ∈ X ; [0,+∞) ∋ t 7→ ϕ(t,ωp)z is bounded }.

Indeed, if x ∈ R(Πs(ωp)) from Claim 2 we have that

∥ϕ(t,ωp)x∥X ≤ K̂(ωp)e−α(ωp)t∥x∥X , for every t ≥ 0.

Thus, it follows that [0,+∞)∋ t 7→ϕ(t,ωp)x is bounded. Conversely, suppose that x /∈R(Πs(ωp))

and define v = ϕ(n,ωp)Π
u(ωp)x,, hence

∥ϕ(−n,Θnωp)Π
u(Θnωp)v∥X ≤ K(Θnωp)e−α(ωp)n∥v∥X ,

for n ≥ 0. Thus we obtain

∥Π
u(ωp)x∥X ≤ K(ωp)eα(ωp)n∥ϕ(n,ωp)Π

u(ωp)x∥X , for n ≥ 0.

Since Πu(ωp)x ̸= 0 and we obtain that [0,+∞) ∋ n 7→ ϕ(n,ωp)Π
u(ωp)x is unbounded, then the

mapping [0,+∞) ∋ t 7→ ϕ(n,ωp)x is unbounded and complete the proof of Claim 4.

Claim 5: The range of Πu(ωp) is characterized as follows: z ∈ Πu(ωp) if and only if
there exists a backwards bounded solution ξ ∗ for the evolution process Φωp = {ϕt,s(ωp) : t ≥ s}
such that ξ ∗(0) = z.

In fact, let z ∈ R(Πu(ωp)), and t < 0, we define

ξ (t) = ϕ(t −n,Θnωp)ϕ(n,ωp)z,

where n ≤ 0 is such that n ≤ t < n+1. Then ξ is a backwards bounded solution for the evolution
process {ϕt,s(ωp) : t ≥ s} through z. In fact, for t ≥ s

ϕt,s(ωp)ξ (s) = ϕ(t − s,Θsωp)ϕ(s−n,Θnωp)ϕ(n,ωp)z

= ϕ(t −n,Θnωp)z = ξ (t),

which shows that ξ is a backwards solution. From Claim 3 we have that ξ is bounded and
ξ (0) = z. Conversely, choose x ∈ X such that x /∈ R(Πu(ωp)) and suppose that there exists a
backwards solution of {ϕt,s(ωp) : t ≥ s} through x on t = 0. Then, for n ≤ 0,

∥Π
s(ωp)x∥X = ∥Π

s(ωp)ϕ(−n,Θnωp)ξ (n)∥X

≤ ∥ϕ(−n,Θnωp)Π
s(Θnωp)∥L (X)∥ξ (n)∥X

≤ K(ωp)eα(ωp)n∥ξ (n)∥X .



84 Chapter 4. Exponential dichotomies for nonautonomous random dynamical systems

Since Πs(ωp)x ̸= 0 we see that ξ is unbounded, and the proof is complete.

Now, from Claim 4 and Claim 5, we obtain that:

Claim 6: R(Πs(·)) is positively invariant and R(Πu(ωp) is invariant, i.e.,

ϕ(t,ωp)R(Πs(ωp)) ⊂ R(Πs(Θtωp)), for all t ≥ 0, and

ϕ(t,ωp)R(Πu(ωp)) = R(Πu(Θtωp)), for all t ≥ 0.

Claim 7: The linear operator ϕ(t,ωp) : R(Πu(ωp))→ X is injective.

Indeed, let z ∈ R(Πu(ωp) such that ϕ(t,ωp)z = 0. Choose n ∈ N such that n ≤ t ≤ n+1,
then

0 = ϕ(n− t,Θtωp)ϕ(t,ωp)z = ϕ(n,ωp)z.

Now, Claim 7 follows by the fact that ϕ(n,ωp)|R(Πu(ωp)) is injective for any integer n ≤ 0.

Then it follows directly from Claims 6 and 7 that ϕ(t,ωp) : R(Πu(ωp))→ R(Πu(Θtωp))

is an isomorphism.

Finally, from Claim 6, we obtain that ϕ(t,ωp)Π
s(ωp) = Πs(Θtωp)ϕ(t,ωp) for all t ≥ 0,

and the proof of the theorem is complete.

Now, we state our robustness result for nonautonomous random dynamical systems with
an exponential dichotomy.

Theorem 4.3.4. Let (ϕ,Θ) be an co-cycle with an exponential dichotomy with bound K and

exponent α . Assume that there is a random variable L : R×Ω → (0,+∞) such that

L(ωp) := sup
0≤t≤1

{
∥ϕ(t,ωp)∥L (X)

}
<+∞,

that satisfies L(Θtωp)≤ L(ωp), for all t ∈R. Then there exists a Θ-invariant map δ : Z×Ω →R
with

0 < δ (ωp)<
1− e−α(ωp)

1+ e−α(ωp)
, for each ωp ∈ R×Ω,

such that every co-cycle (ψ,Θ) satisfying

sup
0≤t≤1

{
∥ϕ(t,ωp)−ψ(t,ωp)∥L (X)

}
≤ δ (ωp),

admits an exponential dichotomy with exponent α̃(ωp) and bound

M̂(ωp) = M(ωp) sup
0≤t≤1

{
∥ψ(t,ωp)∥L (X)e

α̃(ωp)t
}
,

where M and α̃ are the bound and exponent of the discretization of (ψ,Θ) given in Theorem

4.2.5.
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Proof. First, we consider the discretization of the co-cycle (ϕ,Θ), i.e., for each ωp we consider
the family of linear operators {ϕn(ωp) := ϕ(1,ωp) : n ∈ Z}. From Theorem 4.3.1, we have that
{ϕn(ωp) : n ∈ Z} admits an exponential dichotomy with bound K(ωp) and exponent α(ωp).
By Theorem 4.2.5, there exists a Θ-invariant map δ such that if {ψn(ωp)}n∈Z is a sequence of
bounded linear operators which satisfies

sup
n∈Z

∥ϕn(ωp)−ψn(ωp)∥L (X) ≤ δ (Θnωp) = δ (ωp),

{ψn(ωp)}n∈Z admits an exponential dichotomy with bound M(ωp) and exponent α̃(ωp) (see
Theorem 4.2.5). Now, in order to use Theorem 4.3.3 to guarantee that (ψ,Θ) admits an exponen-
tial dichotomy it remains only to see that

sup
0≤t≤1

∥ψ(t,ωp)∥L (X) ≤ δ (ωp)+L(ωp)<+∞.

Therefore, the hypotheses of Theorem 4.3.3 are satisfied, and the proof is complete.

Remark 4.3.5. Note that for each nonautonomous evolution process (ϕ,Θ) with a uniform

exponential dichotomy there exists δ in the previous theorem that depends only on the exponent

of exponential dichotomy. When applying Theorem 4.2.5 we obtain explicit functions for the

bound and exponent of the perturbations, which is an improvement of the result of robustness in

the case of Ω a Hausdorff compact topological space of (CHOW; LEIVA, 1995b).

To end this subsection we extend the result on the continuous dependence of projections
for discrete co-cycle, Theorem 4.2.9, to continuous co-cycle.

Theorem 4.3.6. Suppose that (ϕ,Θ) and (ψ,Θ) are nonautonomous random dynamical systems

and that they admit an exponential dichotomy with projections Πs
ϕ and Πs

ψ , and exponents αϕ

and αψ , respectively. If

sup
t∈R

{
K(ωp)∥ϕ(t,ωp)−ψ(t,ωp)∥L (X)

}
≤ ε,

then

sup
t∈R

∥Π
s
ϕ(Θtωp)−Π

s
ψ(Θtωp)∥L (X) ≤

e−αψ (ωp)+ e−αϕ (ωp)

1− e−(αψ (ωp)+αϕ (ωp))
ε.

Proof. The proof is a consequence of Theorem 4.3.3 and Theorem 4.2.9.

4.4 Applications to linear nonautonomous random differ-
ential equations

In this section, we shall study linear nonautonomous random differential equations on a
Banach space X . We provide conditions to guarantee the existence of an exponential dichotomy
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for a nonautonomous random perturbation of a hyperbolic autonomous problem. The results
contained here were inspired by (CHOW; LEIVA, 1995b) in a deterministic context, where the
base flow is a group over a Hausdorff compact set.

Remark 4.4.1. Before we start we remark some facts about nonautonomous random differential

equations and generation of nonautonomous random dynamical systems. Let (θ ,Ω,F ,P) be a

random flow, and consider the following initial value problem

ẏ = f (t,θtω,y), t > τ and y(τ) = y0. (4.20)

Assume that for almost all ω ∈ Ω the solutions of (4.20) are associated with a nonlinear

evolution process Sω := {Sω(t,s) : t ≥ s}. More precisely, if for every τ ∈ R and y0 ∈ X

there exists [τ,+∞) ∋ t 7→ y(t,τ,ω;y0) a solution for (4.20), then we define Sω(t,τ,ω)u0 :=
y(t,τ,ω;u0).

Another equivalent way to generate a dynamical system from problem (4.20) is the

following: define x(t) := y(t+τ,τ,ω;u0), for every t ≥ 0 and some fixed τ ∈R. Hence we obtain

the initial value problem

ẋ = f (t + τ,θt+τω,x), t > 0 and x(0) = x0.

Now, the relation f (t+τ,θt+τω) = f (Θt(t,θτω)), where Θ is the flow {Θt :R×Ω→R×Ω}t∈R

defined as Θt(τ,ω) = (t + τ,θtω), leads us to consider a nonautonomous random differential

with a nonlinearity driven by the flow Θ i.e.

ż = f (Θt(τ,ω),z), t > 0 and z(0) = z0, for each (τ,ω) ∈ R×Ω. (4.21)

Thus, the solutions of (4.21) defines a nonautonomous random dynamical system ϕ(t,τ,ω)z0 :=
z(t,(τ,ω);z0). Therefore, we rewrite problem (4.20) using formulation of (4.21) as follows

ϕ(t,τ,ω)y0 := y(t + τ,τ,θ−τω;y0).

Or equivalently, for almost all ω ∈ Ω we have that

ϕ(t,τ,ω) = Sθ−τ ω(t + τ,τ), t ≥ 0, τ ∈ R.

Consequently, we study asymptotic behavior of both dynamical systems: the co-cycle (ϕ,Θ)(X ,R×Ω)

generated by (4.21), and the family of evolution processes {Sω ; ω ∈ Ω} associated with (4.20).

Let A be the generator of a strongly continuous semigroup {eAt : t ≥ 0} and B : R×Ω →
L (X) be a bounded operator depending on parameters on R×Ω. We study the linear problem

ẋ = Ax+B(Θtωτ)x, t > 0 and x(0) = x0. (4.22)

where ωτ := (τ,ω) and for every t ∈ R the map Θt : R×Ω → R×Ω is defined by Θtωτ :=
(t + τ,θtω).
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To study equation (4.22), we consider the following family of integral equations

x(t,τ,ω;x0) = eAtx0 +
∫ t

0
eA(t−s)B(Θsωτ)x(s)ds, x0 ∈ X , t ≥ 0, ωτ ∈ R×Ω.

We have the following result on the robustness of exponential dichotomies for linear
nonautonomous random differential equations.

Theorem 4.4.2. Let (ϕ,Θ) be a linear nonautonomous random dynamical system with

L(ωτ) := sup
t∈R

∥ϕ(t,ωτ)∥L (X) <+∞, for each ωτ ∈ R×Ω, (4.23)

where supt∈RL(Θtωτ) ≤ L(ωτ). Suppose that (ϕ,Θ) admits an exponential dichotomy with

exponent α and bound K. Then there exists a Θ-invariant map ε : R×Ω → (0,+∞) such that

for every B : R×Ω → L (X) with

sup
0≤t≤1

∥
∫ t

0
B(Θsωτ)xds∥X < ε(ωτ)∥x∥X

a nonautonomous random dynamical system satisfying

ψ(t,ωτ) = ϕ(t,ωτ)+
∫ t

0
ϕ(t − s,Θsωτ)B(Θsωτ)ψ(s,ωτ)ds (4.24)

admits an exponential dichotomy with bound M̂ and exponent α̃ provided in Theorem 4.3.4.

Proof. Let (ψ,Θ) be a nonautonomous random dynamical system satisfying (4.24). Then

∥ψ(t,ωτ)x∥X ≤ L(ωτ)∥x∥X +
∫ t

0
L(Θsωτ)∥B(Θsωτ)∥L (X)∥ψ(s,ωτ)x∥X ds, 0 ≤ t ≤ 1.

From Grönwall’s inequality we obtain ∥ψ(t,ωτ)∥L (X) ≤ L1(ωτ) := L(ωτ)eL(ωτ )ε(ωτ ), for every
0 ≤ t ≤ 1.

Hence, for every 0 ≤ t ≤ 1

∥ϕ(t,ωτ)x−ψ(t,ωτ)x∥X ≤ ε(ωτ)L(ωτ)L1(ωτ)∥x∥X .

Finally, since (ϕ,Θ) admits an exponential dichotomy, there exists a Θ-invariant measurable
map δ > 0 as in Theorem 4.3.4. Therefore, for each ωτ choose ε = ε(ωτ) > 0 such that
ε(ωτ)L(ωτ)L1(ωτ) < δ (ωτ). Note that, for every t ∈ R L2(Θtωτ) := L(Θtωτ)L1(Θtωτ) ≤
L2(ωτ), therefore we choose ε(Θtωτ) = ε(ωτ), and the proof is complete.

Remark 4.4.3. Theorem 4.4.2 is saying that if problem ẋ = A(Θtωτ)x generates a nonau-

tonomous random dynamical system with an exponential dichotomy, then for the class of

bounded linear perturbation B given, in the above theorem, the perturbed nonautonomous

random dynamical system generated by problem

ẋ = A(Θtωτ)x+B(Θtωτ)x, x(0) = x0 ∈ X , t ≥ 0, (4.25)

admits an exponential dichotomy.
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Now, as a corollary we have the following robustness result for an autonomous problem
under nonautonomous random perturbation.

Theorem 4.4.4. Assume that A generates an analytic semigroup {eAt : t ≥ 0}, and that the

spectrum of A, σ(A), does not intersect the imaginary axis and that the set σ+ := {λ ∈ σ(A) :
Reλ > 0} is compact. Then there exists a Θ-invariant map ε : R×Ω → (0,+∞) such that, if

B : R×Ω → L (X) satisfies

sup
0≤t≤1

∥
∫ t

0
B(Θsωτ)xds∥X < ε(ωτ)∥x∥X ,

then any nonautonomous random dynamical system satisfying

ϕ(t,ωτ) = eAt +
∫ t

0
eA(t−s)B(Θsωτ)ϕ(s,ωτ)ds (4.26)

admits an exponential dichotomy with bound M̂ and exponent α̃ provided in Theorem 4.3.4.

Proof. These assumptions on A implies the existence of an exponential dichotomy for {eAt : t ≥
0}, see (HENRY, 1981). In fact, if γ is a smooth closed simple curve in ρ(A)∩{λ ∈C : Reλ > 0}
oriented counterclockwise and enclosing σ+ let

Q = Q(σ+) =
1

2πi

∫
γ

(λ −A)−1dλ ,

and define X+ = QX , X− = (I −Q)X , and A± := A±. At this scenario, A− generates a strongly
continuous semigroup on X−, A+ ∈ L (X+), and there are M ≥ 1, β > 0 such that

∥eA+t∥L (X+) ≤ Meβ t , t ≤ 0;

∥eA−t∥L (X−) ≤ Me−β t , t ≥ 0.

Now we are ready to apply Theorem 4.4.2 for {eAt : t ≥ 0}.

Remark 4.4.5. As in (HENRY, 1981), Theorem 4.4.4 can be proved in the parabolic case, when

−A is a sectorial operator with A ∈ L (Xα ,X), for a unbounded perturbation B : R×Ω →
L (Xα ,X), where Xα is a fractional power of X, with 0 ≤ α < 1. In this situation there exists a

Θ-invariant ε such that if B satisfies

∥B(Θtωτ)x∥X ≤ b(ωτ)∥x∥Xα ,

sup0≤t≤1 ∥
∫ t

0 B(Θsωτ)xds∥X < q(ωτ)∥x∥Xα ,

and q(ωτ)
δ b(ωτ)

1−δ ≤ ε(ωτ) with 0 < δ < (1−α)/2, then any nonautonomous random dy-

namical system satisfying (4.26) admits an exponential dichotomy in Xα .

Remark 4.4.6. Note that Theorem 4.4.4 can be proved independently of Theorem 4.4.2 and any

nonautonomous random dynamical systems (ϕε ,Θ) satisfying (4.26) will satisfy the hypotheses

of Theorem 4.4.2.
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CHAPTER

5
STRUCTURAL STABILITY OF

NONAUTONOMOUS RANDOM
ATTRACTORS

In this chapter, we study continuity and topological structural stability of attractors for
nonautonomous random differential equations obtained by small bounded random perturba-
tions of autonomous semilinear problems. First, we study existence and continuity of random
hyperbolic solutions and its associated unstable sets. Then, we use this to establish lower semi-
continuity of nonautonomous random attractors and to show that the gradient structure persists
under nonautonomous random perturbations. Finally, we apply the abstract results in a stochastic
differential equation and in a damped wave equation with a perturbation on the damping.

5.1 Existence and continuity of random hyperbolic solu-
tions

In this section, we study a semilinear problem under a nonautonomous random perturba-
tion. We provide conditions to obtain existence of a bounded random hyperbolic solution for a
co-cycle. We consider the semilinear problem on a separable Banach space X

ẏ = By+ f0(y), y(0) = y0 (5.1)

and a nonautonomous random perturbation of it

ẏ = By+ fη(Θtωτ ,y), y(0) = y0, (5.2)

where (θ ,Ω) is a random flow, and {Θt : t ∈R} is a driving flow given by Θt(ωτ) = (t +τ,θtω)

for every ωτ ∈ R×Ω, and η ∈ (0,1] is a real parameter.
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We suppose that fη(ωτ , ·) ∈C1(X), for every η ∈ [0,1], ωτ ∈ R×Ω, and that

lim
η→0

sup
(t,x)∈R×B(0,r)

{
∥ fη(Θtωτ ,x)− f0(x)∥X +∥( fη)x(Θtωτ ,x)− f ′0(x)∥L (X)

}
= 0, (5.3)

for all r ≥ 0 and ωτ ∈R×Ω. This ensures local well-posedness and differentiability with respect
to the initial conditions of (5.1) and (5.2), for each ωτ ∈ R×Ω. Additionally, we assume global
well-posedness, so that (5.1) is associated with a semigroup T0 = {T0(t) : t ≥ 0}, and that (5.2)
is associated with nonautonomous random dynamical system (ψη ,Θ), for each η ∈ [0,1].

Our goal is to prove that if {T (t) : t ≥ 0} has a hyperbolic equilibrium y∗0, then there
exists a (unique) random hyperbolic equilibrium for (ψη ,Θ) near y∗0, for η > 0 “small enough”.
We first prove existence and continuity of global solutions for (5.2) and then show that these
solutions exhibit a hyperbolic behavior.

Definition 5.1.1. Let (ψ,Θ) be a nonautonomous random dynamical system. We say that a map

ζ : R×Ω → X is a global solution for (ψ,Θ) if

ψ(t,ωτ)ζ (ωτ) = ζ (Θtωτ), for every t ≥ 0.

Remark 5.1.2. Let (ψ,Θ) be a nonautonomous random dynamical system and a global solution

ζ . Then, for each ωτ fixed, the mapping R ∋ t 7→ ξ (t,ωτ) := ζ (Θtωτ) defines a global solution

for the evolution process

{ψ(t − s,Θsωτ) : t ≥ s}.

Suppose that y∗0 ∈ X is a hyperbolic equilibrium for (5.1), i.e., the linear operator
A := B+ f ′0(y

∗
0) generates an autonomous evolution process {eA(t−s : t ≥ s} that admits an

exponential dichotomy.

Define, for some r > 0 fixed,

λ (η ,ωτ) := sup
(t,x)∈R×Br(y∗0)

{
∥ fη(Θt(ωτ),x)− f0(x)∥X +∥( fη)x(Θt(ωτ),x)− f ′0(x)∥L (X)

}
.

Hence, from (5.3), we have that

lim
η→0

sup
t∈R

λ (η ,Θtωτ) = 0. (5.4)

Also suppose

ρ(ε) := sup
x∈Br(y∗0)

sup
∥h∥≤ε

{
∥ f0(x+h)− f0(x)− f ′0(x)h∥X

∥h∥X

}
→ 0, as ε → 0. (5.5)

Theorem 5.1.3. Let y∗0 be a hyperbolic equilibrium for (5.1) and assume that (5.4) and (5.5)
hold. Given ε > 0 small enough, there exists a Θ-invariant map ηε : R×Ω → (0,1] such that

there exists

R ∋ t 7→ ξ
∗
η(t,ωτ) ∈ X , for every η ∈ (0,ηε(ωτ)],
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a global solution of {ψη(t − s,Θsωτ) : t ≥ s} such that

sup
t∈R

∥ξ
∗
η(t,ωτ)− y∗0∥X < ε, for every η ∈ (0,ηε(ωτ)].

Proof. Let y be a global solution of (5.2). Then, if we define φ = y− y∗0, it satisfies

φ̇ = Aφ +gη(Θtωτ ,φ),

where gη(Θtωτ ,φ) = fη(Θtωτ ,y∗0 +φ)− f0(y∗0)− f ′0(y
∗
0)φ , so that

φ(t) = eA(t−τ)
φ(τ)+

∫ t

τ

eA(t−s)gη(Θsωτ ,φ(s))ds (5.6)

Hence, if we project Q and I −Q and take limits we obtain

φ(t) =
∫ +∞

−∞

GA(t,s)gη(Θsωτ ,φ(s))ds,

where G is the Green’s function associated with the semigroup {eAt : t ≥ 0} and projection Q.

Consequently, a complete bounded solution to (5.6) exists in a small neighborhood of
x = 0, if and only if, the operator

Iωτ ,η(φ)(t) =
∫ +∞

−∞

GA(t,s)gη(Θsωτ ,φ(s))ds

has a unique fixed point in the set

Xε :=
{

φ : R→ X : sup
t∈R

∥φ(t)∥X ≤ ε

}
for a given ε > 0 small. This follows by a fixed point argument for Iωτ ,η for each ω ∈ Ω fixed.

Indeed, let ε1 > 0 such that

∥ f ′0(y
∗
0 +h)− f ′0(y

∗
0)∥L (X) <

1
6Mβ−1 , for every ∥h∥X < ε1, (5.7)

and ε2 ∈ (0,1/2) be such that ρ0(ε) < 1/6Mβ−1, for every 0 < ε < ε2, where M > 1 is the
bound, and β > 0 is the exponent of the exponential dichotomy of {eAt : t ≥ 0}. Define ε0 =

min{ε1,ε2/2} and for a given ωτ ∈ R×Ω fixed and ε ∈ (0,ε0), define ηε(ωτ)> 0 such that

λ (η ,ωτ)<
ε

6Mβ−1 , for every η ∈ (0,ηε(ωτ)].

Then, it is possible to prove that Iωτ ,η maps Xε into itself. In fact, for φ ∈ Xε

∥gη(Θtωτ ,φ(t))∥X ≤ ∥ fη(Θtωτ ,y∗0 +φ(t))− f0(y∗0 +φ(t))∥X +ρ(ε)ε

≤ λ (η ,ωτ)+ρ0(ε)ε,

hence
∥Iη ,ωφ(t)∥X ≤ 2β

−1M∥gη(Θtωτ ,φ(t))∥X < ε,
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and that Iωτ ,η is a contraction. Let φ1,φ2 ∈ Xε

∥gη(Θtωτ ,φ1(t)) − gη(Θtωτ ,φ2(t))∥X

≤ ∥ fη(Θtωτ ,y∗0 +φ1(t))− fη(Θtωτ ,y∗0 +φ2(t))− f ′0(y
∗
0)(φ1(t)−φ2(t))∥X

≤
[

λ (η ,ωτ)+ρ(ε)+∥ f ′0(y
∗
0 +φ1)− f ′0(y

∗
0)∥L (X)

]
∥(φ1(t)−φ2(t))∥X .

Then
∥Iη ,ωφ1(t)−Iη ,ωφ1(t)∥X ≤ 1

2
∥φ1(t)−φ2(t)∥X .

Therefore, there exists a fixed point φ∗
η(·,ωτ) of Iωτ ,η in Xε , and the global solution of (5.2) is

given by ξ ∗
η(·,ωτ) = φ∗

η(·,ωτ)+ y∗0.

As in (CARVALHO; LANGA, 2007b), these solutions {ξ ∗
η} play the role of an hyperbolic

equilibrium for (5.2). Given ε > 0 define, for each ωτ fixed and η ∈ (0,ηε(ωτ)],

ζ
∗
η(τ,ω) := ξ

∗
η(0,ωτ).

Note that, for each ωτ fixed, there exists ηε(ωτ)> 0 such that the mapping R ∋ t 7→ ξ ∗
η(t,ωτ) :=

ζ ∗
η(Θtωτ), t ∈ R is a complete solution for

ẋ = Bx+ fη(Θtωτ ,x), η ∈ (0,ηε(ωτ)]. (5.8)

Then, to ensure that ξ ∗
η exhibits a hyperbolic behavior, we linearized problem (5.8) over ζ ∗

η

and guarantee that the associated linear nonautonomous random dynamical system admits an
exponential dichotomy.

Remark 5.1.4. Let ωτ ∈ R× Ω be fixed, xη(·,ωτ) a solution of (5.2) and define zη(t) =

xη(t,ωτ)−ζ ∗
η(Θtωτ), for each t ≥ 0 and η ∈ (0,ηε(ωτ)]. Then

ż = Az+Bη(Θtωτ)z+hη(Θtωτ ,z), (5.9)

where Bη(Θtωτ) = ( fη)z(Θtωτ ,ζ
∗
η(Θtωτ))− f ′0(y

∗
0), and

hη(Θtωτ ,z) := fη(Θtωτ ,ζ
∗
η(Θtωτ)+ z)− fη(Θtωτ ,ζ

∗
η(Θtωτ))− ( fη)z(Θtωτ ,ζ

∗
η(Θtωτ))z.

Thus, 0 is a globally defined bounded solution for (5.9) and hη(Θtωτ ,0) = 0, (hη)z(Θtωτ ,0) =
0 ∈ L (X).

We consider the linearized problem associated with (5.9)

ż = Az+Bη(Θtωτ)z, t ≥ 0, z(0) = z0 ∈ X . (5.10)

Note that for each ωτ ∈ R×Ω fixed

lim
η→0

sup
t∈R

∥Bη(Θtωτ)∥L (X) = 0.
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Then problem (5.10) generates a co-cycle (ϕη ,Θ) which satisfies

ϕη(t,τ,ω)x0 = eAtx0 +
∫ t

0
eA(t−s)Bη(Θsωτ)ϕη(s,τ,ω)x0ds.

Since {eAt : t ≥ 0} admits exponential dichotomy, from Theorem 4.4.4, we know that the linear

co-cycle (ϕη ,Θ) admits an exponential dichotomy for each suitable small η > 0.

Thus ζ ∗
η is a global solution that exhibits hyperbolic behavior and it suggests the

definition of random hyperbolic solution for (5.2).

Definition 5.1.5. Let B be a generator of a strongly continuous semigroup, and f :R×Ω×X →X

such that for each (t,ω) fixed X ∋ x 7→ f (t,ω,x) is differentiable, and ζ : R×Ω → X be a

bounded global solution of

ẋ = Bx+ f (Θtωτ ,x), t ≥ 0,x(0) = x0 ∈ X . (5.11)

We say that ζ is a random hyperbolic solution of (5.11) if there exists a linear nonautonomous

random dynamical system (ϕ,Θ) satisfying

ϕ(t,ωτ) = eBt +
∫ t

0
eA(t−s)Dx f (Θsωτ ,ζ (Θsωτ))ϕ(s,ωτ)ds, for all ωτ ∈ R×Ω,

and (ϕ,Θ) admits an exponential dichotomy.

Joining the results of Theorem 5.1.3 and Remark 5.1.4 we obtain:

Theorem 5.1.6 (Existence and continuity of hyperbolic solutions). Let y∗0 be a hyperbolic

equilibrium for (5.1) and assume that (5.3) and (5.5) hold. Given ε > 0 suitable small, there

exists a Θ-invariant map ηε : R×Ω → (0,1] such that:

1. for each ωτ ∈R×Ω fixed, given η ∈ (0,ηε(ωτ)], there exists a global hyperbolic solution

R ∋ t 7→ ζη(t,ωτ) of the evolution process {ψη(t − s,Θsωτ) : t ≥ s} satisfying

sup
t∈R

∥ζ
∗
η(t,ωτ)− y∗0∥X < ε, (5.12)

and ζη(t,ωτ) = ζη(0,Θtωτ), for all t ∈ R.

2. for each Θ-invariant function η̄ : R×Ω → [0,1] with η̄(ωτ) ≤ ηε(ωτ), there exists a

random hyperbolic solution ξ ∗
η̄

: R×Ω → X of (ψη̄ ,Θ) defined by

ξ
∗
η̄(ωτ) := ζ

∗
η̄(ωτ )

(0,ωτ),

and satisfying (5.12).

Theorem 5.1.6 is the first step to the study of existence and continuity of unstable and
stable sets, which are the main tool to conclude lower semicontinuity and topological structural
stability of attractors.
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Remark 5.1.7. Theorem 5.1.6[Item 2] provides existence and continuity of random hyperbolic

solutions for nonautonomous random perturbations of a autonomous problem. However, this

result of persistence can be proved in a general context. In other words, following similar steps, it

is possible to prove that random hyperbolic solutions are stable under (random nonautonomous)

perturbations.

Remark 5.1.8. Suppose that {y∗1, · · · ,y∗p} is a set of hyperbolic equilibria for (5.1). Then there

exists ε0 > 0 such that y∗i is isolated in B(y∗i ,ε0) and B(y∗i ,ε0)∩B(y∗j ,ε0) = /0, j ̸= i. Theorem

5.1.6 guarantees that for each i ∈ {1, · · · , p} and ε ′0 ∈ (0,ε0) suitable small fixed, there exits a

Θ-invariant function η0,i : R×Ω → (0,1] satisfying the conclusions of Theorem 5.1.6.

Define η0(ωτ) = min0≤i≤p{η0,i(ωτ)}, for ωτ ∈ R×Ω. Let ωτ be fixed, then for each

η ∈ (0,η0(ωτ)] there exists ζ ∗
i,η(·,ωτ) is a hyperbolic solution of {ψη(t − s,Θsωτ) : t ≥ s} such

that

sup
t∈R

∥ζ
∗
i,η(t,ωτ)− y∗i ∥X < ε

′
0, for every i ∈ {1, · · · , p}.

Remark 5.1.9. In the parabolic case, when A is sectorial, with A ∈ L (Xδ ,X), 0 < δ < 1,

where Xδ is a fractional power of X, we cannot assume that the nonlinearity f0 : U ⊂ X → X is

differentiable, see (BORTOLAN et al., 2020). We have to assume that the hyperbolic equilibrium

y∗0 is in Xδ and that U is a open neighborhood of y∗0 in Xδ such that f0 : U ⊂ Xδ → X is

differentiable with derivative f ′(y∗0) ∈ L (Xδ ,X). Also, we have to use a slightly different

estimative on the Green’s function of {eAt : t ≥ 0}

∥GA(t,s)∥L (X ,Xδ ) ≤ D(M,δ )(t − s)−δ e−β |t−s|,0 < t − s ≤ 1

∥GA(t,s)∥L (X ,Xδ ) ≤ D(M,δ )e−β |t−s|, otherwise,

where D = D(M,δ ) is a constant, see (HENRY, 1981). Under these conditions the proof of

existence and continuity of bounded random hyperbolic equilibrium on Xδ is analogous to the

argument used in Theorem 5.1.6.

5.2 Existence and continuity of unstable sets

In this section, we study existence and continuity of unstable sets for the hyperbolic
solutions obtained in Theorem 5.1.6. Under the same assumptions of Section 5.1, we will apply
the techniques of the deterministic case (CARVALHO; LANGA, 2007b) to our problem. The
idea here is to revisit the proofs to track the dependence on the parameter ωτ ∈ R×Ω in the
arguments.

First, we recall the definition of the unstable set for a global solution ξ of an evolution
process, which was introduced in (CARVALHO; LANGA, 2007b).
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Definition 5.2.1. Let S = {S(t,s) : t ≥ s} be an evolution process, and ξ : R→ X be a global
solution of S . The unstable set of ξ is defined as

W u(ξ ) =

{
(t,z) ∈ R×X : there is a global solution ζ of S such that

ζ (t) = z, and lim
s→−∞

∥ζ (s)−ξ (s)∥X = 0
}
.

The section of W u(ξ ) at time t ∈ R is denoted by W u(ξ )(t) = {z ∈ X : (t,z) ∈W u(ξ )}.

Next, we extend the concept of unstable set for nonautonomous random dynamical
systems.

Definition 5.2.2. Let (ψ,Θ) be a nonautonomous random dynamical system and ξ ∗ : R×Ω → X

be a random hyperbolic solution of (ψ,Θ). The unstable set of ξ ∗ is the family

W u(ξ ∗) = {W u(ξ ∗;ωτ) : ωτ ∈ R×Ω},

where, for each ωτ , W u(ξ ∗;ωτ) is the unstable set of the hyperbolic solution t 7→ ξ ∗(Θtωτ) of

the evolution process Ψωτ
= {ψ(t − s,Θsωτ) : t ≥ s}. The section of W u(ξ ∗;ωτ) at time t ∈ R

is denoted by

W u(ξ ∗;ωτ)(t) = {z ∈ X : (t,z) ∈W u(ξ ∗;ωτ)}.

Let δ : R×Ω → (0,+∞) be a Θ-invariant map, a local unstable set is a family W u,δ (ξ ∗) =

{W u,δ (ξ ∗;ωτ) : ωτ ∈ R×Ω}, where

W u,δ (ξ ∗;ωτ) =

{
(t,z) ∈ R×X : there is a global solution ζ of Ψωτ

such that

ζ (t) = z, ∥ζ (s)−ξ
∗(Θsωτ)∥X ≤ δ (ωτ), ∀s ≤ t,

and lim
s→−∞

∥ζ (s)−ξ
∗(Θsωτ)∥X = 0

}
,

and the section of W u,δ (ξ ∗;ωτ) at time t is defined by

W u,δ (ξ ∗;ωτ)(t) = {z ∈ X : (t,z) ∈W u,δ (ξ ∗;ωτ)}.

This definition can also be seen as an extension of the linear case, see the definition of
V−(ωp) in Lemma 4.2.6.

Before we continue, we recall the definition of attractors for a nonautonomous random
dynamical system.

Definition 5.2.3. Let K : Ω → 2X be a set-valued mapping with closed nonempty images. We

say that K is measurable if the mapping Ω ∋ ω 7→ d(x,K(ω)) is (F ,BR)-measurable for every

fixed x ∈ X.
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In Definition 5.2.3, we used that X is a complete separable metric space, see (CASTAING;
VALADIER, 1977, Chapter III).

Definition 5.2.4. Let ˆA = {A (ωτ) : ωτ ∈ R×Ω} be a family of nonempty subsets of X. We

say that ˆA is a nonautonomous random attractor for (ψ,Θ) if the following conditions are

fulfilled:

1. A (ωτ) is compact, for every ωτ ∈ R×Ω;

2. the set-valued mapping ω 7→ A (τ,ω) is measurable, for each τ ∈ R;

3. ˆA is invariant, i.e., ψ(t,ωτ)A (ωτ) = A (Θtωτ) for every t ≥ 0 and ωτ ∈ R×Ω;

4. ˆA pullback attracts every bounded subset of X, i.e., for every bounded subset B of X and

ωτ ∈ R×Ω,

lim
t→+∞

dist(ψ(t,Θ−tωτ)B,A (ωτ)) = 0,

where dist(A,B) = supa∈A infb∈B d(a,b) is the usual Hausdorff semi-distance;

5. ˆA is the minimal closed family that pullback attracts bounded subsets of X, i.e., if

{F(ωτ) : ωτ ∈ R×Ω} is a family of closed subsets of X that pullback attracts every

bounded subset of X, then A (ωτ)⊂ F(ωτ), for every ωτ ∈ R×Ω.

For existence of nonautonomous random attractors and applications to differential equa-
tions, see (WANG, 2012b) and the references therein.

Since we will associated our co-cycle (ψ,Θ) with a family of evolution processes as in
Remark 4.1.4, we recall the notion of pullback attractors.

Definition 5.2.5. Let S = {S(t,s) : t ≥ s} be an evolution process in X and {A (t) : t ∈ R} be

a family of nonempty subsets of X. We say that {A (t) : t ∈ R} is a pullback attractor for S if

1. A (t) is compact, for every t ∈ R;

2. {A (t) : t ∈ R} is invariant, i.e., S(t,s)A (s) = A (t), ∀ t ≥ s;

3. {A (t) : t ∈ R} pullback attracts every bounded subset of X, i.e., for every bounded subset

B of X,

lim
s→−∞

dist(S(t,s)B,A (t)) = 0;

4. {A (t) : t ∈ R} is the minimal closed family that pullback attracts bounded subsets of X.

There are several works that deal with existence and continuity (upper and lower semicon-
tinuity) of pullback attractors, we refer the reader to (CARABALLO; ŁUKASZEWICZ; REAL,
2006; CARABALLO et al., 2010a; CARVALHO; LANGA; ROBINSON, 2013; BORTOLAN;
CARVALHO; LANGA, 2020), where many other references to earlier results can be found.
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Remark 5.2.6. Let (ψ,Θ) be a nonautonomous random dynamical system with an attractor

{A (ωτ) : ωτ ∈ R×Ω}. Then, for each ωτ fixed, the evolution process Ψωτ
has a pullback

attractor given by {A(Θtωτ) : t ∈ R}.

The following lemma provides some properties of the unstable set.

Lemma 5.2.7. Let (ψ,Θ) be a nonautonomous random dynamical system and ξ ∗ : R×Ω → X

be a random hyperbolic solution of (ψ,Θ).

For each ωτ ∈ R×Ω and t ∈ R,

W u(ξ ∗;ωτ)(t) =W u(ξ ∗;Θtωτ)(0). (5.13)

Moreover, if (ψ,Θ) has a nonautonomous random attractor {A (ωτ) : ωτ ∈ R} and ξ ∗ is

bounded, then

W u(ξ ∗;ωτ)(0)⊂ A (ωτ), ∀ωτ . (5.14)

Proof. First we prove (5.13). Let z∈W u(ξ ∗;ωτ)(t), then there exists a global solution ζ :R→X

of Ψωτ
such that ζ (t) = z and ∥ζ (s)−ξ ∗(Θsωτ)∥X

s→−∞−→ 0. Define, ζ̃ (s) = ζ (t + s), s ∈R, thus
ζ̃ is a global solution for ΨΘtωτ

such that ζ̃ (0) = z and

∥ζ̃ (s)−ξ
∗(ΘsΘtωτ)∥X = ∥ζ (s+ t)−ξ

∗(Θs+tωτ)∥X
s→−∞−→ 0.

Therefore, z ∈W u(ξ ∗,Θtωτ)(0). By similar arguments, we see that

W u(ξ ∗,Θtωτ)(0)⊂W u(ξ ∗,ωτ)(t),

which concludes the proof of (5.13).

For the second claim, let z ∈W u(ξ ∗;ωτ)(0), then there exists a global solution ζ : R→ X

of Ψωτ
such that ζ (0) = z and ∥ζ (s)− ξ ∗(Θsωτ)∥X → 0 as s → −∞. Since {ξ ∗(Θtωτ) : t ∈

(−∞,0]} is bounded, the set B = ζ ((−∞,0]) is bounded and therefore

lim
s→−∞

distH(ψ(−s,Θsωτ)B,A (ωτ)) = 0, (5.15)

then d(z,A (ωτ)) = 0 and z ∈ A (ωτ) for each ωτ . The proof is complete.

Lemma 5.2.7 implies that the attractor contains all the unstable sets of hyperbolic
solutions. Later, in Section 5.4, we will give conditions under which the attractor is equal to the
union of these unstable sets.

Remark 5.2.8. Let S = {S(t,s) : t ≥ s} be an evolution process with a pullback attractor

{A (t) : t ∈ R} such that ∪t≤0A (t) is bounded. In this case,

A (t) =
⋃
{W u(ξ )(t) : ξ is a backwards bounded solution}, ∀t ∈ R. (5.16)
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Therefore, it is natural to search for the minimal collection of backwards bounded solutions whose

unstable sets form the attractor. Of course many backwards bounded solutions have the same

unstable set, and thus it is natural to seek for backward-separated solutions, see (CARVALHO;

LANGA; ROBINSON, 2013, Section 3.3) for more details. In Section 5.4, we will provide

conditions to obtain that there is a distinguished set of backwards bounded global solutions

that forms the nonautonomous random attractor. These conditions rely on the hyperbolicity and

it is through this distinguished set that we will be able to address the lower semicontinuity of

nonautonomous random attractors.

Next, we prove that the local unstable sets for these hyperbolic solutions are given as a
graph, following the same line of arguments presented in (CARVALHO; LANGA, 2007b). In
fact, if ξ ∗

η is a random hyperbolic solution of ψη , we will show that the elements in W u,δ
η (ξ ∗

η ;ωτ)

will be those of the form

(t,ξ ∗
η(Θtωτ)+Π

u
η(Θtωτ)z+Σ

u(ωτ)(t,Πu
η(Θtωτ)z)) ∈ R×X , and ∥z∥X ≤ δ (ωτ),

where δ : R×Ω → (0,+∞) is a Θ-invariant map, for some Lipschitz map Σu. Moreover, we will
obtain that as η → 0 these local unstable sets “converges” to the unstable sets of the autonomous
problem (5.1).

Let ωτ be fixed, η ∈ (0,η0(ωτ)], and t 7→ ξ ∗
η(Θtωτ) a hyperbolic solution of {ψη(t −

s,Θsωτ) : t ≥ s} obtained by Theorem 5.1.6. Then, the change of variables z(t)= y(t)−ξ ∗
η(Θtωτ)

allows us to concentrate on the existence of invariant sets of global hyperbolic solutions around
the zero solution for

ż = Az+Bη(Θtωτ)z+hη(Θtωτ ,z), z(s) = z0 ∈ X , (5.17)

where A = B+ f ′0(y
∗), Bη(ωτ) = ( fη)x(ωτ ,ξ

∗
η(ωτ))− f ′0(y

∗) and

hη(Θtωτ ,z) := fη(Θtωτ ,ξ
∗
η(Θtωτ)+ z)− fη(Θtωτ ,ξ

∗
η(Θtωτ))

− ( fη)z(Θtωτ ,ξ
∗
η(Θtωτ))z.

Thus z = 0 is a globally defined bounded solution for (5.17) where hη(ωτ , ·) : X → X differen-
tiable with hη(ωτ ,0) = 0, (hη)x(ωτ ,0) = 0 ∈ L (X), for all η ∈ [0,η0(ωτ)]. Furthermore, (5.3)
implies that

lim
η→0

sup
(t,x)∈R×B(0,r)

{
∥hη(Θtωτ ,x)−h0(x)∥X +∥(hη)x(Θtωτ ,x)−h′0(x)∥L (X)

}
= 0, (5.18)

for all r > 0 and ωτ ∈ R×Ω.

We recall that, η0 is chosen such that the linear evolution process {ϕη(t − s,Θsωτ) : t ≥
s}, given by

ϕη(t − s,Θsωτ) = eA(t−s)+
∫ t

s
eA(t−r)Bη(Θrωτ)ϕη(r− s,Θsωτ)dr, t ≥ s, (5.19)
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admits an exponential dichotomy with bound Mη , exponent αη and family of projections
{Πu

η(t) : t ∈ R}, for every η ∈ (0,η0(ωτ)], see (CARABALLO et al., 2021b, Theorem 3.9) for
details. Moreover, for each Θ-invariant function η̄ : R×Ω → [0,1], with η̄(ωτ)≤ η0(ωτ), the
co-cycle (ϕη̄ ,Θ) admits an exponential dichotomy with bound Mη̄ , exponent αη̄ and family of
projections {Πu

η̄
(ωτ) : ωτ ∈ R×Ω}.

If z is a solution of (5.17) we write zu(t) = Πu
η(t)z(t) and zs(t) = Πs

η(t)z(t), t ∈R, where
Πu

η(t) = IdX −Πs
η(t), t ∈ R. Then zu and zs are the solutions of

żu = Aη(Θtωτ)zu +hu
η(Θtωτ ,zu(t)+ zs(t)),

żs = Aη(Θtωτ)zs +hs
η(Θtωτ ,zu(t)+ zs(t)),

(5.20)

where Aη(ωτ) = A+Bη(ωτ), and hk
η(ωτ , ·) = Πk

η(ωτ)hη(ωτ , ·), k = u,s.

Since, for each ωτ fixed, hk
η(Θtωτ ,0)= 0, with (hk

η)x(Θtωτ ,0)= 0 and hk
η are continuous

differentiable in X , uniformly with respect to t, we obtain that given ρ > 0 there exists δ0(ωτ)> 0
such that if ∥z∥X ,∥z̃∥X ≤ δ0(ωτ) then

sup
t∈R

∥hk
η(Θtωτ ,z)∥X ≤ ρ,

sup
t∈R

∥hk
η(Θtωτ ,z)−hk

η(Θtωτ , z̃)∥ ≤ ρ∥z− z̃∥X , k = s,u.
(5.21)

Note that, from (5.18), it is possible to choose δ0 : R×Ω → (0,+∞) as a Θ-invariant function.
This is one of the main differences to the deterministic case and to work with the Θ-invariance is
the key to our further results.

Remark 5.2.9. For each ωτ fixed, it is possible to extend hu
η(ωτ , ·),hs

η(ωτ , ·) outside the ball

of radius δ0(ωτ) such that this extension satisfies both conditions in (5.21) for all z, z̃ ∈ X, see

(CARVALHO; LANGA, 2007b). Therefore, we obtain the existence and continuity of unstable and

stable set, as a graph, for hu
η and hs

η satisfying (5.21), for all z, z̃ ∈ X, then, using a localization

procedure, we conclude existence and continuity of local unstable sets, as a graph, for the case

when hk
η satisfies (5.21) in the ball of radius δ (ωτ), for each ωτ ∈ R×Ω.

Assuming that (5.21) holds for all z, z̃ ∈ X , we will obtain that, for all suitably small ρ ,
the unstable sets are graphs of Lipschitz maps in the class defined next. Given L > 0 and a family
of projections {Πu(s) : s ∈ R}. Denote by L B(L) a complete metric space of all bounded and
globally Lipschitz continuous functions Σ : R×X → X such that R×X ∋ (s,z) 7→ Σ(s,z) :=
Σ(s,Πu(s)z) ∈ Πs(s)X and

sup
{
∥Σ(s,Πu(s)z)∥X ;(s,z) ∈ R×X

}
≤ L,

∥Σ(s,Πu(s)z)−Σ(s,Πu(s)z̃)∥X ≤ L∥Π
u(s)z−Π

u(s)z̃∥X ,
(5.22)

with distance between Σ, Σ̃ ∈ L B(L) given by

|||Σ− Σ̃||| := sup
(t,z)∈R×X

∥Σ(t,z)− Σ̃(t,z)∥X . (5.23)



100 Chapter 5. Structural stability of nonautonomous random attractors

Theorem 5.2.10. Let ωτ ∈ R×Ω be fixed, and η ∈ [0,η0(ωτ)]. Suppose that ρ > 0 is suitable

small such that there is L = L(ρ,αη ,Mη)> 0 satisfying

ρMη

αη

≤ L,
ρMη

αη

(1+L)< 1

ρM2
η(1+L)

αη −ρMη(1+L)
≤ L,

ρMη +
ρ2M2

η(1+L)(1+Mη)

2αη −ρMη(1+L)
<

αη

2
.

(5.24)

Then, for each ωτ ∈ R×Ω fixed and η ∈ (0,η0(ωτ)], there exists Σu
η = Σu

η ,ωτ
∈ L B(L), such

that the unstable set of the zero solution of (5.17) is given by

W u
η (0) = {(s,z) ∈ R×X : z = Π

u
η(s)z+Σ

u
η(s,Π

u
η(s)z)}, (5.25)

and, for any r > 0 and s ∈ R,

sup
t≤s

sup
∥z∥X≤r

{∥Π
u
η(t)z−Π

u
0z∥X +∥Σ

u
η(t,Π

u
η(t)z)−Σ

u
0(Π

u
0z)∥X}

η→0→ 0. (5.26)

Furthermore, if ζ (t)= ζ u(t)+ζ s(t), where ζ k(t)=Πk
η(t)ζ (t), for k= u,s, is a backward-

bounded global solution of (5.17), then there is γ > 0 such that,

∥ζ
s(t)−Σ

u
η(t,ζ

u(t))∥X ≤ Mηe−γ(t−s)∥ζ
s(s)−Σ

u
η(s,ζ

u(s))∥X , t ≥ s. (5.27)

Theorem 5.2.10 follows directly from (CARVALHO; LANGA, 2007b, Theorem 3.1).

From Theorem 5.1.6 and Theorem 5.2.10, we can obtain the existence and continuity of
local unstable sets.

Theorem 5.2.11 (Existence and continuity of local unstable set). Let η ∈ [0,1], and hη : R×
Ω×X → X by such that for each ωτ , the mapping z 7→ hη(ωτ ,z) is continuously differentiable.

Consider

ż = Aη(Θtωτ)z+hη(Θtωτ ,z), ωτ ∈ R×Ω. (5.28)

Assume that hη(ωτ ,0) = 0, (hη)x(ωτ ,0) = 0 ∈ L (X), h0 : X → X, A0(Θtωτ) = A, {hη}η∈[0,1]

satisfies (5.18), and that z∗0 = 0 is a hyperbolic solution of (5.28) for η = 0. Then given ε0 > 0
suitable small, the following hold:

1. There exist a Θ-invariant function η0 : R×Ω → [0,1] such that z∗η = 0 is a hyperbolic

solution of (5.28), for each η ∈ (0,η0(ωτ)]. In particular, the linear evolution process

{ϕη(t − s,Θsωτ) : t ≥ s}, associated to the linear part of (5.28) (corresponding to the

linearization of {ψη(t − s,Θsωτ) : t ≥ s} around ξ ∗
η(Θtωτ)), admits an exponential di-

chotomy with family of projections {Πu
η(s) : s ∈ R}.
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2. The families of projections Πu
η = {Πu

η(s) : s ∈ R}, η ∈ (0,η0(ωτ)] satisfy

lim
η→0

sup
t∈R

∥Π
u
η(t)−Π

u
0∥L (X) = 0. (5.29)

3. There exist Θ-invariant function δ0 : R×Ω → (0,+∞) (independent of η) such that for

each ωτ and η ∈ [0,η0(ωτ)], and a map

R×BX(0,δ0(ωτ)) ∋ (s,z) 7→ Σ
u
η(s,z) := Σ

u
η(s,Π

u
η(s)z), (5.30)

with the property: given δ ∈ (0,δ0(ωτ)), there exists 0 < δ ′′ < δ ′ < δ ,

{Π
u
η(s)z+Σ

u
η(s,Π

u
η(s)z) : ∥z∥X ≤ δ

′′} ⊂

W u,δ ′
η (0)(s)⊂

{Π
u
η(s)z+Σ

u
η(s,Π

u
η(s)z) : ∥z∥X ≤ δ}.

(5.31)

4. For each ωτ fixed, the family of graphs of the maps {Ση}η∈(0,η0(ωτ )] behaves continuously

at η = 0:

sup
t≤s

sup
∥z∥≤δ0(ωτ )

{∥Π
u
η(t)−Π

u
0∥L (X)+∥Σ

u
η(t,Π

u
η(t)z)−Σ

u
0(Π

u
0z)∥X}

η→0→ 0, ∀s ∈ R.

(5.32)

Proof. Item 1 is a corollary of Theorem 5.1.6 and Item 2 follows from the continuous dependence
of projections, in the sense of (CARVALHO; LANGA; ROBINSON, 2013, Theorem 7.9) for
evolution processes.

By hypotheses, let ρ > 0 be such that there is L satisfying (5.24), then there exists δ0(ωτ)

such that (5.21) is satisfied for z, z̄ ∈ BX(0,δ0(ωτ)).

According to Remark 5.2.9 and Theorem 5.2.10, by a cut-off procedure, we obtain the
desired function Σu

η : R×BX(0,δ0(ωτ))→ X , for each η ∈ (0,η0(ωτ)].

Thus, we only need to check (5.31). We claim that given δ ∈ (0,δ0(ωτ)), there exists
δ ′ < δ such that any global solution ζ : R→ X of {ψη(t − s,Θsωτ) : t ≥ s} on the unstable set
such that ∥ζ (s)∥ ≤ δ ′ must satisfy ∥ζ (t)∥ ≤ δ , for t ≤ s.

Indeed, from (5.20), ζ u(t) = Πu
η(t)ζ (t) satisfies

ζ
u(t) = ϕη(t − s,Θsωτ)Π

u
η(s)ζ0

+
∫ t

s
ϕη(t − r,Θrωτ)Π

u
η(r)h

u
η(Θrωτ ,ζ

u(r)+Σ
u
η(r,ζ

u(r)))dr, t ≤ s.

Since {ϕη(t − s,Θsωτ) : t ≥ s} admits an exponential dichotomy, due to Grönwall’s inequality,
we obtain

∥ζ
u(t)∥X ≤ Mηe(αη−ρMη (1+L))(t−s)∥ζ

u(s)∥X , t ≤ s.
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Also, since ∥Σu
η(t,ζ

u(t))∥X ≤ L∥ζ u(t)∥X , t ∈ R, we have that

∥ζ (t)∥X ≤ M2
η(1+L)e(αη−ρMη (1+L))(t−s)∥ζ (s)∥X , t ≤ s. (5.33)

Then, taking δ ′ = δ/M2
η(1+L), we see that

W u,δ ′
η (0)(s)⊂ {Π

u
η(s)z+Σ

u
η(s,Π

u
η(s)z) : ∥z∥X ≤ δ}. (5.34)

Finally, by the above argument, we also conclude that there exists δ ′′ ∈ (0,δ ′) such that

{Π
u
η(s)z+Σ

u
η(s,Π

u
η(s)z) : ∥z∥X ≤ δ

′′} ⊂W u,δ ′
η (0)(s). (5.35)

The proof is complete.

Remark 5.2.12. We observe that, as in Theorem 5.1.6[Item 2], using Θ-invariant functions

η̄ : R×Ω → (0,1] it is possible to conclude existence of local unstable manifolds of the random

hyperbolic solutions ξ ∗
η̄

for the nonautonomous random dynamical systems ψη̄ .

We emphasize that these results on the existence and continuity of local unstable sets are
the key to obtain lower semicontinuity and topological structural stability, as we will see in the
following sections.

Remark 5.2.13. We can obtain similar results concerning the existence and continuity of local

stable sets following similar arguments to those presented here and (CARVALHO; LANGA,

2007b) for the deterministic case.

5.3 Continuity of nonautonomous random attractors
In this section, we prove the continuity of attractors in the situation that the perturbed

system is nonautonomous random whereas the limiting is an autonomous dynamical system
which has an attractor given as union of unstable sets of hyperbolic equilibria.

First, we recall the definition of continuity of sets in Banach space X , for an introduction
of these notions see (CARVALHO; LANGA; ROBINSON, 2013, Chapter 3). .

Definition 5.3.1. Let {Aη}η∈[0,1] be a family of subsets of a Banach space X. We say that

{Aη}η∈[0,1] is

(1) Upper semicontinuous at η = 0 if limη→0 distH(Aη ,A0) = 0.

(2) Lower semicontinuous at η = 0 if limη→0 distH(A0,Aη) = 0.

(3) Continuous at η = 0 if it is upper and lower semicontinuous at η = 0.

Let Λ be a nonempty set. We say that {Aη(λ ) : λ ∈ Λ}η∈[0,1] is upper (lower) semicontinuous
at η = 0 if {Aη(λ )}η∈[0,1] is upper (lower) semicontinuous at η = 0, for each λ ∈ Λ.
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The following lemma shows that continuity can be characterized by the behavior of
sequences.

Lemma 5.3.2. Let {Aη}η∈[0,1] be a family of subsets of a Banach space X.

(1.1) If A0 is compact and {Aη}η∈[0,1] is upper semicontinuous at η = 0, then given ηn → 0+

as n →+∞ and xn ∈ Aηn , there exists {ηnk}k and x0 ∈ A0 such that xnk → x0 as k → ∞.

(1.2) If for every sequences ηn → 0 and xn ∈Aηn , there is a subsequence ηnk k and x0 ∈A0 such

that xnk → x0 as k →+∞, then {Aη}η∈[0,1] is upper semicontinuous at η = 0.

(2.1) If A0 is compact and for each x0 ∈A and ηn → 0 as n→+∞ there exist there exists {ηnk}k

and xk ∈ Aηnk
such that xk → x0 as k →+∞, then {Aη}η∈[0,1] is lower semicontinuous at

η = 0.

(2.2) If {Aη}η∈[0,1] is lower semicontinuous at η = 0, then for each x0 ∈ A and ηn → 0 as

n →+∞ there exist there exists {ηnk}k and xk ∈ Aηnk
such that xk → x0 as k →+∞.

For the proof see (CARVALHO; LANGA; ROBINSON, 2013, Lemma 3.2) and note that
the compactness is only needed in items (1.1) and and (2.1).

Now, we present a result on the continuity of attractors, as a consequence of a careful
study of their internal structure, presented in the previews sections.

Theorem 5.3.3 (Continuity of nonautonomous random attractors). Let T0 = {T0(t) : t ≥ 0}
be the semigroup associated to (5.1) and (ψη ,Θ) be the nonautonomous dynamical systems

associated to (5.2), and assume that condition (5.3) is satisfied. Additionally, suppose that

(a) For each η ∈ [0,1], the co-cycle (ψη ,Θ) has a nonautonomous random attractor {Aη(ωτ) :
ωτ ∈ R×Ω} and

⋃
t∈R

⋃
η∈[0,1]

Aη(Θtωτ) is compact, ∀ωτ ∈ R×Ω;

(b) T0 = {T0(t) : t ≥ 0} is a semigroup with global attractor given by

A0 =
p⋃

j=1

W u(y∗j), (5.36)

for which all the equilibria {y∗j : 1 ≤ j ≤ p} are hyperbolic.

Then given ε0 > 0 suitable small, there exists a Θ-invariant function η0 : R×Ω → (0,1] such

that, for each ωτ fixed, the following hold:
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1. For any η ∈ (0,η0(ωτ)] and j ∈ {1, · · · , p}, there exists a hyperbolic solution ξ ∗
j,η of

{ψη(t − s,Θsωτ) : t ≥ s} with

sup
j

sup
t∈R

∥ξ
∗
j,η(Θtωτ)− y∗j∥X < ε0, (5.37)

where the linearized associated evolution process admits an exponential dichotomy with

family of projections {Πu
j,η(s) : s ∈ R}.

2. There exists δ0(ωτ)> 0, where δ0 is Θ-invariant and independent of η , such that for each

ωτ , j ∈ {1, · · · , p}, and η ∈ [0,η0(ωτ)], there exists a map

R×BX(0,δ0(ωτ)) ∋ (s,z) 7→ Σ
u
j,η(s,z) := Σ

u
j,η(s,Π

u
j,η(s)z), (5.38)

with the property: given δ ∈ (0,δ0(ωτ)), there exists 0 < δ ′′ < δ ′ < δ ,

{ξ
∗
j,η(s)+Π

u
j,η(s)z+Σ

u
j,η(s,Π

u
j,η(s)z) : ∥z∥X ≤ δ

′′} ⊂

W u,δ ′

j,η (ξ ∗
j,η)(s)⊂

{ξ
∗
j,η(s)+Π

u
j,η(s)z+Σ

u
j,η(s,Π

u
j,η(s)z) : ∥z∥X ≤ δ};

(5.39)

3. The family of graphs of {Σu
j,η}η∈[0,η0(ωτ )] is continuous at η = 0 as in Theorem 5.2.11[Item

(4)], for each j ∈ {1, · · · , p}.

4. For each ωτ , the family of pullback attractors {Aη(Θtωτ) : t ∈R}η∈[0,η0(ωτ )] is continuous

at η = 0.

In particular, we have continuity of nonautonomous random attractors in the following sense:

given ε > 0, there exists a Θ-invariant function ηε ≤ η0 such that, for every Θ-invariant function

η̄ , with η̄ ≤ ηε , we have

sup
t∈R

dH(Aη̄(Θtωτ),A0)< ε, ∀ωτ ∈ R×Ω, (5.40)

where {Aη̄(ωτ) : ωτ ∈R×Ω} is the nonautonomous random attractor of (ψη̄ ,Θ) and dH(A,B)=

max{distH(A,B),distH(B,A)}, for A,B ⊂ X.

Proof. Note that, items 1,2 and 3 are consequences of Theorem 5.1.6 and Theorem 5.2.11, thus
to conclude the proof we only need to prove Item 4.

Note that, from (5.3), we are able to prove that

lim
η→0

sup
t∈[0,T ]

sup
s∈R

sup
∥z∥X≤r

∥ψη(t,Θsωτ)z−T0(t)z∥X → 0, (5.41)

for any T,r > 0 and ωτ ∈ R×Ω.

The proof of upper semicontinuity follows from standard arguments using (5.41) and Hy-
pothesis (a), see (CARVALHO; LANGA; ROBINSON, 2013, Chapter 3) for pullback attractors,
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and (CARABALLO; LANGA, 2003; CARABALLO; LANGA; ROBINSON, 1998; WANG,
2012a) for random attractors.

Now, we prove lower semicontinuity using Lemma 5.3.2. In fact, let ωτ ∈ R×Ω, t ∈ R,
and x0 ∈ A0, we will show that there exist sequences ηk ∈ (0,η0(ωτ)], with ηk → 0, and
xk ∈ Aηk(Θtωτ) such that xk → x0 as k →+∞.

Indeed, from (5.36), x0 ∈W u(y∗j) for some j ∈ {1, · · · , p}. By Item 3 of Theorem 5.2.11,
there exist 0 < δ ′′ < δ ′ < δ0(ωτ) such that

W u,δ ′′

0 (y∗j)⊂ {y∗j +Π
u
j,0z+Σ

u
0(Π

u
j,0z) : ∥z∥X ≤ δ

′}, and (5.42)

{ξ
∗
j,η(r)+Π

u
j,η(r)z+Σ

u
j,η(r,Π

u
j,η(r)z) : ∥z∥X ≤ δ

′} ⊂W u,δ0
η (ξ ∗

j,η)(r), (5.43)

for every r ∈ R and η ∈ (0,η0(ωτ)]. Thus there exists a global solution ζ : R→ X of T0 such
that ζ (0) = x0 and ζ (−s) ∈W u,δ ′′

0 (y∗j), for some s ≥ 0.

Since ζ (−s) ∈ {y∗j + Πu
j,0z + Σu

j,0(Π
u
j,0z), ∥z∥X ≤ δ ′}, by Theorem 5.2.11[Item 4],

there exist {ηk} ⊂ (0,η0(ωτ)] and zk ∈ {ξ ∗
j,ηk

(t − s)+Πu
j,ηk

(t − s)z+Σu
j,ηk

(t − s,Πu
j,ηk

(t − s)z) :
∥z∥X ≤ δ ′} with ηk → 0 and zk → ζ (−s) as k →+∞.

By (5.43) and Lemma 5.2.7, we see that xk = ψηk(t − (t − s),Θt−sωτ)zk ∈ Aηk(Θtωτ),
for all k ∈ N. Then, we use (5.41) and that limk zk = ζ (−s), to guarantee that limk xk = x0, and
the proof is complete.

Remark 5.3.4. Theorem 5.3.3 can be extended to the case where the limit is nonautonomous.

The key steps of the proof will be again the Θ-invariance for the maps involved.

Remark 5.3.5. Alternatively, Assumption (a) can be replaced by the following two conditions:

(a.1) For each η ∈ [0,1], the co-cycle (ψη ,Θ) has a nonautonomous random attractor {Aη(ωτ) :
ωτ ∈ R×Ω} and ⋃

t∈R

⋃
η∈[0,1]

Aη(Θtωτ) is bounded, ∀ωτ ∈ R×Ω;

(a.2) The family {ψη ,Θ}η∈[0,1] is collectively asymptotic compact in X, i.e., for all ωτ , the

sequence

{ψηn(tn,Θ−tnωτ)xn} has a convergent subsequence in X

whenever ηn → 0, tn →+∞, and {xn} is a bounded sequence in X,

and Theorem 5.3.3 will still hold true. This will be the case when applying this result for damped

wave equations, see Subsection 5.5.2.

Remark 5.3.6. Theorem 5.3.3 is not optimal in the sense that we can not obtain the limit

sup
ωτ∈R×Ω

dH(Aη(ωτ),A0)→ 0, as η → 0. (5.44)
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To obtain this conclusion one should assume

sup
ωτ∈R×Ω

sup
x∈B(0,r)

{
∥ fη(ωτ ,x)− f0(x)∥X +∥( fη)x(ωτ ,x)− f ′0(x)∥L (X)

}
η→0→ 0, (5.45)

for all r ≥ 0, instead of (5.3). In this case, it is possible to obtain the conclusions of Theorem

5.3.3 with η0 > 0 and δ0 > 0 independent of ωτ , and therefore to conclude (5.44). Note that this

case is similar to the deterministic case, see (CARVALHO; LANGA; ROBINSON, 2009, Theorem

3.1).

However, in the applications to check condition (5.45) one has to assume that the noise

is uniformly bounded as in Remark 5.5.4, see also (BOBRYK, 2021; CARABALLO et al., 2020)

for more examples of uniformly bounded noises. On the other hand, in Section 5.5 we provide an

example, namely Example 5.5.2, where conditions of Theorem 5.3.3 are checked, but we do not

know if its possible to verify (5.45).

Now, that the study of continuity of attractor is complete, the next step is to prove that
the gradient structure is preserved under nonautonomous random perturbation.

5.4 Topological structural stability
In this section, we present a result on the topological structural stability of attractors for

nonautonomous random dynamical systems. We study co-cycles (ψη ,Θ) obtained by nonau-
tonomous random perturbations of a gradient semigroup {T0(t) : t ≥ 0}.

First, we recall some basic concepts necessary to define dynamically gradient evolution

processes.

Definition 5.4.1. Let S = {S(t,s) : t ≥ s} be an evolution process with a pullback attractor

{A (t) : t ∈ R} and Ê = {E(t) : t ∈ R} be an invariant family for S .

1. Given a family of open sets Û = {U(t) : t ∈ R} such that Ê ⊂ Û (i.e., E(t) ⊂ U(t), for

every t ∈ R) we say that Ê is the maximal invariant in Û if given an invariant family F̂ in

Û, then F̂ ⊂ Ê.

2. If there is a ε0 > 0 such that Ê is the maximal invariant family in {Oε0(E(t)) : t ∈ R}, we

say that Ê is a isolated invariant family.

3. We say that {Ê1, · · · , Êp} is a disjoint collection of isolated invariant families if Êi is an

isolated invariant family for every 0 ≤ i ≤ p and there is ε0 > 0 such that Oε0(E j(t))∩
Oε0(Ei(t)) = /0, for i ̸= j and every t ∈ R.

4. A homoclinic structure in {Ê1, · · · , Êp} is a subcollection {Êl1, · · · , Êlk}, with k ≤ p, and

a set of global solutions {ζ1, · · · ,ζk} of (ψ,Θ) in A which, setting Êlk+1 = Êk1 , satisfy

lim
t→−∞

d(ζi(t),Eli(t)) = 0, and lim
t→+∞

d(ζi(t),Eli+1(t)) = 0, (5.46)
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for each 1 ≤ i ≤ k, and there exists a ε > 0 such that

sup
t∈R

d(ζi(t),
p⋃

i=1

Oε(Eli(t)))> 0, ∀1 ≤ i ≤ k, and t ∈ R×Ω. (5.47)

Definition 5.4.2. Let S = {S(t,s) : t ≥ s} with a pullback attractor {A (t) : t ∈ R} which

contains a disjoint collection of invariant families {E1, · · · ,Ep}. We say that S is a dynamically
gradient evolution process with respect to {Ê1, · · · , Êp} if

• (G1) If ζ : R → X is a global solution of S such that ζ (t) ∈ A (t), then there exist

i, j ∈ {1, · · · , p} such that

lim
t→−∞

d(ζ (t),Ei(t)) = 0, and lim
t→+∞

d(ζ (t),E j(t)) = 0. (5.48)

• (G2) {Ê1, · · · , Êp} does not admit any homoclinic structure.

This notion of dynamically gradient was studied for random dynamical systems in
(CARABALLO; LANGA; LIU, 2012; JU; QI; WANG, 2018). For topological structural stability
of deterministic autonomous or nonautonomous dynamical systems, see (ARAGãO-COSTA et

al., 2013; BORTOLAN et al., 2020; CARVALHO; LANGA, 2009).

Now, we present our result on the topological structural stability for random dynamical
systems.

Theorem 5.4.3. Assume that hypotheses of Theorem 5.3.3 are fulfilled and additionally assume

that T0 = {T0(t − s) : t ≥ s} is a gradient evolution process with respect to {y∗1, · · · ,y∗p}, where

y∗j is hyperbolic for every 1 ≤ j ≤ p.

Then, there exists a Θ-invariant function η1 : R×Ω → (0,1) such that for each ωτ

fixed the evolution process {ψη(t − s,Θsωτ) : t ≥ s} is dynamically gradient with respect to

{ξ ∗
1,η , · · · ,ξ ∗

p,η}, ∀η ≤ η1(ωτ). Consequently,

Aη(Θtωτ) =
p⋃

j=1

W u
η (ξ

∗
j,η ;ωτ)(t),∀η ∈ [0,η1(ωτ)]. (5.49)

Proof. Let ωτ ∈ R×Ω be fixed and η ∈ (0,η0(ωτ)]. Let us prove the following claim: there
exists δ ′ ∈ (0,δ0(ωτ)) such that, if ζη : R→ X is a global solution in {Aη(Θtωτ) : t ∈ R} so
that

∥ζη(t)−ξ
∗
j,η(t)∥X < δ

′, ∀ t ≤ t0 (t ≥ t0), for some t0 ∈ R, (5.50)

then ∥ζη(t)−ξ ∗
j,η(t)∥X

t→−∞−→ 0 (∥ζη(t)−ξ ∗
j,η(t)∥X

t→+∞−→ 0).

We prove only the backwards case, the proof of the forward case will be similar using
the analogous results for the stable sets. First, note that ζ̃ (t) = ζη(t)− ξ ∗

j,η(t), for t ∈ R, j ∈
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{1, · · · , p}, and η ∈ (0,η0(ωτ)], thus we analyze the dynamics around the solution z = 0 of
(5.17). From Theorem 5.2.11[Item 3], there exists 0 < δ ′ < δ < δ0(ωτ) such that

{Π
u
j,η(s)z+Σ

u
j,η(s,Π

u
j,η(s)z) : ∥z∥X ≤ δ

′} ⊂W u,δ
η (0)(s),∀s ∈ R. (5.51)

Thus, (5.50) implies that ζ̃ (t) is inside the δ0(ωτ)-neighborhood for all t ≤ t0.

Hence, from (5.27) applied in the δ0(ωτ)-neighborhood of z = 0, we must have that
ζ̃ (t0)∈{Πu

j,η(t0)z+Σu
j,η(t0,Π

u
j,η(t0)z) : ∥z∥X ≤ δ ′}. Therefore, from (5.51), ζ̃ (t0)∈W u,δ

η (0)(t0)
and the proof of the claim is complete.

In this way, the proof will be a consequence of (BORTOLAN; CARVALHO; LANGA,
2020, Theorem 8.14).

Remark 5.4.4. Note that, if we assume (5.45) in Theorem 5.3.3 instead of (5.3), we obtain η1 > 0,

independent of ωτ , such that {ψη(t−s,Θsωτ) : t ≥ s} is a dynamically gradient evolution process

with respect to {ξ ∗
1,η , · · · ,ξ ∗

p,η}, ∀η ≤ η1. In this case, this notion of dynamically gradient is

compatible with the notion that appears in (CARABALLO; LANGA; LIU, 2012, Definition 4.17).

Remark 5.4.5. We believe that with the techniques employed in this chapter it is also possible

to obtain geometric structural stability, i.e., to show that Morse-Smale is stable under nonau-

tonomous random perturbations and that there will be phase diagram isomorphism between the

perturbed attractors and the limiting attractor, as we see in the deterministic case (BORTOLAN;

CARVALHO; LANGA, 2020, Chapter 12). This will be pursued in a future work.

5.5 Applications to differential equations
In this section, we present two applications. We first consider a semilinear differential

equation with a small nonautonomous multiplicative white noise, and then we study the effect of
a small bounded noise in the damping of a damped wave equation.

5.5.1 Stochastic differential equations

We consider the following family of stochastic differential equations with a nonau-
tonomous multiplicative white noise

dy = Bydt + f (y)dt +ηκty◦dWt , t ≥ τ, y(τ) = yτ , (5.52)

where B is a generator of a C0-semigroup {eBt : t ≥ 0} on X , the family {Wt : t ∈ R} is the
standard Wiener process, see (ARNOLD, 1998; CARABALLO; HAN, 2016), and κ : R→ R is
continuously differentiable, and η > 0. Equation (5.52) was considered in (CARABALLO et al.,
2021b) to study hyperbolicity. Next, we will modify problem (5.52) to see it as a nonautonomous
random differential equation satisfying the conditions of our results on the continuity and
topological structure stability of attractors.
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The canonical sample space of a Wiener process is Ω := C0(R) the set of continuous
functions over R which are 0 at 0 equipped with the compact open topology. We denote F the
associated Borel σ -algebra. Let P be the Wiener probability measure on F which is given by
the distribution of a two-sided Wiener process with trajectories in C0(R). The flow θ is given by
the Wiener shifts

θtω(·) = ω(t + ·)−ω(t), t ∈ R, ω ∈ Ω.

Lemma 5.5.1. Consider the following scalar stochastic differential equation

dzt + zdt = dWt . (5.53)

There exists a θ -invariant subset Ω̃ ∈ F of full measure such that limt→±∞
|ω(t)|

t = 0, ω ∈ Ω̃

and, for such ω , the random variable given by

z∗(ω) =−
∫ 0

−∞

es
ω(s)ds

is well defined. Moreover, for ω ∈ Ω̃, the mapping (t,ω) 7→ z∗(θtω) is a stationary solution of

(5.53) with continuous trajectories, and

lim
t→±∞

|z∗(θtω)|
t

= 0, ∀ω ∈ Ω̃. (5.54)

For the proof of Lemma 5.5.1 see (CARABALLO; KLOEDEN; SCHMALFUSS, 2004,
Lemma 4.1).

Let y be a solution for (5.52) and consider v(t,ω) := e−ηκtz∗(θtω)y(t,ω). Hence, v has to
satisfy the following nonautonomous random differential equation

v̇ = Bv+ e−ηκtz∗(θtω) f (eηκtz∗(θtω)v)+η [κt − κ̇t ]z∗(θtω)v, (5.55)

Define fη(t,ω,v) := e−ηκtz∗(ω) f (eηκtz∗(ω)v)+η [κt − κ̇t ]z∗(ω)v.

Since the mapping t 7→ z∗(θtω) has a sublinear growth, due to (5.54), it is possible to
choose a differential real function κ for which there are random variables m1,m2 > 0 such that

m1(ω) := sup
t∈R

{|κtz∗(θtω)|}< ∞, and m2(ω) := sup
t∈R

{|[κt − κ̇t ]z∗(θtω)|}< ∞.

Thus, using arguments similar to those of (CARABALLO et al., 2021b, Section 3.3) we
prove that the family { fη : η ∈ [0,1]} satisfies (5.3).

At this point, one can choose any gradient semigroup associated to ẏ = By+ f (y) and
consider the perturbation ηκty◦dWt and apply our results to the modified differential equation
(5.55). In particular:

Example 5.5.2. Let F : RN → R be a smooth real-valued function and f (x) =−∇F(x), x ∈ RN ,

and consider

ẋ = f (x)+ηκtx◦dWt , t > 0.
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When η = 0 this is called a gradient system. Then we obtain the nonautonomous random

differential equations

ẋ = e−ηκtz∗(θtω) f (eηκtz∗(θtω)x)+η [κt − κ̇t ]z∗(θtω)x, η ∈ [0,1]. (5.56)

Assume that there exists R0,σ > 0 such that

f (x) · x <−σ , for all |x| ≥ R0, (5.57)

and that the set {x ∈ RN : f (x) = 0} is finite and consist only in hyperbolic equilibria. Then,

ẋ = f (x) is globally well posed and its associated with a semigroup {T0(t) : t ≥ 0}, which is

gradient with respect to {x∗1, · · · ,x∗p}.

Then, the nonautonomous random dynamical systems associated to (5.56) have attractors

{Aη(ωτ) : ωτ ∈ R}, and this family of attractors satisfies the conclusions of Theorem 5.3.3 and

Theorem 5.4.3.

5.5.2 An application to partial differential equation

Now, we provide an application for a damped wave equation.

Consider the damped wave equation

utt +βut −∆u = f (u), in D (5.58)

with boundary condition u = 0, in ∂D, where D be a bounded smooth domain in R3, and
β ∈ (0,+∞). For f : R→ R we assume that

f ∈C2(R), max{| f ′(s)|, | f ′′(s)|} ≤ c(1+ |s|p), (5.59)

for some c > 0 and p < 2. Now, we consider a small random perturbation on the damping,

utt +βη(Θtω)ut −∆u = f (u), in D.

where βη(ωτ) := β +η |κτz∗(ω)|, η ∈ [0,1], ωτ ∈R×Ω, for some κ such that supt∈R{|κtz∗(θtω)|}<
∞, Thus, there exists two Θ-invariant maps b0,b1 : R× Ω → (0,+∞) such that b0(ωτ) ≤
βη(Θtωτ)≤ b1(ωτ), for every ωτ ∈ R×Ω.

The initial data will be taken in the space X = H1
0 (D)×L2(D). Hence, we obtain the

family of abstract evolutionary equations in X

ẏ = Bη(Θtωτ)y+F(y), η ∈ [0,1] (5.60)

where

y =

(
u

v

)
∈ X , Bη(ωτ) =

(
0 I

−A −βη(ωτ)

)
, F(y) =

(
0

f e(u)

)
,
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where A : D(A)⊂ L2(D)→ L2(D) is −∆ with Dirichlet boundary condition, with f e : H1
0 (D)→

L2(D) is given by f e(y1)(x) = f (y1(x)) for x ∈ D. Thus, conditions (5.59) implies local and
global well-posedness and that f e is continuously differentiable, see (ARRIETA; CARVALHO;
HALE, 1992) or (CARVALHO; LANGA; ROBINSON, 2013, Chapter 15) for details.

Consider the functional V : H1
0 (D)×L2(D)→ R given by

V0(u,v) =
1
2

∫
D
|∇u|2 + β

2

∫
D

v2 −
∫

D
G(u), (5.61)

where G(u)(x) =
∫ u(x)

0 f (s)ds. Thus V0 is a Lyapunov function relative to the set of equilibria for
(5.58), which we assume that is finite. The hyperbolic equilibrium points of (5.58) are of the form
y∗0 = (u∗0,0) where u∗0 is a solution of −∆u = f (u) such that 0 /∈ σ(−∆+Dx f e(u∗0)IdX). Thus
(5.58) is associated with a gradient semigroup {T0(t) : t ≥ 0}. See (BRUNOVSKY; RAUGEL,
2003) for conditions to obtain that this type of dynamics is generic on damped wave equations.

For each y0 ∈ X , ωτ ∈ R×Ω, and η ∈ [0,1] Equation (5.60) possess a unique solution
which can be written as

ψη(t,ωτ)y0 = ϕη(t,ωτ)y0 +φη(t,ωτ)y0, t ≥ 0. (5.62)

where {ϕη(t,ω) : t ∈ [0,+∞), ω ∈ Ω} is the solution operator of (5.60) with f = 0, and

φη(t,ωτ)y0 =
∫ t

0
ϕη(t − s,Θsωτ)F(ψη(s,ωτ)y0)ds. (5.63)

Towards the existence of attractors, we have the following lemma.

Lemma 5.5.3. There exists a bounded subset B (independent of (t,ω)) which pullback attracts at

time τ ∈R, for each τ ≤ t, every bounded subset of X under the action of {ψη(t−s,Θsωτ) : t ≥ s}.

In particular, {ψη(t − s,Θsωτ) : t ≥ s} is strongly pullback dissipative.

Furthermore, there are K > 0 and a Θ-invariant function α : R×Ω → (0,+∞), both

independent of η , such that

∥ϕη(t,ωτ)∥L (X) ≤ Ke−α(ωτ )t , t ≥ 0, (5.64)

and φη(t,ωτ) is a compact operator for every (t,ωτ) ∈ (0,+∞)×R×Ω. In particular, ψη is

pullback asymptotically compact for each η ∈ [0,1], in the sense of (WANG, 2012b, Definition

2.14).

The proof of Lemma 5.5.3 follows step by step the arguments presented in (CARA-
BALLO et al., 2010a, Section 2.1) (or see (CARVALHO; LANGA; ROBINSON, 2013, Chapter
15) for more detailed proofs), thus it will be omitted. Thus there are nonautonomous random
attractors {Aη(ωτ) : ωτ ∈ R×Ω} for (ψη ,Θ) for all η ∈ [0,1] satisfying Condition (a.1) of Re-
mark 5.3.5, see alternatively (WANG, 2012b). Additionally, using arguments similar to those in
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(CARABALLO et al., 2010a) the family {(ψη ,Θ)}η∈[0,1] is collectively pullback asymptotically
compact at η = 0. Therefore, conditions of Remark 5.3.5 are satisfied and it is possible to apply
our results to conclude that the family of attractors behaves continuously (using Theorem 5.3.3)
and that we have topological structural stability (using Theorem 5.4.3).

Remark 5.5.4. Instead of considering βη(ωτ) := β +η |κτz∗(ω)|, we could have considered

the following perturbations

β̃η(ω) = β +η
2
π

arctan◦z∗(ω), ω ∈ Ω,η ∈ [0,1], (5.65)

for β ∈ (1,+∞). For this perturbations a condition as (5.45) is verify for the symbol space Ω

instead of R×Ω. See also (CARABALLO; LÓPEZ-DE-LA-CRUZ, 2021) where the authors study

this type of perturbations.
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CHAPTER

6
CONCLUSION: ENGLISH, PORTUGUESE

AND SPANISH

6.1 Conclusion

The discretization of evolution processes employed to study nonuniform exponential
dichotomies, namely Theorem 2.2.6 and Theorem 2.2.10, allowed us to compare continuous and
discrete dynamical systems that exhibit nonuniform hyperbolicity. This method was introduced
by (HENRY, 1981) in the case of uniform exponential dichotomies. Through this technique we
establish the following results to the nonuniform case: uniqueness of the family of projections
(Corollary 2.2.8); continuous dependence of projections (Theorem 2.2.9); and robustness of
nonuniform exponential dichotomies (Theorem 2.2.11 and Theorem 3.3.3).

Moreover, it was possible to prove the robustness result with the assumption α > ν ,
which is the sharpest condition we can get with this technique. We also note that condition
(2.5) is not required in (BARREIRA; VALLS, 2015), while is needed when applying this
discretization method. Therefore, we obtain an improvement on the exponents of the robustness
result of (BARREIRA; VALLS, 2015) at the price of having to assume (2.5). However, it is
not a restrictive condition when dealing with evolution processes with nonuniform exponential
dichotomies, see Example 2.11 or (BARREIRA; VALLS, 1998).

The continuous dependence of projections and the persistence of hyperbolic solutions
play an important role in the study of continuity of local unstable sets and the latter in the
study of attractors under perturbation, as we have seen in Chapter 5. However, it is not clear
yet how to apply the results of stability of nonuniform hyperbolicity in the theory of attractors
under perturbation. On the other hand, the persistence of nonuniform hyperbolic solutions
and continuous dependence of projections should be important to study continuity of invariant
manifolds associated to the nonuniform hyperbolic solutions. This, in turn, will be crucial in
a possible application in the theory of attractors. In (LANGA; OBAYA; OLIVEIRA-SOUSA,
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2021) is presented applications of nonuniform exponential dichotomy of type II, studied in
Chapter 3, in the existence of pullback and forward attractors for evolution processes.

Combining the ideas of Chapter 2 and Chapter 4 it is possible to prove robustness of
nonuniform exponential dichotomies for nonautonomos random dynamical systems. Since in
Chapter 4 our goal was to study the effect of a small bounded noise on autonomous problems,
it was not expected to obtain nonuniform behavior on our hyperbolicity. We emphasize that
to consider a bounded noise was a crucial to prove permanence of the hyperbolicity and it is
sensible in real life applications (CARABALLO et al., 2019; CARABALLO et al., 2018; CARR,
2017).

The robustness of exponential dichotomy for nonautonomous random dynamical systems
is a fundamental property in the study of stability results for random dynamics. We were able
to study hyperbolicity for nonautonomous random differential equations and obtained global
solutions that behave as hyperbolic equilibria. As in (BORTOLAN; CARVALHO; LANGA,
2014; CARVALHO; LANGA, 2007b; CARVALHO; LANGA; ROBINSON, 2009) this was an
important step in order to obtain continuity and structure stability of attractors on nonautonomous
random attractors in Chapter 5. Finally, we note that the results of Chapter 4 and Chapter 5 can
also by applied for general non-compact random dynamical systems, see (WANG, 2012b) for a
formal definition.

6.2 Conclusão

A discretização de processos de evolução utilizada para estudar dicotomias exponenciais
não uniformes, Teorema 2.2.6 e Teorema 2.2.10, nos permitiu comparar sistemas dinâmicos
contínuos e discretos que exibem hiperbolicidade não uniforme. Este método foi introduzido por
(HENRY, 1981) no caso de dicotomias exponenciais uniformes. Por meio dessa técnica, estab-
elecemos os seguintes resultados para o caso não uniforme: unicidade da família de projeções
(Corolário 2.2.8); dependência continua das projeções (Teorema 2.2.8); robusteza de dicotomias
exponenciais (Teorema 2.2.11 e Teorema 3.3.3).

Além disso, foi possível comprovar o resultado de robusteza com a condição α > ν , que
é a condição mais fina que podemos obter com esta técnica. Também observamos que a condição
(2.5) não é necessária em (BARREIRA; VALLS, 2015), porém é requerida quando empregamos
esse método de discretização. Deste modo, obtemos uma melhora do resultado de (BARREIRA;
VALLS, 2015) com relação aos expoentes pagando o preço de ter que assumir (2.5). No entanto,
(2.5) não é uma condição restritiva quando se trata de processos de evolução com dicotomias
exponenciais não uniformes com pode ser observado em (BARREIRA; VALLS, 1998) ou no
Exemplo 2.11.

Como vimos no Capítulo 5, a dependência contínua de projeções e a persistência de
soluções hiperbólicas desempenham um papel importante no estudo da continuidade de conjuntos
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instáveis locais e este último no estudo de atratores sob perturbação. No entanto, ainda não está
claro como aplicar os resultados da estabilidade da hiperbolicidade não uniforme na teoria dos
atratores sob perturbação. Por outro lado, a persistência de soluções hiperbólicas não uniformes
e a dependência contínua de projeções devem ser importantes para estudar a continuidade
de variedades invariantes associadas às soluções hiperbólicas não uniformes. Notamos que
em (LANGA; OBAYA; OLIVEIRA-SOUSA, 2021) são apresentadas aplicações da dicotomia
exponencial não uniforme do tipo II, estudada no Capítulo 3, a teoria de existência de atratores
pullback and forward para processos de evolução.

Combinando as ideais dos capítulos 2 e 4 é possível provar a robustez de dicotomias
exponenciais não uniformes para sistemas dinâmicos aleatórios não uniformes. Porém, dado
que nos capítulos 4 e 5 o nosso objetivo era estudar o efeito de um pequeno ruído limitado em
problemas autônomos, não era esperado obter um comportamento não uniforme em nossa hiper-
bolicidade. Enfatizamos que considerar um ruído limitado foi crucial para provar a permanência
da hiperbolicidade e que é sensato em aplicações (CARABALLO et al., 2019; CARABALLO et

al., 2018; CARR, 2017).

A robustez da dicotomia exponencial para sistemas dinâmicos aleatórios não autônomos
é uma propriedade fundamental no estudo de resultados de estabilidade para dinâmica aleatória.
Fomos capazes de estudar a hiperbolicidade para equações diferenciais aleatórias não autônomas
e obter soluções globais que se comportam como equilíbrios hiperbólicos. Como em (BOR-
TOLAN; CARVALHO; LANGA, 2014; CARVALHO; LANGA, 2007b; CARVALHO; LANGA;
ROBINSON, 2009) esse foi um passo importante para compreender a continuidade e estabilidade
estrutural de atratores aleatórios não autônomos no Capítulo 5. Finalmente, notamos que os
resultados dos capítulos 4 e 5 podem ser aplicados a sistemas dinâmicos não autônomos definidos
em espaços de símbolos não compactos, ver (WANG, 2012b) para uma definição formal.

6.3 Conclusión

La discretización de los procesos de evolución empleada para estudiar dicotomías ex-
ponenciales no uniformes, a saber, el Teorema 2.2.6 y Teorema 2.2.10, nos permitió comparar
sistemas dinámicos continuos y discretos que exhiben hiperbolicidad no uniforme. Este método
fue introducido por (HENRY, 1981) en el caso de dicotomías exponenciales uniformes. Mediante
esta técnica establecemos los siguientes resultados del caso no uniforme: unicidad de la familia
de proyecciones (Corolario 2.2.8); dependencia continua de las proyecciones (Teorema 2.2.8);
robustez de dicotomías exponenciales (Teorema 2.2.11 y Teorema 3.3.3).

Además, fue posible probar el resultado de robustez con la condición α > ν , que es la
más precisa que podemos obtener con esta técnica. También notamos que la condición (2.5) no
se requiere en (BARREIRA; VALLS, 2015), y es necesaria cuando se aplica este método de
discretización. Por tanto, obtenemos una mejora en los exponentes del resultado de robustez de
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(BARREIRA; VALLS, 2015) a cambio de tener que asumir la condición (2.5). Sin embargo, no es
una condición restrictiva cuando se trata de procesos de evolución con dicotomías exponenciales
no uniformes, ver Ejemplo 2.11 o (BARREIRA; VALLS, 1998).

Como hemos visto en el Capítulo 5, la dependencia continua de las proyecciones y
la persistencia de las soluciones hiperbólicas juegan un papel importante en el estudio de la
continuidad de los conjuntos inestables locales y en el estudio de los atractores bajo perturbación.
Sin embargo, aún no está claro cómo aplicar los resultados de la estabilidad de la hiperbolicidad
no uniforme en la teoría de los atractores bajo perturbación. Por otro lado, la persistencia de
soluciones hiperbólicas no uniformes y la dependencia continua de las proyecciones pudieron ser
importantes para estudiar la continuidad de las variedades invariantes asociadas a las soluciones
hiperbólicas no uniformes. Observamos que, en (LANGA; OBAYA; OLIVEIRA-SOUSA, 2021)
se presentan aplicaciones de la dicotomía exponencial no uniforme de tipo II, estudiada en el
Capítulo 3, en la existencia de atractores pullback y forward para los procesos de evolución.

Combinando las ideas del Capítulo 2 y del Capítulo 4 es posible probar la robustez de
dicotomías exponenciales no uniformes para sistemas dinámicos no autónomos aleatorios. Dado
que nuestro objetivo era estudiar el efecto de un pequeño ruido acotado en problemas autónomos,
no se esperaba obtener un comportamiento no uniforme en nuestra hiperbolicidad. Destacamos
que considerar un ruido acotado fue crucial para demostrar la permanencia de la hiperbolicidad
y que es sensato en aplicaciones de la vida real (CARABALLO et al., 2019; CARABALLO et

al., 2018; CARR, 2017).

La robustez de la dicotomía exponencial para los sistemas dinámicos aleatorios no
autónomos es una propiedad fundamental en el estudio de los resultados de estabilidad para la
dinámica aleatoria. Pudimos estudiar la hiperbolicidad para ecuaciones diferenciales aleatorias
no autónomas y obtuvimos soluciones globales que se comportan como equilibrios hiperbólicos.
Como en (BORTOLAN; CARVALHO; LANGA, 2014; CARVALHO; LANGA, 2007b; CAR-
VALHO; LANGA; ROBINSON, 2009), este fue un paso importante para obtener la continuidad y
estabilidad de la estructura de los atractores en atractores aleatorios no autónomos en el Capítulo
5. Finalmente, notamos que los resultados del Capítulo 4 y del Capítulo 5 también se pueden
aplicar para sistemas dinámicos aleatorios no compactos generales, consulte (WANG, 2012b)
para la definición.
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