EDUFYSoS: A Factory of Educational System of
Systems Case Studies

Antonia Bertolino*, Guglielmo De Angelis', Francesca Lonetti*, Vania de Oliveira Neves*, and Miguel Angel Olivero*
*CNR-ISTI, Pisa, Italy
Email: {antonia.bertolino,francesca.lonetti,miguelangel.olivero } @isti.cnr.it
fCNR-IASI, Roma, Italy

Email: guglielmo.deangelis @iasi.cnr.it

fUniversidade Federal Fluminense, Niterdi, Brazil

Email: vania@ic.uff.br

Abstract—We propose a factory of educational System of
Systems (SoS) case studies that can be used for evaluating SoS
research results, in particular in SoS testing. The factory includes
a first set of constituent systems that can collaborate within
different SoS architectures to accomplish different missions. In
the paper, we introduce three possible SoSs and outline their
missions. For more detailed descriptions, diagrams and the source
code, we refer to the online repository of EDUFYSoS. The factory
is meant to provide an extensible playground, which we aim to
grow to include more systems and other missions with the support
of the community.

Index Terms—System of Systems, Software Testing, Educa-
tional Environment, SoS Factory, Testbed, Case Study

I. INTRODUCTION

We assist today to the growing digitalization of every
aspect of modern business and societal life [1]. The spread
of Internet for global communication, followed by the advent
of Cyber-Physical Systems or more in general of the “Smart-
Anything-Everywhere", has radically changed the information
technology paradigms and the processes by which software
systems are engineered. As early envisioned by Maier [2],
the combination of pre-existing independent systems into a
more complex System of Systems (SoS) allows for achieving
a global collaborative mission beyond the goals and capa-
bilities of the individual constituent systems. In this way,
innovative distributed systems can be rapidly developed, for
example to face emergency situations, but not only: domains
of applications where the SoS paradigm is becoming prevalent
include [3], [4], among others, transport networks, smart grids,
e-commerce, homeland security, health care, military.

As we overview in the next section, research in SoS has
been very active in recent years. SoS engineering poses several
challenges relative to the modeling and management of the
collaboration among their constituent systems. Depending on
the SoS architecture, these could not be ready available to
cooperate and adhere to the SoS directives. More challenging
though is SoS validation, due to the concomitance of growing
complexity with the (possibly even implicit) involvement of
several stakeholders. On top of this, having been investigating
SoS testing for some time [5], [6], we face another, practical,

difficulty: the lack of SoS case studies on which proposed
approaches can be validated and compared against each other.

The importance of common case studies has long been rec-
ognized by the software testing community, who has developed
and shared several repositories for evaluating testing research,
e.g., SIR! or Defects4J?. To the best of our knowledge no such
repository exists for SoS researchers: several papers discuss
scenarios in which a SoS is required, or describe, even in
detail, the architecture of a SoS. However, they do not make
publicly available the actual implementation of the presented
SoS, which is hardly needed to assess testing techniques.

This paper fulfills such a need. To evaluate our research
results in SoS testing, we resolved to develop ourselves a
SoS case study and share it with the community. In order to
achieve a realistic system, we deliberately followed a process
that could resemble as closely as possible the engineering of
a SoS in real world, and in particular we decided to build a
SoS out of a set of pre-existing constituent systems that we
could retrieve from the Internet. Accordingly, we decided to
engineer a SoS in support of education, because in this domain
it is easier to find several open-source constituent systems.
Clearly, we acknowledge that an educational SoS is very broad
and complex, beyond the mere software elements we can make
available here, and the participation of its many stakeholders
(students, teachers, administrators, etc) should be considered
as well for analysis.

As the SoS was being built, it happened that different
SoS case studies literally “emerged” from the combination
of the same set of constituent systems, depending on how we
specified the SoS mission. In the end, instead of choosing just
one SoS implementation, we decided to make available the set
of constituent systems, the process we followed, and examples
of actual SoS instantiations to form what we called a “factory”
of SoSs in the educational domain, or EDUFYSoS. In this way
researchers can use the same kit to build and test different SoS
architectures. We used the term factory also to signify that the

Isee at https:/sir.csc.ncsu.edu/portal/

2see at http://defects4j.org

repository is extensible and open to host other case studies.

For lack of space, in this paper we only provide an overview
of EDUFYSoS and of its current contents. However, in the
online material we provide more detailed descriptions of all
components, and guidelines for usage, as well as the design
and code of two SoS case studies.

The paper is structured as follows: in Section II we summa-
rize background and related work; in Section III we outline the
constituent systems and three different SoSs case studies they
could form; in Section IV we briefly describe the available
artefacts; finally conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORK

Since its appearance in the mid 90s, the SoS paradigm has
been characterized in diverse ways. In the literature, four SoS
architectures have been defined, i.e., Directed, Collaborative,
Acknowledged, and Virtual, according to how the constituent
systems are organized to accomplish the SoS mission [7].
The four architectures are distinguished depending on: (i) the
existence of a central system that orchestrates the mission
achievement, and (ii) the existence of guidelines for the
interaction among the constituents. Precisely, in a directed
architecture, a central constituent system is responsible to
manage how the work is executed. In this case, the other
constituent systems participate as slaves. In the acknowledged
architecture, there exists as well a central system that monitors
the mission; however, the other systems retain self control,
hence the need of interaction guidelines to guarantee mission
achievement. A collaborative SoS is similar to acknowledged
ones, with the difference that no central entity exists. A set
of constituent systems working collaboratively needs well-
defined interaction guidelines and responsibilities. Finally,
in a virtual architecture no central entity or guidelines for
interaction exist and the joint work emerges spontaneously.
The constituent systems working under this composition are
offering their services without awareness of the mission to
which they participate.

The current research in the SoS area mainly focuses on
general problems, challenges and architectural descriptions of
SoSs, whereas little attention is devoted to the investigation
of case studies implementing SoSs. The work in [3] presents
several SoS case studies in a broad set of domains including
health care, finance, commerce, culture, security, military,
transportation. The authors provide high level structures of the
SoSs and describe their purposes, constraints and stakeholders
targeting a high level worldwide audience. However, they do
not provide implementation details and resources that can be
used for software testing activity, which is our goal. Our
proposal complements the work in [3] by describing three SoS
case studies in the educational domain and providing among
the other software artefacts also the source code.

The work presented in this paper spans over two research
directions:

a) SoS Modeling: Model-based approaches [8] represent
a promising direction for the analysis and development of SoS.
Models are used in the different stages of SoS development,

from mission model by the application domain expert to the
architecture model by the system architect during the design
and evolution stages of a SoS. New architecture description
languages, such as SosADL [9] or COMPASS 3 have been
specifically conceived to formally describe architectural emer-
gent behaviors of SoSs. They represent formal specification
languages providing novel architectural concepts and language
constructs able to support SoS modeling and analysis. mKAOS
[10] is a pioneering language that supports the specification
of missions and the definition of relationships between such
missions and the other elements of the SoS. The usage of
this model allows to illustrate the delegation of responsibilities
for each constituent system and how the composition of these
responsibilities supports the main mission’s achievement. The
aim of our proposal is not to develop a specific model based
approach for SoS definition. Instead, we provide mKaos and
UML models of educational SoSs developed using mKAOS
for the definition of the SoS mission and UML for the
definition of their behavior. The mKaos models depict the con-
stituent systems and the motivation for their participation in the
SoS, in other words, the reason of their participation. On the
other hand, the UML Use Cases show how the functionalities
are being used within the SoS. These UML models depict the
SoS architecture and the involved stakeholders on each SoS
described in this study.

b) SoS in educational context: In the educational ecosys-
tem, a growing amount of distributed information systems is
dynamically adopted to support administrative and learning
activities. Several online learning platforms such as Google
Classroom [11], Moodle* or MOOCs > allow teachers to create
online classrooms, while learners can attend the class and
receive assignments. These learning platforms leverage the
collaboration and interactions with other services provided by
other independent systems. The SoS paradigm emerges as a
complete solution to provide learners and teachers with an
easy, time-saving and well-organized access to the resources
[12], as well as to allow users to dynamically add a new
independent system in the educational ecosystem as one of
its members. In the last years, several works [12], [13], [14]
show an increasing interest in building educational SoSs.
Specifically, the authors of [12] present an orchestration of
System of Information Systems (SolS) with the aim to help
learners to overcome the difficulties of managing different
learning ecosystems, collaboratively accessing and sharing
their resources from different learning platforms. The authors
of [13] present an acknowledged SoS that allows to inte-
grate processes, people and embedded devices belonging to
an Internet of Everything (IoE) ecosystem and that operate
into educational environments. The proposed SoS leverages a
service-oriented architecture that offers services as interfaces
between integrated systems. Finally, the work in [14] proposes
an educational SolS that combines functionalities of different

3see at http://www.compass-research.eu
4see at https://github.com/moodle/
Ssee at https://www.mooc.org/

independent virtual learning environments developed with
different technologies and supported by various organizations.
However, all the proposed solutions provide their architectural
and behavioral models of educational SoSs, but do not provide
any implemented instance of such systems. In our work, we
model three reference SoSs from the educational domain and
try to overcome the lack of a fully implemented solution by
providing a factory of SoSs and a concrete implementation of
two specific SoSs to be used for research in the SoS testing
domain.

III. CASE STUDIES IN EDUCATIONAL ENVIRONMENT

In this section, we present three different SoS case studies
in the educational domain that emerge from the combination
of a same set of constituent systems. Following the process
presented in [15], we performed a domain analysis by identify-
ing the actors and the set of constituent systems involved into
the referred domain. Then, we elaborated three different SoS
case studies starting from three different emerging missions.

The actors resulting from the domain analysis, and their
major needs are:

o Students: a student should be able to learn contents
related to a course appropriately. He/she should be able
to see the list of available courses, join a course, attend
a lesson in the on-line learning system and submit a
deliverable. He/she should be also able to see all activities
assigned to him/her in his/her calendar.

« Administrative staff: people belonging to the administra-
tive staff are in charge of providing the students with a
list of courses. They allow students to register to a course
and enable the registration of student’s marks.

o Teachers: a teacher is responsible for: managing his/her
courses, scheduling the assignments and the online
classes, evaluating students’ deliverables and assigning
marks to them.

The constituent IT systems that have been identified are:

o Administrative Office System (AOS): this system should
have the ability to manage information about courses and
students at university. An example of a concrete system
having this capability is the secretariat of the university.

o Cooperative Administrative Office System (C-AOS): this
system could be a physical or online system that allows
to manage information about courses and students be-
longing to an international graduate programme defined
across multiple universities. An example of such a system
could be the online administration of an inter-university
master’s degree.

o Learning Management System (LMS): this system should
deliver online educational courses, trace the students
activities and report on their results. Concrete instances
of this system could be: Moodle, FullTeaching, Google

Classroom.
o Calendar System (CS): this represents a time-
management system providing the user with the

ability to manage appointments, events and deadlines.

Examples of concrete systems that have this capability
are Google Calendar, Yahoo Calendar.

Due to space limitation reasons, the full versions of the
presented models are not reported in this paper. For the
complete set of EDUFYSoS artefacts, the reader can refer to
the EDUFYSoS repository ©.

A. “Educational” System of Systems

In this section, we model a basic SoS called “Educational”
SoS. The goal of this SoS is to allow students to attend online
courses and manage the classes and their assignments in an
integrated way. Specifically, this SoS involves all the identified
actors, and the following IT constituent systems: AOS, LMS,
and CS.

Fig. 1 shows the mission diagram of the “Educational”
SoS developed using mKaos [10]. In this diagram, the blue
rectangles represent the missions, the yellow circles represent
the refinements of these missions, and the orange diamonds
represent the capabilities required by the abstract constituent
systems to achieve the referred mission. The identified high-
level mission is “Students can follow courses at university”.
Following [15], we refined this abstract mission into three sub-
missions that are: i) “Provide the students with the ability to
choose the list of courses in the University”; ii)*“Provide the
students with the ability to attend online courses”; iii) “Provide
the students with the list of courses/competences acquired
during the degree”. These sub-missions identify three different
capabilities in the SoS, each of which can be independently
achieved by a specific constituent systems (i.e, AOS, LMS,
and CS).

Students can follow
courses at university

Provide the students with|
the list of the

Provide the students
with the ability to
choose the list of

courses in the Universit;

Provide the students
with the ability to

attend online courseg

courses/competences
acquired during the

degree

1

AOS LMS cs

Fig. 1. “Educational” SoS mission diagram.

In Fig. 2, we present a UML use case diagram showing the
interactions among the actors involved in the “Educational”
SoS. In particular, the administrative staff can register a new
course. The student can see the list of courses, enroll in a
course, attends lessons, submit a deliverable and see his/her
assignments directly in his/her calendar. The teacher can
evaluate the students’ deliverables and set the assignments for
them.

“Educational” SoS can be either an acknowledged or a
directed SoS depending on the instantiation of the constituent

Ssee at https:/github.com/edufysos/edufysos

__ «AOS» _—

_|./ Register (Register a
T\ mark Course)~{-—-
1

: equest to .
| enroll
| NSy, Administrative
% ! | /Evaluate ﬁz@(Staff
Sty (T., -H\deliverable user

[

\;ﬁﬁnbmil ﬂreate
deliverable) \assignment// [

— «CS» —

[see 7 add
assignments/ \ assignment /<~

Fig. 2. “Educational” SoS use cases diagram.

Attend a

lesson course

Teacher

systems and the existence of a centralised authority that
coordinates their interactions. In particular, in “Educational”
SoS, LMS is controlled by AOS. If CS is also controlled by
AOS, the “Educational” SoS is a directed SoS, otherwise if
the CS is managed by a different and independent organisation
the “Educational” SoS is an acknowledged one. Specifically,
in Section IV, we implement the “Educational” SoS as an
acknowledged SoS. This “Educational” SoS will be also part
of other two SoSs presented in Section III-B and Section III-C,
respectively.

B. “International Master” System of Systems

The “International Master” SoS refers to the case that a
shared degree is offered by a set of universities with the aim of
providing the student with a multicultural learning experience.
The master is offered under the shared responsibility of the
joining universities. In this sense, the administrative offices
of each university manage the courses they offer within the
international master program, also they cooperate in order to
share the evaluations marked by the students during examina-
tions. The considered SoS involves all the actors identified in
Section III, and all the constituent systems as well.

Fig. 3 illustrates a use case that extends the previous use
case given in Fig. 2. The universities cooperate by means of
an interconnected network of AOS in order to proceed with
the enrollment of the students. Several instances of AOSs are
then coordinated by means of an instance of C-AOS that is
responsible of delegating the obligations to each university.
In this way, Students only interact with C-AOS and they do
not need to enroll the same course in different AOS. Also,
once enrolled, they can access the LMS from each participant
university. The interactions among Student and both LMS and
CS are the same foreseen by the use case in Fig. 2.

This SoS abides by an acknowledged architectural style.
Indeed, the C-AOS is the one responsible for the accom-
plishment of the whole mission, while the AOSs belonging to
different institutions maintain their technical and managerial
independence.

C. “Student Mobility” System of Systems

The “Student Mobility” SoS supports a mobility programme
that allows students belonging to a university to make a study

«C-AOS»

etermine
student's
suitability

Register user

See courses

Request to
enroll

Disseminate \ | |
course

|
0
]

Disseminate
o
student record, I

«AOS»

‘

Register
mark

Register a \1-4---/
Course J4=

ol

Share

o Create user) = _|_

Administrative
Staff

«LMS»
Create
Course

| Evaluate
~\deliverable,

i

=

user J<t—-

Attend a
lesson

Submit
deliverable,

Create |

assignment/-t-— Teacher
|

B
i

«CS»

See
assignments,

|
k
¢

Fig. 3. “International Master” SoS use cases diagram.

period at a partner university (e.g., both in the same country
or abroad like in the EU programme Erasmus). This exchange
study period is part of the student’s study programme to
complete a degree. The SoS involves all the identified actors,
and the following constituent systems: AOS, LMS, and CS.

This is a collaborative SoS that emerges from the collabo-
ration of more universities, each one maintaining their oper-
ational, managerial and technical independence. A university
voluntarily participates to the student mobility program; thus
in a collaborative way the university accepts to fulfill a shared
goal. In practice, this SoS can be seen as the composition
of several “Educational” SoSs (as described in Section III-A)
representing the different universities joining the mobility
program. In particular, we distinguish the “origin” university
as the university in which the student is enrolled, and the
“destination” university as the partner university in which the
student wants to perform an exchange period.

The high level mission of this SoS is refined into other
abstract sub-missions, and is achieved by means of the collab-
oration between the “origin” and the “destination” universities.
Fig. 4 shows an excerpt of the mission diagram of the
“Student Mobility” SoS that illustrates how the high level
mission ‘“Provide the students with the ability to register in the
selected courses in the partner university” is reached. The
“origin” AOS provides the capability of requesting a student
registration and the “destination” AOS grants the capability of
registering the student to a course in the partner university.

The behaviour of the AOS differs from the one in the
“Educational” SoS. In detail, the “origin” AOS provides the
student with the list of courses in the partner university. Also
it is in charge of requesting to the “destination” university the

enrolment of the student into the selected course. The AOS at
the “destination” university can accept or deny the enrolment
of the student. In case the student is registered to a course
within the exchange program, she/he interacts with the LMS of
the “destination” university in order to attend lessons, submit
the deliverable and see all assigned tasks in the CS. Among
the other use cases, the “destination” AOS is also in charge
of notifying the students’ marks on the AOS of the “origin”
university. The behaviours of the LMS and CS do not differ
from that in the “Educational” SoS of Section III-A.

The implementation of the mobility SoS is included in the
EDUFYSoS repository and described in Section IV.

Provide the students with
the ability to register in the
selected courses in the
partner University

Destination
University registers
the students in a

- course

/ x

Origin AOS

Origin University
requests student
registration

Destination AOS

Fig. 4. An excerpt of “Student Mobility” SoS mission diagram.

IV. EDUFYSoS

EDUFYSoS is offered as a means to create a family of
SoSs related to an educational domain. To this purpose we
provide: a set of educational SoSs case studies (introduced in
Section III); the set of constituent systems that we can use to
implement them; the process we followed to build two of these
three case studies; and a set of useful guidelines supporting
the instantiation of these case studies. Figure 5 presents an
overview of EDUFYSoS.

Constituent
Systems

O
x/ D@

©®

Case Studies

EDUFYSoS

Q,

Process

Guidelines

Fig. 5. EDUFYSoS overview.

Precisely, the artifacts produced, a copy of the open-source
constituent systems, and detailed instructions for integrating
these systems so to fulfill the designed missions can be
found at the EDUFYSoS GitHub repository, available at
https://github.com/edufysos. This section reports briefly about
a blueprint for three out of the four constituent systems
introduced in Section III: AOS, LMS, and CS. Instances of

these IT systems can be deployed in order to set-up a SoS
testbed for experimenting the evolution/variations of the case
studies described in Section III.

In detail, to instantiate the SoS constituents EDUFYSoS
refers to the following existing systems: AOS is implemented
by means of RosarioSis’ which is an open-source project
promoting a management information system for educational
institutions. The RosarioSis in the EDUFYSoS has been
extended with specific plug-ins enabling both the students
and the administrative staff to act according to the use cases
introduced in Section III. The plug-ins are also responsible for
managing the cooperation with other instances of constituents
of either the same (i.e., AOS) or different type (i.e., LMS,
and CS). Researchers aiming at building a testbed on EDU-
FYSoS can download and deploy one or more instances of
the modified version of RosarioSiS. Each instance can be
configured so to connect with its constituents and also with
the AOS instances from other organisations in the SoS.

The reference implementation of LMS in EDUFYSoS is
Moodle, for which no modifications have been put in place.
To set-up an EDUFYSoS testbed, researchers have to deploy
one or more instances of Moodle per organisation and
configure each one so to bound instances of both AOS and
CS. For example, the integration between instances of AOS,
implemented by means of RosarioSiS, and instances of
LMS, implemented by means of Moodle, is reported within
the official documentation of the RosarioSisS Project [16].

As a further constituent in EDUFYSoS, the Google Calen-
dar service has been identified as a reference implementation
for the CS. Researches experimenting SoSs by means of EDU-
FYSoS are requested to federate instances of AOS and LMS
with some Google Account on Calendar in order to be able
to properly rely on its features. For example, configurations
for a dynamic integration between Moodle instances and
Google Calendar are available from the official documentation
of Moodle [17].

The deployment of complex scenarios based on the consid-
ered constituent systems grants for the activation in the testbed
of the IT procedures relative to the use cases presented in Sec-
tion III. Among the others, an example of intra-organisational
cooperation of the IT systems takes place when a new course
will be created in an instance of the AOS: that course will be
also created in the referred instances of the LMS. In addition,
every time a teacher creates some assignments in the LMS, the
students following the course will be able to see them in their
own CS instances. These automatic interactions implement the
behaviours foreseen in Section III-A.

As an example of inter-organisational cooperation among
the IT systems, there is the “Student Mobility” SoS described
in Section III-C. In this context, the instance of the AOS at the
origin University is able to communicate with the respective
AOS at the destination University. Specifically, the two IT
systems (i.e., “origin” AOS, and “destination” AOS) are able
to automatically enrol a student to perform his/her exchange

7see at https://github.com/francoisjacquet/rosariosis

period. The instances of AOS at both universities collaborate
to enable the student to attend classes and to access the
LMS of the destination University. When the student returns
to his/her origin University, the “origin” and “destination”
AOS automatically interact in order to report the credits for
the attended courses so that they appear on his/her on-line
curriculum.

V. CONCLUSIONS

In this paper, we presented EDUFYSoS, a factory of edu-
cational SoS case studies to be used for research purposes in
testing domain. Starting from an analysis of the educational
domain, we modelled three different SoSs accomplishing
different missions. We showed how different types of SoS
emerged by the composition of the same set of constituent
systems and how a SoS itself could be part of larger and
more complex SoS. We provided the online repository of
EDUFYSoS as a reference factory for the considered SoS.
Indeed, EDUFYSoS also includes software resources that can
be used to instantiate and set-up a SoS testbed implementing
the modelled behaviours. All the artefacts (i.e., models, and
software) could also be used for orchestrating evolution and
modifications of the presented SoS.

Researches working with EDUFYSoS can experiment on
emergent behaviours in SoSs by evolving the existing inter-
active use cases or by adding new ones. These modifications
could focus on accessing technical APIs currently unused, or
on consuming the technical interactions among constituents in
a different way. For example, the implementation of emergent
use cases foreseen for the C-AOS can be implemented in
RosarioSisS by modifying the dedicated plug-ins that have
been already developed or by providing new ones.

Independent upgrades in each reference implementation
of a constituent opens to the possibility of experimenting
approaches for governing/controlling the opportunistic evolu-
tion of a deployed instance of EDUFYSoS. Indeed, the life-
cycles of the three constituents (i.e. RosarioSiS, Google
Calendar, and Moodle) are independently managed; new
features released in one of them could lead to the possibility
to modify the way interactions take place in the baseline from
EDUFYSoS. For example, an evolution in Moodle could lead
to change how RosarioSiS enables course instances in the
referred implementations of LMS. In the case of Google
Calendar, opportunistic reactions to an emergent behaviour
could come from the evolution of its public APIs.

In conclusion, EDUFYSoS promotes a blueprint for setting
up testbeds of SoSs as it offers a baseline for enabling
complex systems interactions in the educational domain. The
deployment, and the interconnection of several instances of
each constituent can be adopted by researchers in order to
prepare replicable case studies for evaluating and comparing
the proposed approach on SoSs.

In the future, we plan to extend the proposed factory with
new constituent systems, model different missions as well as
implement the case study presented in Section III-B. Future
work on testing SoSs will leverage the current version of

the factory and will likely enact further contributions for
its evolution. For example, EDUFYSoS could be used as
reference testbed for the evaluation of SoS testing approaches
existing in literature, like [5], [6], and [18].

VI. ACKNOWLEDGEMENTS

This paper has been partially supported by the Italian MIUR
PRIN 2017 Project: SISMA (Contract 201752ENYB).

REFERENCES

[1] C. Legner, T. Eymann, T. Hess, C. Matt, T. Bohmann, P. Drews,
A. Maedche, N. Urbach, and F. Ahlemann, “Digitalization: Opportunity
and challenge for the business and information systems engineering
community,” Business & Information Systems Engineering, vol. 59, pp.
301-308, 07 2017.

[2] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267-284, 1998.

[3] A. Gorod, B. E. White, V. Ireland, S. J. Gandhi, and B. Sauser, Case
studies in system of systems, enterprise systems, and complex systems
engineering. CRC Press, 2014.

[4] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys, vol. 48,
no. 2, pp. 1-41, 2015.

[S] V. O. Neves, A. Bertolino, G. De Angelis, and L. Garcés, “Do we need
new strategies for testing systems-of-systems?” in Proc. Int. Workshop
on Software Engineering for Systems of Syestems, 2018, p. 29-32.

[6] A. Bertolino, G. De Angelis, and F. Lonetti, “Governing regression
testing in systems of systems,” in Proc. of Int. Symposium on Software
Reliability Engineering Workshops. 1EEE, 2019, pp. 144-148.

[7]1 J. S. Dahmann and K. J. Baldwin, “Understanding the current state
of US defense systems of systems and the implications for systems
engineering,” in Systems Conference. 1EEE, 2008, pp. 1-7.

[8] I. Cherfa, N. Belloir, S. Sadou, R. Fleurquin, and D. Bennouar, “Systems
of systems: From mission definition to architecture description,” Systems
Engineering, vol. 22, no. 6, pp. 437-454, 2019.

[9] E. Oquendo, “Formally describing the software architecture of systems-
of-systems with SosADL,” in 11th System of Systems Engineering
Conference (SoSE). 1EEE, 2016, pp. 1-6.

[10] E. Silva, T. Batista, and F. Oquendo, “A mission-oriented approach for

designing system-of-systems,” in Proc. of System of Systems Engineering

Conference, 2015, pp. 346-351.

S. Iftakhar, “Google classroom: what works and how,” Journal of

Education and Social Sciences, vol. 3, no. 1, pp. 12-18, 2016.

[12] M. Saleh and M.-H. Abel, “System of information systems to support
learners (a case study at the university of technology of compiegne),”
Behaviour & Information Technology, vol. 37, no. 10-11, pp. 1097-1110,
2018.

[13] R. A. Silva and R. T. Braga, “An acknowledged system of systems for
educational internet of everything ecosystems,” in Companion Proc. of
the European Conference on Software Architecture, 2018, pp. 1-7.

[14] V. O. Neves, L. Garcés, and V. V. Graciano Neto, “Towards educa-
tional systems-of-information systems,” in Accepted for publication at
Brazilian Symposium on Information Systems (SBSI), May 18-22, Sdo
Bernardo do Campo, Brazil, 2020.

[15] L. Garcés and E. Y. Nakagawa, “A process to establish, model and
validate missions of systems-of-systems in reference architectures,” in
Proc. of the Symposium on Applied Computing, 2017, pp. 1765-1772.

[16] Moodle integrator setup, The RosarioSIS Project, — Official

Documentation, accessed on 2020-02-24. [Online]. Available: https:

//gitlab.com/francoisjacquet/rosariosis/-/wikis/Moodle-integrator-setup

Using Calendar, The Moodle Project, — Official Documentation,

accessed on 2020-02-24. [Online]. Available: https://docs.moodle.org/

35/en/Using_Calendar

[18] F. Zapata, A. Akundi, R. Pineda, and E. Smith, “Basis path analysis
for testing complex system of systems,” Procedia Computer Science,
vol. 20, pp. 256-261, 2013.

(1]

[17]

