Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

On the evolutionary weighting of neighbours and features in the k-nearest neighbour rule

Daniel Mateos-García*, Jorge García-Gutiérrez, José C. Riquelme-Santos

Department of Computer Science, University of Seville Avda. Reina Mercedes S/N, Seville 41012 Spain

ARTICLE INFO

Article history: Received 2 December 2015 Revised 15 June 2016 Accepted 1 August 2016 Available online 12 September 2017

Keywords: Evolutionary computation Neighbours weighting Feature weighting

ABSTRACT

This paper presents an evolutionary method for modifying the behaviour of the k-Nearest-Neighbour classifier (kNN) called Simultaneous Weighting of Attributes and Neighbours (SWAN). Unlike other weighting methods, SWAN presents the ability of adjusting the contribution of the neighbours and the significance of the features of the data. The optimization process focuses on the search of two real-valued vectors. One of them represents the votes of neighbours, and the other one represents the weight of each feature. The synergy between the two sets of weights found in the optimization process helps to improve

significantly, the classification accuracy. The results on 35 datasets from the UCI repository suggest that SWAN statistically outperforms the other weighted kNN methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Weighting is a common technique used to optimize supervised learning [1,2]. A proper fit of weights in the training step may lead to an improvement in the accuracy of a model. Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) could be the most evident examples of using weights in learning models. However, weighting is also commonly applied to other supervised learning techniques such as the k-Nearest-Neighbour (kNN) classifier [3].

Most of the proposals on weighting methods were developed for feature or instance selection (the latter have also been known as prototype selection [4]). For instance, Raymer et al. [5] performed a feature selection through a KNN-based genetic algorithm that optimised a weighting vector. In a later work, they provided an improved hybrid evolutionary algorithm which is based on the Bayesian discriminant function [6]. A similar method using tabu search was equally developed by Tahir et al. [7]. In recent time, many scholars have focused on the techniques that carried out both feature and instance selection which produced better results at the expense of increasing execution time [8].

kNN can be significantly useful to weighting techniques [9]. For that reason, Paredes and Vidal [10] used different similarity functions optimized by weighting. A weight by each feature and instance on training data was considered, resulting in a non-viable

* Corresponding author.

number of parameters in the optimization process in a first approximation. Then, the authors presented three types of reduction, namely: (1) a weight by class and feature (label dependency), (2) a weight by prototype (prototype dependency) and (3) a combination of the previous ones i.e., 1 and 2. The optimization process was performed by descendant gradient. Additionally, Mateos et al. [11] have recently provided an evolutionary algorithm to find a matrix of weights (a weight by feature and label) beside an optimum number of neighbours in order to better explode label-dependency. A similar idea is expressed in Yoon and Friel [12] where the authors tried to enhance kNN performance by explicitly modelling uncertainty in the classification of each feature vector (regardless label-dependence) and the optimal number of neighbours.

Weighting has also been applied to modify neighbours votes in kNN. Hence, the distance-weighted kNN rule (WKNN) was proposed by Dudani [13] and has been known for long. WKNN weighted the votes of the k nearest neighbours (w_i) according to Eq. (1) where d_i is the distance to the ith nearest neighbour (and d_1 to the nearest) regarding an instance to be classified. A similar version using a uniform weighting (UWKNN) was also proposed. In UWKNN, each weight was inversely proportional to the position among the neighbours (i.e., $w_i^u = 1/i$). More recently, Gou et al. [14] have also investigated both techniques working together as a new kNN version called Dual-Weighted kNN (DWKNN), where each weight was calculated according to Eq. (2). A later work [15] offered another version of DWKNN where the calculation of the weights was improved according to Eq. (3). One of the latest Works carried out on the use of new distances in kNN can be seen in Jiao et al. [16] where a class-conditional weighted distance metric

E-mail addresses: mateosg@us.es (D. Mateos-García), jorgarcia@us.es (J. García-Gutiérrez), riquelme@us.es (J.C. Riquelme-Santos).

was presented beside a multi-hypothesis nearest-neighbour proposal based on that metric.

$$w_i^w = \begin{cases} \frac{(d_k - d_i)}{(d_k - d_1)} & \text{if } d_i \neq d_1 \\ 1 & \text{if } d_i = d_1 \end{cases}$$
(1)

$$w_i^{dw1} = w_i^w * w_i^u \tag{2}$$

$$w_i^{dw2} = \begin{cases} \frac{(d_k - d_i)}{(d_k - d_1)} * \frac{(d_k + d_1)}{(d_k + d_i)} & \text{if } d_i \neq d_1 \\ 1 & \text{if } d_i = d_1 \end{cases}$$
(3)

García-Gutiérrez et al. [17] present another point of view where the authors tried to modulate the influence of the neighbourhood by weights obtained after an evolutionary optimization. More recently, a proposal to improve the original datasets with the combination of the use of individual neighbour structures, to develop new neighbourhood representations was also shown [18]. Other researchers have worked on the locally linear reconstruction of kNN which provides a principled and k-insensitive way to determine the weights of kNN learning [19]. Lately, there has been an increase in the interest in kNN and its performance on Big Data [20]. In this novel context, weighted neighbours can play an important role as can be seen in Xia et al. [21] where a weighted model based on Map-Reduce and called Spatial-Temporal Weighted K-Nearest Neighbour (STW-KNN) was proposed to improve the short-term traffic flow forecasting.

Although, there are already a large number of literature on feature and voting system weighting (weighted distances could be included in the category of voting system weighting), yet there exists no proposal up till now (to the best of our knowledge) about a strategy to optimize both the voting system of neighbours and feature selection. Hence, the hypothesis for this work was that, regarding the issue of the improvement of kNN, "the sum is greater tan the parts" and therefore, we proposed an evolutionary method to improve the kNN rule by optimizing the contribution of the neighbours and the importance of each feature simultaneously. Then, we statistically compared its performance with that of a classic kNN and other weighted variants tested on 35 UCI datasets [22].

The remaining part of this study is organized as follows. Section 2 presents the elements of the evolutionary algorithm designed to calculate the contribution of the k nearest neighbours and the effect of every feature. The results and a number of statistical tests are specified in Section 3. Finally, Section 4 presents the conclusions and future work.

2. Method

In this section, we describe our weighting optimization method called *Simultaneous Weighting of Attributes and Neighbours* (SWAN). The purpose of this work and how the weighting vectors from the learning process are used have been presented in Section 2.1. While Section 2.2 exposes the optimization algorithm in detail.

2.1. Purpose and functionality

As previously described, the aim of our work is to find a set of weights to optimize the influence of every neighbour when they vote, beside the importance of every feature. Unlike common feature weighting in the literature, ours is conditioned with a weighting voting (two vectors are optimized together, the feature weights and the weights of neighbours) fusing the synergistic ideas shown in previous work [11,17] (although label-dependency was not included in order to avoid performance issues since a much higher number of parameters would have to be optimized).

As regards the contribution of the neighbourhood, most of the studies focus on the distance between instances. This means that the nearest neighbour instances are "heavier" than the furthest ones and therefore, their influence is greater in the final voting. However, in our case, the weights are calculated by an evolutionary algorithm regardless the distance. Obtaining a real-valued vector could transform the influence of every neighbour irrespective of the class to predict in the classification step. This means that a vote of a labelled neighbour is a real value instead of the typical value of 1. An unlabelled instance is then labelled according to Eq. (5).

To show the learning process, we assume that the set of classes (or labels) is represented by the natural numbers from 1 to b, with *b* being the number of the labels. Therefore, let $D = \{(e, l) \mid e \in \mathbb{R}^f$ and $l \in \{1, 2, ..., b\}$ be the dataset under study with f being the number of features and b the number of labels. Let label be an application that assigns to every element e, the class to which it belongs to. Let's suppose that D is divided in the sets TR and TS with each of them being the training and the testing set, respectively, so that $D = TR \cup TS$ and $TR \cap TS = \emptyset$. In this manner, the instances of TS (testing set) will be used to evaluate the fitness of SWAN and so, they are not considered for the weights calculation. As will be detailed in Section 2.2, we obtain two vectors $v = (v_1, v_2, \dots, v_k)$ and $\omega = (\omega_1, \omega_2, \dots, \omega_f)$ from the instances of *TR* exclusively. Let *H* be a function that transforms every feature of an instance $x \in D$ according to a set of weights ω . To classify the instance y from TS, four steps are accomplished:

- let $x' \in TR'$ be the instances resulting from transform every $x \in TR$ according to Eq. (4)
- let y' be the instance resulting from transform y according to $H(y, \omega)$
- calculate the *k* nearest instances to *y*' from *TR*'
- if x_i', i: 1..k is each neighbour from previous step, the assigned label to the instance y' is given by Eq. (5)

$$H(x,\omega) = x' = (x_1 * \omega_1, x_2 * \omega_2, ..., x_f * \omega_f)$$
(4)

$$label(y', v) = \arg \max_{l \in \{1..b\}} \sum_{i=1} v_i \delta(l, label(x'_i))$$

where
$$\delta(l, label(x'_i)) = \begin{cases} 1 \text{ if } label(x'_i) = l \\ 0 \text{ otherwise} \end{cases}$$

k

2.2. Evolutionary optimization

This subsection details the search algorithm to calculate the optimum contribution of every nearest neighbours and features. As mentioned above, this task is done by an evolutionary algorithm and therefore, it is necessary to define its main features i.e., individual encoding, genetic operators, fitness function and generational replacement policy.

2.2.1. Individual encoding

The population for the study consisted of a set of individuals that are represented by two real-valued vectors. The first one symbolizes the relative contribution of every neighbour in the voting stage of the kNN rule, and the second one represents the importance of every data feature (see Fig. 1). Although the weights of the votes are independent of the distances of the neighbours, yet the closest neighbour is usually the most important i.e., $v_1 \ge v_2 \ge \cdots \ge v_k$, and as a result, we constrained the encoding of each individual.

Regarding the initial population, the votes are k sorted values between 0 and 1. To include the classic kNN, we populate with

(5)

Fig. 1. Individual.

$$\min -I\alpha \qquad \max +I\alpha$$

$$I = \max - \min$$

Interval for the i-th gene of an offspring *min* is the minimum value between the i-th genes of parents *max* is the maximum value between the i-th genes of parents

Fig. 2. BLX-α.

several vectors with the first k values set to 1 and the remaining set to 0 in the initial population e.g., $(1.0, 0.0, \dots, 0.0)$ for k = 1, $(1.0, 1.0, \dots, 0.0)$ for k = 2, and so on. Note that, during the evolutionary process, the maximum value of 1 for a weight may be surpassed to highlight the importance of a concrete neighbour regarding the rest.

The vector of weights for the features does not have any constraint. It consists of random values between 0 and 1 in the initial population. The maximum value of 1 can also be exceeded. If a local minimum could be reached during the evolution process, i.e. the error function returns the same value n times, all individual, except the best are substituted by a new initial population.

2.2.2. Crossover and mutation

After a trial-and-error procedure, we selected two concrete operators for crossover and mutation as trade-off between simplicity and quality of the results in comparison with the rest of candidates: BLX- α crossover and generation-dependent mutation.

The main goal of the crossover operator is building a new individual (*offspring*) from the genotypic features of two parents (*parent*1 and *parent*2). Considering that there is a constraint in the order of the genes in the voting, the crossover operator for the vector of votes in the *i*-th gene has been described as follows (see Fig. 3).

$$offspring(i) = \begin{cases} BLX - \alpha & \text{if } i = 1\\ (max - min) * \gamma + min & \text{otherwise} \end{cases}$$
(6)

where

- BLX-α is the crossover operator defined in Eshelman and Schaffer [23] and calculated from *parent*1(*i*) and *parent*2(*i*)
- γ is a random value between 0 and 1
- max = offspring(i 1)
- *min=minimum*(*parent1*(*i*), *parent2*(*i*), *offspring*(*i*-1))

The weights for the features do not have any constraint in their order, so the crossover operator can be simpler (see Fig. 2):

offspring(i) =
$$BLX - \alpha$$
 from parent1(i) and parent2(i) (7)

Regarding the mutation operator, the *ith* gene of the individual could change according to Eq. (8) for the votes. δ is a random value in the interval [0, *z*] with *z* being 1 initially. To find a better fit, the *z* value is decreased every ten generations inversely proportional to the current generation. For example, for an evolution of 100 generations, *z* is initially 1 and decreases by a factor of 0.1 every ten generations. Therefore, in the first ten generations *z* = 1, in the next ten *z* = 0.9, then *z* = 0.8 and so on. The idea here is to

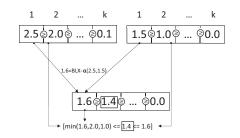


Fig. 3. Crossover of neighbours.

- 1: $errorFunction(k, \omega, v, TR)$: error
- $2:\ error=0$
- 3: **for** 1 to *m* **do**
- 4: Divide TR randomly in n subsets: $TR = S_1 \cup S_2 \ldots \cup S_n$
- 5: for i = 1 to n do
- 6: $wTrain = buildModel(TR S_i, \omega)$
- 7: $error = error + evaluate(k, wTrain, S_i, \omega, v)$
- 8: end for
- 9: end for
- 10: error = error/(m * n)
- 11: return error
- 12: $buildModel(Train, \omega) : wTrain$
- 13: $wTrain = \emptyset$
- 14: for each x in Train do
- 15: $x' = H(x, \omega)$ according to the Eq. 4
- 16: add x' to wTrain
- 17: end for
- 18: return wTrain
- 19: $evaluate(k, Train, Test, \omega, v) : error$
- 20: error = 0
- 21: for each y in Test do
- 22: $y' = H(y, \omega)$ according to the Eq. 4
- 23: predLabel = classify(y', Train, k, v) according to the Eq. 5
- 24: if $predLabel \neq label(y)$ then
- 25: error=error+1
- 26: end if
- 27: end for
- 28: error = error / |Test|
- 29: return error

Fig. 4. Error function.

reduce the influence of the mutation operation since the individuals are closer to the end of the evolution.

This is as a result of the fact the mutation operator for feature weights is free of constraints, and its implementation is also simpler (Eq. (9)).

$$indiv'(i) = \begin{cases} indiv(i) + indiv(i) * \delta & \text{if } i = 1\\ indiv(i) - indiv(i) * \delta & \text{if } i = k\\ (indiv(i-1) - indiv(i+1)) * \delta & \\ + indiv(i+1) & \text{otherwise} \end{cases}$$
(8)

$$indi\nu'(i) = indi\nu(i) \pm indi\nu(i) * \delta$$
(9)

2.2.3. Error function

The evolutionary algorithm uses $TR \subset D$ exclusively to obtain the contributions of the neighbours in the training step. The fitness function is based on the cross-validation error rate by using a kNN-based classifier and the weighting vectors.

The Fig. 4 shows the error calculation of $m \times n$ cross validations, where *m* stands for the number of iterations of the validation

process (line 3) and *n* does for the number of partitions of training data *TR* (line 4). Set *TR* is therefore divided in subsets S_1 , S_2 ... S_n for each validation. Every subset S_i is evaluated through a classification process by using $TR - S_i$ as a training set. This evaluation is driven by the function evaluation which we will be described later. The classification error on every S_i is accumulated by an error in every validation (line 7). Finally, the error value is the mean of all validations (line 10).

The method buildModel receives two parameters: the training data and the feature weighting (line 12). It creates and returns a weighted training set with the use of Eq. (4) (lines 13–18). When instances are transformed, the function evaluate carries out the testing. The result of the *evaluate* function is the error rate on S_i taking wTrain as reference to calculate the neighbours (line 7). The input parameters of evaluate are the number of neighbours, the transformed training data, the current testing set and the weighting vectors w and v (line 19). And so, every single instance y from the set used to measure the error (line 21), is transformed into y' according to Eq. (4) (line 22). The *classify* function returns the majority label according to the relative contribution of each neighbour expressed by the vector v and applying Eq. (5) (line 23). If a returned label does not correspond with the true label of a testing instance, the error is increased by 1 (line 25). Finally, the resulting error is normalized according to the size of the set used as testing the data (line 28). The value returned by evaluation is then a real number between 0 (all instances are well-classified) and 1 (all instances are misclassified).

2.2.4. Generational policy

As regards the transition between generations, we chose an elitist design, where the best individual is part of the next offspring

#dataset	#instances	#features	#classes	%minority	%majority
Anneal	898	38	6	28	72
Arrhythmia	452	279	16	0	36
Audiology	226	69	24	42	58
Australian	690	14	2	8	46
Autos	205	25	7	34	66
Balance-scale	625	4	3	0	33
Breast-cancer	286	9	2	0	76
Bridges_version1	105	12	6	44	56
Bridges_version2	105	12	6	10	10
Car	1728	6	4	42	58
cmc	1473	9	3	0	54
Colic	368	22	2	10	42
Credit-a	690	15	2	37	63
Credit-g	1000	20	2	36	64
Dermatology	366	34	6	0	64
Diabetes	768	8	2	4	70
Ecoli	336	7	8	10	10
Flags	194	29	8	50	50
Glass	214	9	7	23	43
Haberman	306	3	2	10	10
Hayes-roth_train	132	4	4	10	10
Heart-c	303	13	5	5	31
Heart-h	294	13	5	1	36
Heart-statlog	270	13	2	44	56
Ionosphere	351	34	2	0	54
Labor	57	16	2	0	25
Liver-disorders	345	6	2	10	10
Lung-cancer	32	56	2	35	65
Lymph	148	18	4	10	42
mfeat-karhunen	2000	64	10	1	55
mfeat-morphological	2000	6	10	10	10
mfeat-zernike	2000	47	10	26	74
Monks-problems-1	124	6	2	0	92
Monks-problems-2	169	6	2	9	24
Monks-problems-3	122	6	2	48	52

Table 1Datasets from UCI.

(no mutation is applied). If *N* is the number of individuals, the remaining population is built as follows: C - 1 individuals are created by cloning the best individual from the previous generation. The next N - C individuals result from the crossover operation. The selection of the individuals to cross is carried out by the tournament method. All individuals except the first one are affected by the mutation operator with a probability of *p*.

3. Results

In the experiments, we have used Java language and 35 datasets from the repository UCI [22] with different types of features and number of classes (see Table 1). All the data were preprocessed with the same techniques i.e., binarization of nominal features, replacement of missing values and normalization to avoid the Hughes effect. Through a trial-and-error process, the evolutionary algorithm was setup with a population of 100 individuals, 200 generations, 10% of elitism and a mutation probability of 0.1. Regarding the parameters α (crossover), and *k* (number of neighbours) their values were set at 0.5 and 5, respectively. Finally, the *z* value in mutation operator is decreasing at a rate of 0.1 in every generation.

To measure the precision of our approach, we established a comparison among IBk (implementation of kNN in the framework WEKA [24])), EVON [17], WKNN, UKNN, DWKNNv1 [14] and DWKNNv2 [15]. All algorithms have been tested with k=1, k=3 and k=5, with the latter showing the best performance. Table 2 shows the mean accuracy obtained by the analyzed algorithms using 10-fold cross-validation with 5 different seeds (50 runs in the aggregate). We can see that the performance of our algorithm is the best

Та	ble	2

Accuracy of every studied algorithm throughout 35 datasets from UCI.

Data/classifierSWANEVONkNNDWKNN1DWKNN2UWKNNWKNNAnneal98,93198,97696,97199,06598,44198,24198,151Arrhythmia58,76158,14258,45153,8555,70556,90355,292Audiology71,32763,18660,70866,72668,14268,5846823Autsralian85,47883,47883,47880,11681,478831381,623Autso72,09869,65957,75673,17173,46372,68371,024Balance-scale83,23282,52287,87281,82486,59282,52886,592Breast-cancer71,06872,23873,07768,81170,83970,21161,308Bridges_version159,81359,62659,81359,81361,86959,813Car95,02383,26883,76879,51472,2287578,26175,109Credit-a85,42773,8679,51172,2287578,26175,109Credit-a85,417861994,26295,35595,19195,355Diabetes73,4973,90673,98470,41772,47472,70873,96Flags566754,02153,17657,33573258,1445732Glass72,61768,50468,53768,63370,13168,95470,375Haberman69,28170,32778,63376,79768,03H								
Arrhythmia58,76158,14258,45153,8555,79656,90355,929Audiology71,32763,18660,70866,72668,14268,5846823Australian85,47883,47883,47880,11681,478831381,623Autos72,09869,65957,75673,17173,46372,68371,024Balance-scale83,23282,59287,87281,82486,59282,52886,592Breats-cancer71,60872,23873,07768,81170,839702170,839Bridges_version159,81359,62658,81860,74861,30861,12161,308Bridges_version263,55162,61759,62659,81359,81361,86959,813Car95,60287,98692,84788,1692,847881692,847Cmc48,36444,61645,41844,073439144,92944,318Colic80,43579,83779,51172,2287578,26175,109Credit-g7247273,047273,047273,0472,976Dermatology96,44896,33996,61294,26295,35595,19195,355Diabetes734973,90673,98470,41772,47472,70872,906Flags556754,02153,19655,773573258,1445732Glass72,17665,55553,27766,61370,	Data/classifier	SWAN	EVoN	kNN	DWKNN1	DWKNN2	UWKNN	WKNN
Audiology71,32763,18660,70866,72668,14268,5846823Autos85,47883,47883,47883,47883,47883,17173,46372,68371,024Balance-scale83,22282,52287,87281,82486,59282,52886,592Breast-cancer71,60872,23873,07768,81170,839702170,839Bridges_version159,81359,62658,31860,74861,30861,12161,308Bridges_version263,55162,61759,62659,81359,81361,86959,813Car95,60287,98692,84788,1692,84788,1692,84781,6283,27581,449Colic80,43579,83779,51172,2287578,26175,109Credit-a854283,82683,76879,59481,36283,27581,449Credit-g72472872671047273,0472,396Diabetes73,4973,90673,98470,41772,47472,70872,396Glass72,61768,50565,373573258,1445332Glass72,61768,50565,32768,41169,62668,03769,907Haberman69,28170,32770,83270,33773,5173,50373,707Haert-c80,54678,70778,70776,32778,50378,50378,707Haberman69,254 <th< th=""><th>Anneal</th><th>98,931</th><th>98,976</th><th>96,971</th><th>99,065</th><th>98,441</th><th>98,241</th><th>98,151</th></th<>	Anneal	98,931	98,976	96,971	99,065	98,441	98,241	98,151
Australian 85,478 83,478 83,478 80,116 81,478 8313 81,623 Autos 72,098 69,659 57,756 73,171 73,463 72,683 71,024 Balance-scale 83,232 82,592 87,872 81,824 86,592 82,528 86,592 Breast-cancer 71,608 72,238 73,077 68,811 70,839 7021 70,839 Bridges_version1 59,813 59,626 58,318 60,748 61,308 61,121 61,308 Bridges_version2 63,551 62,617 59,626 59,813 59,813 61,869 59,813 Car 95,602 87,986 92,847 88,16 92,847 8816 92,847 Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 80,435 98,329 96,612 94,262	Arrhythmia	58,761	58,142	58,451	53,85	55,796	56,903	55,929
Autos72,09869,65957,75673,17173,46372,68371,024Balance-scale83,23282,59287,87281,82486,59282,52886,592Breast-cancer71,60872,23873,07768,81170,839702170,839Bridges_version159,81359,62658,81860,47861,30861,12161,308Bridges_version263,55162,61759,62659,81359,81361,86959,813Car95,60287,98692,84788,1692,84788,1692,847cmc48,36444,61645,41844,073439144,92944,318Colic80,43579,83779,51172,2287578,26175,109Credit-a854283,82683,76879,59481,36283,27581,449Credit-g72472872/671047273,0472Dermatology96,44896,33996,61294,26295,35595,19195,355Diabetes734973,90673,98470,41772,47472,70872,396Flags556754,02153,19655,773573258,1445732Glass72,61768,50565,32768,6370,13168,9547085Haye-roth_train83,18252,72726,51576,667680367,796803Haye-sroth_train83,18252,77778,77178,57178,503 <t< th=""><th>Audiology</th><th>71,327</th><th>63,186</th><th>60,708</th><th>66,726</th><th>68,142</th><th>68,584</th><th>6823</th></t<>	Audiology	71,327	63,186	60,708	66,726	68,142	68,584	6823
Balance-scale 83,232 82,592 87,872 81,824 86,592 82,528 86,592 Breast-cancer 71,608 72,238 73,077 68,811 70,839 7021 70,839 Bridges_version1 59,813 59,626 58,318 60,748 61,308 61,121 61,308 Bridges_version2 63,551 62,617 59,626 59,813 59,813 61,869 59,813 Car 95,602 87,986 92,847 88,16 92,847 8816 92,847 cmc 48,364 44,616 45,418 44,073 4391 44,929 44,318 Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-g 72,4 728 72,67 7104 72 73,04 72 Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 Diabets 73,49 73,906 73,984 70,417 <t< th=""><th>Australian</th><th>85,478</th><th>83,478</th><th>83,478</th><th>80,116</th><th>81,478</th><th>8313</th><th>81,623</th></t<>	Australian	85,478	83,478	83,478	80,116	81,478	8313	81,623
Breast-cancer 71,608 72,238 73,077 68,811 70,839 7021 70,839 Bridges_version1 59,813 59,626 58,318 60,748 61,308 61,121 61,308 Bridges_version2 63,551 62,617 59,626 59,813 59,813 61,869 59,813 Car 95,602 87,986 92,847 88,16 92,847 88,16 92,847 cmc 48,364 44,616 45,418 44,073 4391 44,929 44,318 Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-a 80,448 96,612 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474	Autos	72,098	69,659	57,756	73,171	73,463	72,683	71,024
Bridges_version1 59,813 59,626 58,318 60,748 61,308 61,121 61,308 Bridges_version2 63,551 62,617 59,626 59,813 59,813 61,869 59,813 Car 95,602 87,986 92,847 88,16 92,847 8816 92,847 cmc 48,364 44,616 45,418 44,073 4391 44,929 44,318 Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-g 724 728 7276 7104 72 73,04 72 Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,082 Ecoli 85,417 8619 85,127 68,411 69,626	Balance-scale	83,232	82,592	87,872	81,824	86,592	82,528	86,592
Bridges_version2 63,551 62,617 59,626 59,813 59,813 61,869 59,813 Car 95,602 87,986 92,847 88,16 92,847 8816 92,847 cmc 48,364 44,616 45,418 44,073 4391 44,929 44,318 Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-g 724 728 7276 7104 72 73,04 72 Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,396 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Haberman 69,281 70,327 76,667 6803 67,879 6803<	Breast-cancer	71,608	72,238	73,077	68,811	70,839	7021	70,839
Car 95,602 87,986 92,847 88,16 92,847 88,16 92,847 cmc 48,364 44,616 45,418 44,073 4391 44,929 44,318 Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-g 724 728 7276 7104 72 73,04 72 Dermatology 96,448 96,639 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,396 Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,217 68,505 65,327 68,633 70,131 68,954 7085	Bridges_version1	59,813	59,626	58,318	60,748	61,308	61,121	61,308
cmc48,36444,61645,41844,073439144,92944,318Colic80,43579,83779,51172,2287578,26175,109Credit-a854283,82683,76879,59481,36283,27581,449Credit-g724728727671047273,0472Dermatology96,44896,33996,61294,26295,35595,19195,355Diabetes734973,90673,98470,41772,47472,07872,396Ecoli85,41786198625813183,21484,4648369Flags556754,02153,19655,773573258,1445732Glass72,61768,50565,32768,41169,62668,03769,907Haberman69,28170,327709866,86370,13168,9547085Hayes-roth_train83,18252,72726,51576,667680367,8796803Heart-c80,81678,70778,70776,32778,57178,50378,707Heart-satlog78,07479,70479,92674,59376,22278,44476,222Ionosphere88,60488,37684,76686,71486,39585,86986,952Labor87,018838681,05386,31684,56185,26384,912Liver-disorders63,47862,14561,04362,45363,42563,3273,55 <th>Bridges_version2</th> <th>63,551</th> <th>62,617</th> <th>59,626</th> <th>59,813</th> <th>59,813</th> <th>61,869</th> <th>59,813</th>	Bridges_version2	63,551	62,617	59,626	59,813	59,813	61,869	59,813
Colic 80,435 79,837 79,511 72,228 75 78,261 75,109 Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-g 724 728 727 7104 72 73,04 72 Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474 72,078 72,396 Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,5816 78,707 78,707 76,327 78,501 78,503<	Car	95,602	87,986	92,847	88,16	92,847	8816	92,847
Credit-a 8542 83,826 83,768 79,594 81,362 83,275 81,449 Credit-g 724 728 7276 7104 72 73,04 72 Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,396 Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 Haberman 69,281 70,327 7098 66,863 70,131 68,954 7085 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,816 78,707 78,707 76,327 78,571 78,5	cmc	48,364	44,616	45,418	44,073	4391	44,929	44,318
Credit-g724728727671047273,0472Dermatology96,44896,33996,61294,26295,35595,19195,355Diabetes734973,90673,98470,41772,47472,70872,396Ecoli85,41786198625813183,21484,4648369Flags556754,02153,19655,773573258,1445732Glass72,61768,50565,32768,41169,62668,03769,907Haberman69,28170,327709866,86370,13168,9547085Hayes-roth_train83,18252,72726,51576,667680367,8796803Heart-c80,81678,70778,70776,32778,57178,50378,707Heart-statlog78,07479,70479,26674,59376,22278,44476,222Ionosphere88,60488,37684,78686,72486,89585,86986,952Labor83,71273,7576,875637565,625737565,625Lumg-cancer73,12573,7576,875637565,625737565,625Lymph847381,08178,37882,02783,37885,13583,649mfeat-karhunen9685967796149636968996879688mfeat-sernike810180538052789789479397896Mo	Colic	80,435	79,837	79,511	72,228	75	78,261	75,109
Dermatology 96,448 96,339 96,612 94,262 95,355 95,191 95,355 Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,396 Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 Haberman 69,281 70,327 7088 66,863 70,131 68,954 7085 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-satlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 88,604 88,376 81,783 86,316 8	Credit-a	8542	83,826	83,768	79,594	81,362	83,275	81,449
Diabetes 7349 73,906 73,984 70,417 72,474 72,708 72,396 Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 Haberman 69,281 70,327 7098 66,863 70,131 68,954 7085 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,816 78,707 76,327 78,571 78,503 78,707 Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 88,604 88,376 84,786 86,714 86,895 85,669 86,952 Liver-disorders 63,478 62,145 61,043 62,493 6342 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>73,04</th><th></th></t<>							73,04	
Ecoli 85,417 8619 8625 8131 83,214 84,464 8369 Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 Haberman 69,281 70,327 7098 66,863 70,131 68,954 7085 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,594 81,848 82,112 76,832 79,802 80,264 79,736 Heart-h 80,594 81,848 82,112 76,832 78,571 78,503 78,707 Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 83,604 83,376 84,786 86,724 86,895 85,869 86,952 Liver-disorders 63,478 62,145 61,043 62,493		,		96,612	94,262	95,355	95,191	
Flags 5567 54,021 53,196 55,773 5732 58,144 5732 Glass 72,617 68,505 65,327 68,411 69,626 68,037 69,907 Haberman 69,281 70,327 7098 66,863 70,131 68,954 7085 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-h 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-statlog 78,074 79,926 74,593 76,222 78,444 76,222 Jonophere 88,604 88,376 84,786 86,724 86,895 85,869 86,952 Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 63,422	Diabetes	7349		73,984	70,417	72,474	72,708	72,396
Gas72,61768,50565,32768,41169,62668,03769,907Haberman69,28170,327709866,86370,13168,9547085Hayes-roth_train83,18252,72726,51576,667680367,8796803Heart-c80,81678,70778,70776,32778,85279,80280,26479,736Heart-h80,81678,70778,70776,32778,57178,50378,707Heart-statlog78,07479,70479,92674,59376,22278,44476,222Ionosphere88,60488,37684,78686,72486,89585,86986,952Labor87,018838681,05386,31684,56185,26384,912Liver-disorders63,47862,14561,04362,4936342637163,362Lung-cancer73,12573,7576,875637565,625737565,625Lymph847381,08178,37882,02783,37885,13583,649mfeat-karhunen9685967796149636968996879688mfeat-zernike810180538052789789479397896Monks-problems-1_train43,5484549,19437,25833,3874033,387Monks-problems-2_train557451,71653,13636,09536,80538,10736,805		85,417					84,464	
Haberman 69,281 70,327 7098 66,863 70,131 68,954 7085 Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,594 81,848 82,112 76,832 79,802 80,264 79,736 Heart-h 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 88,604 88,376 84,786 86,724 86,895 85,869 86,952 Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,362 Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027				53,196			,	
Hayes-roth_train 83,182 52,727 26,515 76,667 6803 67,879 6803 Heart-c 80,594 81,848 82,112 76,832 79,802 80,264 79,736 Heart-c 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 88,604 88,376 84,786 86,724 86,895 85,869 86,952 Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,625 Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-karhunen 9685 9677 9614 9636 <th></th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th>,</th> <th></th>		,					,	
Heart-c 80,594 81,848 82,112 76,832 79,802 80,264 79,736 Heart-h 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-h 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 88,604 88,376 84,786 86,714 86,895 85,869 86,952 Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,362 Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-morphological 71 7113 7088 6563						,	,	
Heart-h 80,816 78,707 78,707 76,327 78,571 78,503 78,707 Heart-statlog 78,074 79,704 79,926 74,593 76,222 78,444 76,222 Ionosphere 88,604 88,376 84,786 86,724 86,895 85,869 86,952 Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 mfeat-morphological 71 7113 7088 6563 6748 6812 6785 mfeat-sernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,288 <t< th=""><th><i>v</i> =</th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	<i>v</i> =	,						
Heart-statlog78,07479,70479,92674,59376,22278,44476,222Ionosphere88,60488,37684,78686,72486,89585,86986,952Labor87,018838681,05386,31684,56185,26384,912Liver-disorders63,47862,14561,04362,4936342637163,362Lung-cancer73,12573,7576,875637565,625737565,625Lymph847381,08178,37882,02783,37885,13583,649mfeat-karhunen9685967796149636968996879688mfeat-aronphological71711370886563674868126785Monks-problems-1_train43,5484549,19437,25833,3874033,387Monks-problems-2_train557451,71653,13636,09536,80538,10736,805		,			,			
Ionosphere 88,604 88,376 84,786 86,724 86,895 85,869 86,952 Labor 87,018 8386 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,362 Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 mfeat-zernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805		,			,			
Labor 87,018 83,86 81,053 86,316 84,561 85,263 84,912 Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,362 Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 mfeat-zernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805	•							
Liver-disorders 63,478 62,145 61,043 62,493 6342 6371 63,362 Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 mfeat-cernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805		,						
Lung-cancer 73,125 73,75 76,875 6375 65,625 7375 65,625 Lymph 8473 81,081 78,378 82,027 83,378 85,135 83,649 mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 mfeat-karhunen 9685 9677 9614 9636 6748 6812 6755 mfeat-karhunen 9685 9677 713 7088 6563 6748 6812 6785 mfeat-sernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805		,		,				
Lymph847381,08178,37882,02783,37885,13583,649mfeat-karhunen9685967796149636968996879688mfeat-morphological71711370886563674868126785mfeat-zernike810180538052789789479397896Monks-problems-1_train43,5484549,19437,25833,3874033,387Monks-problems-2_train557451,71653,13636,09536,80538,10736,805								
mfeat-karhunen 9685 9677 9614 9636 9689 9687 9688 mfeat-morphological 71 7113 7088 6563 6748 6812 6785 mfeat-zernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805								
mfeat-morphological 71 713 7088 6563 6748 6812 6785 mfeat-zernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805								
mfeat-zernike 8101 8053 8052 789 7894 7939 7896 Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805								
Monks-problems-1_train 43,548 45 49,194 37,258 33,387 40 33,387 Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805								
Monks-problems-2_train 5574 51,716 53,136 36,095 36,805 38,107 36,805								
		,						,
Monks-problems-3_train 41,311 37,377 40,164 30,164 30,492 32,131 30,492					,			
	Monks-problems-3_train	41,311	37,377	40,164	30,164	30,492	32,131	30,492

in 16 out of the 35 datasets, and the second one in 4 out of the remaining experiments.

Additionally, as we can see in Table 1, there are imbalanced datasets. The columns "%minority" and "%majority" present the percentage of instances under the minority label and majority label, respectively. However, although our evolutionary weighting methods optimize the accuracy, we can observe in Table 3 an improvement of kappa statistics too. In fact, the Pearson's r between the accuracies and kappa values is 0.81, and so, it seems that improving the global accuracy with evolutionary weighting causes an improvement of the classification performance by class.

In spite of the overall good performance of our method in direct comparison with the rest, the results must be statistically validated. For this reason, we carried out a non-parametric Friedman's test and a Holm's post-hoc procedure. The reason for using nonparametric tests lies in the high vulnerability of the necessary conditions to apply parametric tests, specially for the sphericity condition [25,26]. The first step for the Friedman's test is the calculation of the average rankings reached by each technique (a ranking of 1 is the best). Table 4 shows the rankings. After the Friedman's test was applied, the resulting statistic was 48.58, distributed according to a chi-square with 6 degrees of freedom. The p-value for Friedman was around 9.072E-9, and so, the null hypothesis (no statistical difference among the compared techniques) could be rejected with an $\alpha = 0.05$.

The Holm's Post-hoc Procedure allows us to compare a control algorithm (in this case SWAN, the best approach candidate) with the rest avoiding problems related to family-wise error [26]. The results of the procedure can be seen in Table 5 (Friedman's statistic, p-value and adjusted α for Holm's procedure). In this case,

every test rejected the hypothesis of no pairwise difference (p-values were lower than adjusted α), so we could state that our algorithm was significantly better than its competitors from a statistical point of view.

4. Conclusions

This work presented a method to improve the kNN rule. We unified two classic paradigms of weighting by evolutionary computation. On the one hand, we adjusted the contribution of every neighbour used in the classification step, but nevertheless, the significance of the data features was modified simultaneously in order to achieve a better result in the recognition of new instances. In spite of the complexity of the solution to optimize and the increase of the search space in comparison with single-vector based methods, the experiments showed a successful behaviour of our approach.

In future researches, we will focus on adapt evolutionary weighting algorithms, to distributed programming models such as MapReduce. By so doing, it could be possible to speed up the performance of our methods on massive data. Moreover, we will explore whether SWAN could confirm similar suitability for regression, where a change of the voting system could lead to higher changes in the model output.

The use of deep learning techniques is also a target to reach. Therefore, preprocessing training data in a hierarchical structure of multiple layers could produce good results in our research projects on specific domains, such as image recognition or natural language processing.

Table 3

Kappa of every studied algorithm (Cohen's kappa for binary classification and Fleiss's kappa for the multiclass case).

Datas/classifier	SWAN	EVoN	KNN	DWKNN1	DWKNN2	UWKNN	WKNN
Anneal	1	1	097	1	097	1	0955
Arrhythmia	0383	04	0156	0251	0235	0248	0235
Audiology	0744	0684	0707	0665	0642	0738	0666
Australian	0638	0589	0589	0626	0638	0609	0638
autos	0662	0694	0531	0664	0662	0694	0662
Balance-scale	0702	0728	0783	0704	0742	0717	0742
Breast-cancer	0185	0131	0288	0225	0178	0385	0178
Bridges_version1	0414	0329	0292	042	042	0329	042
Bridges_version2	0476	0317	0265	0434	0476	0476	0476
Car	0878	0718	074	0704	074	0704	074
cmc	0128	0132	0132	0104	007	0102	0081
Colic	0703	0631	0596	0517	0566	0676	0566
Credit-a	0762	0702	0687	0629	0702	0702	0702
Credit-g	024	0257	0257	0186	0252	0246	0284
Dermatology	0966	0983	0983	0949	0949	0949	0949
Diabetes	029	029	029	0202	0242	0225	029
Ecoli	0825	0846	0823	0716	0782	0803	0782
Flags	0415	0286	0356	0359	0359	0366	0359
Glass	07	0666	0534	0607	0666	0635	0666
Haberman	0	0	0007	0242	027	0241	0323
Hayes-roth_train	0715	041	0	065	0275	0594	0275
Heart-c	0665	0629	0629	0656	0633	0696	0633
Heart-h	0538	04	04	04	0454	0486	0486
Heart-statlog	0662	0662	0662	0439	0441	0588	0515
Ionosphere	0772	0772	0685	0657	0685	0627	0685
Labor	0799	0307	0307	0571	0571	0571	0571
Liver-disorders	0254	0254	0254	0047	0079	0075	0106
Lung-cancer	0086	03	0086	0086	03	03	0695
Lymph	0448	0377	0514	0462	051	0578	051
mfeat-karhunen	0938	0938	0941	0947	0952	0955	0952
mfeat-morphological	0705	0705	0657	0626	0626	0659	064
mfeat-zernike	0766	0771	0768	0757	0763	0768	0763
Monks-problems-1	0	009	0029	0	0	0	0
Monks-problems-2	0242	0074	0033	0	0	0	0
Monks-problems-3	0	0	0	0	0	0	0

Table 4

Average ranking reached by every compared technique.

Method	Ranking	
SWAN	2.314	
EvoN	3.514	
kNN	3.785	
UWKNN	3.857	
WKNN	4.285	
DWKNN2	4.514	
DWKNN1	5.728	

Table 5

Results for Holm's post-hoc procedure.

Dataset	Z	р	Holm's adjusted α
DWKNNv1 DWKNNv2 WKNN UWKNN kNN	6.612 4.260 3.817 2.987 2.849	3.798E-11 2.042E-5 1.347E-4 0.003 0.004	0.008 0.010 0.012 0.016 0.025
EVoN	2.324	0.020	0.050

References

- E. Corchado, M. Wozniak, A. Abraham, A. de Carvalho, V. Snásel, Recent trends in intelligent data analysis., Neurocomputing 126 (2014) 1–2.
- [2] A. Abraham, Special issue: hybrid approaches for approximate reasoning., J. Intell. Fuzzy Syst. 23 (2–3) (2012) 41–42.
- [3] D. Wettschereck, D.W. Aha, T. Mohri, A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms, Artif. Intell. Rev. 11 (1) (1997) 273–314.

- [4] J.J. Valero-Mas, J. Calvo-Zaragoza, J.R. Rico-Juan, On the suitability of prototype selection methods for knn classification with distributed data, Neurocomputing 203 (2016) 150–160.
- [5] M. Raymer, W. Punch, E. Goodman, L. Kuhn, A. Jain, Dimensionality reduction using genetic algorithms, IEEE Trans. Evolut. Comput. 4 (2) (2000) 164–171.
- [6] M. Raymer, T. Doom, L. Kuhn, W. Punch, Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm, IEEE Transactions on Syst. Man Cybern. Part B: Cybern. 33 (5) (2003) 802–813.
- [7] M.A. Tahir, A. Bouridane, F. Kurugollu, Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier, Pattern Recognit. Lett. 28 (4) (2007) 438–446.
- [8] J. Pérez-Rodríguez, A.G. A.-P. na, N. García-Pedrajas, Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study, Appl. Soft Comput. 37 (2015) 416–443.
- [9] J. Hocke, T. Martinetz, Maximum distance minimization for feature weighting, Pattern Recognit. Lett. 52 (2015) 48–52.
- [10] R. Paredes, E. Vidal, Learning weighted metrics to minimize nearest-neighbor classification error, IEEE Trans. Pattern Anal. Mach. Intell. 28 (7) (2006) 1100-1110.
- [11] D. Mateos-García, J. García-Gutiérrez, J.C. Riquelme-Santos, On the evolutionary optimization of knn by label-dependent feature weighting, Pattern Recognit. Lett. 33 (16) (2012) 2232–2238.
- [12] J.W. Yoon, N. Friel, Efficient model selection for probabilistic k nearest neighbour classification, Neurocomputing 149 (B) (2015) 1098–1108.
- [13] S.A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst. Man Cybern. SMC-6 (4) (1976) 325–327.
- [14] J. Gou, T. Xiong, J. Kuang, A novel weighted voting for k-nearest neighbor rule, J. Comput. 6 (5) (2011) 833–840.
- [15] J. Gou, L. Du, Y. Zhang, T. Xiong, A new distance-weighted k-nearest neighbor classifier, J. Inf. Comput. Sci. 9 (6) (2012) 1429–1436.
- [16] L. Jiao, Q. Pan, X. Feng, Multi-hypothesis nearest-neighbor classifier based on class-conditional weighted distance metric, Neurocomputing 151 (2015) 1468–1476.
- [17] J. García-Gutiérrez, D. Mateos-García, J.C. Riquelme-Santos, Improving the k-nearest neighbour rule by an evolutionary voting approach, in: Proceedings of the 9th International Conference on Hybrid Artificial Intelligence Systems -Volume 8480, in: HAIS, Springer-Verlag New York, Inc., New York, NY, USA, 2014, pp. 296–305.
- [18] X. Gao, T. Mu, M. Wang, Local voting based multi-view embedding, Neurocomputing 171 (2016) 901–909.

- [19] S. kyung Lee, P. Kang, S. Cho, Probabilistic local reconstruction for k-nn regression and its application to virtual metrology in semiconductor manufacturing, Neurocomputing 131 (2014) 427-439.
- [20] Z. Deng, X. Zhu, D. Cheng, M. Zong, S. Zhang, Efficient knn classification algo-rithm for big data, Neurocomputing 195 (2016) 143–148.
- [21] D. Xia, B. Wang, H. Li, Y. Li, Z. Zhang, A distributed spatial-temporal weighted model on mapreduce for short-term traffic flow forecasting, Neurocomputing 179 (C) (2016) 246-263.
- [22] M. Lichman, UCI machine learning repository, 2013, [http://archive.ics.uci.edu/ ml]. Irvine, CA: University of California, School of Information and Computer Science.
- [23] L.J. Eshelman, J.D. Schaffer, Real-coded genetic algorithms and interval-schemata, in: D.L. Whitley (Ed.), Foundation of Genetic Algorithms 2, Morgan Kaufmann, San Mateo, CA, 1993, pp. 187–202. [24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
- WEKA data mining software: an update, SIGKDD Explor. 11 (1) (2009).
- [25] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30.
- [26] S. García, F. Herrera, An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, J. Mach. Learn. Res. 9 (2008) 2677-2694.

Daniel Mateos-García received the Ph.D. degree in Computer Engineering from the University of Seville, Spain, in 2013. Since 2003 he has been with the Department of Computer Science, University of Seville, where he is currently Assistant Professor. His primary areas of interest are machine Learning and evolutionary computation.

Jorge García Gutiérrez received the Ph.D. degree in Computer Engineering from the University of Seville, Spain, in 2012. He has been working for the Department of Computer Science of the University of Seville since 2008 where he is currently Lecturer Professor. His primary areas of interest are machine learning techniques, big data, remote sensing, data fusion and evolutionary computation

José C. Riquelme received the M.Sc. degree in Mathematics and the Ph.D. degree in Computer Science from the University of Seville, Spain. Since 1987 he has been with the Department of Computer Science, University of Seville, where he is currently Full Professor. His primary areas of interest are data mining, machine learning techniques and evolutionary computation.