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1. Introduction

1.1. Motivation

Developed in the early 1970s, the Standard Model (SM) of particle physics is nowadays

one of the most successful theories in physics, being able to unify three out of the four

fundamental forces in nature. Despite the fact that the SM explains quite successfully

almost all experimental results, in addition to the prediction of a wide variety of physical

phenomena, some indirect evidences may point towards physics beyond the SM, also

known as New Physics. This evidence includes the preponderance of dark matter (DM)

in the universe. DM has been indirectly observed through many astronomical and cos-

mological observations such as the rotation curves of galaxies [1], gravitational lensing

[2], the motion of colliding galaxy clusters [3] and the power spectrum of the cosmic

microwave background [4]. DM candidates can be characterised principally by their

interactions, mass and spin and even though they do not interact with light, we can not

exclude that they can interact with ordinary matter

This Master’s thesis has been mainly motivated by the work done in Ref.[5], where

it has been measured the isotope shifts for five Yb+ isotopes with zero nuclear spin on

two narrow optical transitions with an unprecedented accuracy . The corresponding

King’s plot -which results, to a very good approximation, in a linear relation between

the differences of both frequencies- showed a 3 × 10−7 deviation from linearity at 3σ

uncertainty level. On the one hand, the origin of these non-linearities may indicate

physics beyond the SM in the form of a new bosonic force carrier [6] that, in principle,

may be compatible with the existence of a dark-matter candidate in the intermediate

mass range from ∼ 100eV/c2 to ∼ 100MeV/c2 [7], see fig. 1.1. On the other hand, these

nonlinearities may arise from higher-order nuclear effects within the SM. It was claimed

that the quadratic field shift (QFS) was likely to explain the observed nonlinearities at

the observed scale. However, recent work done in Ref.[8] predicts nuclear deformation

as a source of the non-linearity of King’s plot for Yb+ ion. In order to do so, they took

state-of-the-art nuclear models which all predicted a strong quadrupole deformation for

every even-even neighbouring Yb isotope.
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1. Introduction

Figure 1.1.: Representation of the new intra-atomic force between an atomic electron (e−) and

a nuclear neutron (n). The resulting interaction is mediated by the exchange of an

hypothetical new boson, φ, called Dark-Boson, which couples to quarks and leptons.

The virtual exchange of φ would result in a Yukawa-like potential.

𝜙

𝜙

e

nn

e

The main objective of this thesis is to improve the calculations done by [5] and [8] with

the mean-field nuclear code SKYAX [9] using energy-density functionals to calculate the

nuclear structure of Yb isotopes relevant for isotope shift measurements.

1.2. Isotope Shift theory in atomic spectra

Let’s now get quantitative and try to achieve an insight on isotope shift theory. Consider

the two narrow optical quadrupole transitions, α ≡ 2S1/2 −→ 2D5/2 and β ≡ 2S1/2 −→
2D3/2, for a given isotope of Yb+ ion represented in fig. 1.2. Their transition frequency, να

and νβ are represented by Greek subscripts, which, along this work, will denote isotope-

independent, transition-dependent parameters.

Even though an atomic spectral line is characteristic of the element producing the spec-

trum, the energy of a spectral lines does indeed depend slightly on the isotope. Because

of that, there is a tiny but measurable difference when one compares the transition fre-

quency of one isotope with respect to another. As a consequence, the isotope shift is

defined as the difference between a single electronic level of different isotopes of the

same element. Consider two Yb+ ions, one corresponding to isotope j and the other to

11



1. Introduction

Figure 1.2.: The two narrow optical quadrupole transitions, α and β, of Yb+ ion.

𝑋𝑒 4𝑓146𝑠2𝑆1/2

𝑋𝑒 4𝑓145𝑑2𝐷5/2

𝑋𝑒 4𝑓145𝑑2𝐷3/2

𝛽 ≡ ²𝑆1/2 → ²𝐷3/2

𝛼 ≡ ²𝑆1/2 → ²𝐷5/2

𝐘𝐛+

𝜈𝛽,𝑖

𝜈𝛼,𝑖

𝜈𝛽,𝑖 > 𝜈𝛼,𝑖

𝑖

isotope i. Now let us assume that j and i indicate the number of nucleons of each isotope.

Then both transition frequencies are be denoted as να,j and να,i. The frequency shift is

defined as

να,ji ≡ να,j − να,i. (1.1)

Bearing in mind the definition of isotope shifts given above, one could ask about the

physical origin of this shift when one compares the same transition between two given

Yb+ isotopes. Firstly, we are dealing with isotopes of the same element. Thus, one could

intuitively think that this phenomena is due to the mass difference between isotopes,

which is indeed a very good point 1. Each atomic level is described by an eigenfunction

with eigenvalues of angular momentum and energy. As the angular momentum has a

definite value, if one varies the mass of the atomic nucleus by replacing one isotope for

another, the energy of the level is forced to change in order to remain with the same

angular momentum. This effect is called mass shift (MS) and is due to a variation in

nuclear mass from one isotope to another. This term is often understood as a contribution

of a change in nuclear recoil, denominated as normal mass shift, and a change in electron-

electron correlations, known as specific mass shift [6, 10]. Nonetheless, both effects are

1This mass dependence was firstly suggested with the advent of Bohr’s theory of the structure of the atom

in 1913 [10]

12



1. Introduction

proportional to the inverse-mass difference, µji:

µji =
1

mj
− 1

mi
, (1.2)

where mj and mi are the masses of the nuclei of the two isotopes [6, 11].

The MS is not the only cause of isotope shift in atomic spectra. Even though isotopes,

by definition, share the same number of protons2, they do not have the same spatial

distribution over the nucleus as they do not share the same number of neutrons. There-

fore, the nuclear charge distribution is affected by the difference in neutron number. As

a consequence, the variation of the charge distribution of the nucleus from one isotope

to another produces a noticeable effect called field shift (FS). The FS originates from the

change in the nuclear charge radius, which leads to different electronic potentials near

the origin of the nucleus. FS theory was settled by Seltzer [12] and afterwards in [13]

following developments which took nearly one century.

Broadly speaking, both contributions - MS and FS- explain most of the experimental

isotope shift phenomena in atomic spectra. The isotope shift between j and i isotopes of

a given atomic transition, e.g. α, is usually decomposed into the sum of both MS and FS

terms 3:

να,ji = νMS
α,ji + νFS

α,ji. (1.3)

The MS takes into account the variation from one isotope to another in nuclear mass

and it is proportional to the inverse-mass difference, see eq. (1.2). On the other hand,

the field shift is due to the variation of the charge distribution of the nucleus and it is

approximately proportional to the difference in the squared charge radius, δ〈r2〉ji:

δ〈r2〉ji = 〈r2〉j − 〈r2〉i, (1.4)

where 〈r2〉 is the squared charge radius which depends on the isotope. The root-mean-

squared (rms) charge radius, 〈r2〉1/2 provides information about the size of an atomic

nucleus, particularly the proton distribution. In addition to that, the point-proton radius

of a given isotope, Rp,i, can be related to the rms charge radius as follows [15]:

〈r2〉i = R2
p,i + 〈r2

p〉+ 〈r2
p〉so,i

+
N
Z

(
〈r2

n〉+ 〈r2
n〉so,i

)
, (1.5)

2Etymologically, the word isotope is derived from the Greek: isos (equal) and topos (place), and was histori-

cally conceived by Soddy in 1913 with its actual meaning. Thus, one refers to isotopes as a set of atomic

elements which have the same atomic number, Z, thus share the same number of protons, but differ in

the number of neutrons, N.
3We would like to highlight that experimental anomalies in the optical isotope shifts of Samarium chal-

lenged eq. (1.3), see [14]
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1. Introduction

where 〈r2
n〉so is the neutron spin-orbit contribution, 〈r2

p〉so is the proton spin-orbit contri-

bution, 〈r2
p〉 is the electromagnetic mean-square radius of the proton, 〈r2

n〉 is the electro-

magnetic mean-square radius of the neutron and Rp is the point-proton radius. Purely

isotope-dependent quantities or nuclear quantities will be denoted henceforth by latin

subscripts which, in fact, denote the associated to the number of nucleons, A, of each

isotope. The point-proton radius given by

Rp =

√∫
dV(r−Rp)2ρp(r)∫

dVρp(r)
, (1.6)

where dV is the volume element, ρp(r) is the local proton density and

Rp =

∫
dVrρp(r)∫
dVρr(r)

(1.7)

is the center of mass moment. The local proton density can be computed from density

functional theory [9, 16] and it is not necessarily the same as the charge density ρc which

gives rise to eq. (1.5). In fact, this quantity will be provided by the nuclear mean-field

code used in this work, see chapter 2.

The MS, for a given electronic transition, can be decomposed as a product of two terms

and is given by.

νMS
α,ji = Kαµji, (1.8)

where Kα is an atomic parameter. Kα is a purely transition-dependent, isotope-independent

parameter and µji is the inverse-mass difference, an isotope-dependent parameter. The

field shift can be also teared apart into the product of two terms, see Appendix A:

ν
(FS)
α,ji =

∞

∑
n=2

H(n)
α δ〈rn〉ji = H(2)

α δ〈r2〉+O(δ〈r4〉ji) ' Fαδ〈r2〉ji, (1.9)

where the first non-zero term is the leading contribution to the field isotope shift and

Fα ≡ H(2)
α . Adding both mass shift, eq. (1.8), and field shift, eq. (1.9), we can eventually

write down the isotope shift for a given atomic α transition.

να,ji = Kαµji + Fαδ〈r2〉, (1.10)

where Fα is the FS atomic parameter.

We would like to stress that eq. (1.10) is an approximation due to the truncation used

in eq. (1.9). However, this is a good starting point as eq. (1.10) takes into account both

major contributions in isotope shift measurements.
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1. Introduction

1.3. King’s Linearity

In this section we derive a linear relation between both frequency shifts - να,ji and νβ,ji-

the so-called King’s linearity [10]. Consider both α and β narrow optical quadrupole

transitions of Yb+ shown in fig. 1.2. Their isotope frequency shifts are given by eq. (1.10):

να,ji = Kαµji + Fαδ〈r2〉ji, (1.11)

νβ,ji = Kβµji + Fβδ〈r2〉ji. (1.12)

In order to obtain King’s relation we first normalise eq. (1.11) and eq. (1.12) by the inverse-

mass difference, µji:

mνω,ji ≡
νω,ji

µji
, ω = α, β, (1.13)

where mνω,ji is the modified frequency shift induced by the isotope pair (j, i) and atomic

transition ω. This leads to:

mνα,ji = Kα + Fαmδ〈r2〉ji, (1.14)

mνβ,ji = Kβ + Fβmδ〈r2〉ji, (1.15)

where mδ〈r2〉ji/µji is the modified frequency shift. Combining eq. (1.14) and eq. (1.15)

yields

mνβ,ji = Fβαmνα,ji + Kβα, (1.16)

where Fβα ≡ Fβ/Fα and Kβα ≡ Kβ − FβαKα. Equation (1.16) is the so-called King’s relation

and its graphical representation is known as King’s plot [10]. Notice that, if experimental

is consistent with King’s linearity, eq. (1.16) provides a powerful tool in order to extract

its slope and offset by plotting the measured frequency shifts one against the other for

several isotope pairs [10] without any atomic physics calculations. In addition, this en-

ables the extraction of relevant nuclear quantities such as δ〈r2〉, the charge radius 〈r2〉1/2

and the inverse-mass difference, for example.

1.4. Beyond King’s relation

Despite the relevance that King’s plot has in revealing some important features of the

atomic nuclei, in this subsection we are going to describe some higher order terms within

the SM that may account for the observed non-linearities in [5] for a set of neighbouring

even-even isotope pairs of Yb+. In the previous section it has been shown that a linear re-

lationship can be established between isotope shifts of two different transitions. As a con-

sequence, the breaking of King’s linearity is a direct evidence that small non-linearities

15



1. Introduction

are present in Yb+ ion, and therefore we must include additional contributions that can

explain the experimental evidence. For instance, we could add a third term, namely δνNL,

in eq. (1.16) which accounts for those non-linear (NL) terms that are responsible for the

current experimental findings of [5]:

mνβ,ji = Fβαmνα,ji + Kβα + mδνNL, (1.17)

where mδνNL ≡ δνNL/µji is the modified NL frequency shift.

In fact, King’s relation only considers the leading-order term of Seltzer’s moment ex-

pansion in the field isotope shift, see eq. (1.9), and the inclusion of higher-order terms, see

Appendix A, may contribute to the non-linearity. The origin of these small non-linearities

in the Yb+ remains still unclear and in this work we will only consider those NL terms

that are within the SM, therefore disregarding the hypothetical dark boson contribution.

In order to characterise the experimental evidence of small non-linearities in King’s Plot,

we rewrite both modified isotope shifts, accordingly to [8], as

mνα,ji = Kα + Fαmδ〈r2〉ji + G(2)
α m

[
δ〈r2〉ji

]2
+ G(4)

α mδ〈r4〉ji, (1.18)

mνβ,ji = Kβ + Fβmδ〈r2〉ji + G(2)
β m

[
δ〈r2〉ji

]2
+ G(4)

β mδ〈r4〉ji, (1.19)

where G(2)
α , G(2)

β , G(4)
α , G(4)

β are atomic parameters and mδ〈r4〉ji ≡ δ〈r4〉ji/µji, where δ〈r4〉ji
is the next leading order in Seltzer moment expansion of the FS, see Appendix A, and it

is defined as follows

δ〈r4〉ji = 〈r4〉p,j − 〈r4〉p,i, (1.20)

where 〈r2〉 is the fourth order charge radius and, as we will see in chapter 3, this quantity

can be computed by means of the fourth moment point-proton radius R4
p4 in addition to

some corrective terms. The fourth moment point-proton radius is not implemented in

SKYAX. However, we implemented the following prescription of Rp4:

〈r4〉p1/4
= 4

√∫
dV(r−Rp)4ρp(r)∫

dVρp(r)
, (1.21)

into the nuclear code.

On the one hand, the third term in eqs. (1.18) and (1.19) is known as the quadratic field

shift (QFS) due to the second-order effect in the change of the nuclear Coulomb potential.

On the other hand the fourth term is the fourth order radial moment shift (FOMS). Its

origin is mainly due to relativistic effects in the electron wave function [8]. Both QFS and

FOMS terms represent different physical phenomena [8]. Repeating the same procedure

as in eq. (1.15) leads to

mνβ,ji = Kβα + Fβαmνα,ji + G(2)
βα m

[
δ〈r2〉ji

]2
+ G(4)

βα mδ〈r4〉ji, (1.22)

16



1. Introduction

where G(k)
βα ≡

(
G(k)

β − FβαG(k)
α

)
with k ∈ {2, 4}. We would like to highlight that the first

and the second term in eq. (1.22) reproduce the linear relation between both modified

frequency shifts, mνβ,ji and mνα,ji, In contrast, the third and fourth terms represent NL

contributions to King’s plot which might potentially account for the experimentally mea-

sured deviation from King’s linear relation. Thus, from a theoretical point of view, it is

of high priority to understand and quantify the impact of both NL contributions. The

authors of Ref.[5] assume a simple correlation between 〈r4〉 and 〈r2〉:

〈r4〉i = b〈r2〉2i , (1.23)

where b ≈ 1 is identical over different isotopes.

Alternatively, in Ref.[8] it is argued that nuclear deformation may lead to a nonlinearity

of the King’s plot. It is well known from both experimental [17] and its theoretical inter-

pretation [18, 19] of nuclear rotational spectra that all neighbouring even-even isotopes of

Yb studied in [5] have deformed nuclear ground states with a dimensionless quadrupole

deformation, β2, being approximately β2 ≈ 0.3. Therefore, in [8], the nuclear deformation

is taken into account for the calculation of the field isotope shift in even-even Yb isotopes.

Strong correlations between experimental and theoretical data are found, meaning that

nuclear deformation may have a noticeable impact on the deviation from King’s linear-

ity. This has an impact on the magnitude of the deviation produced by each NL term.

Indeed, it is found that the deviation coming from the QFS term drops about an order of

magnitude being the FOMS the main source of non-linearity. This conclusion is opposed

to [5], where the main source of non-linearity was due to the QFS term.

However, neither [5] nor [8] take into account theoretical uncertainties in their estima-

tion of NL terms in eq. (1.22). In this work we will study the QFS and FOMS contri-

butions including theoretical uncertainties using several state-of-the-art non-relativistic

energy density functionals. In the forthcoming section we shall introduce a two spatial

dimension, axially-symmetric, Hartree-Fock + BCS code called SKYAX, [9]. We use this

nuclear code to predict a variety of properties of nuclear ground states for the set of AYb

isotopes of interest, with A = {168, 170, 172, 174, 176}. The obtained nuclear properties

will provide both the nuclear and atomic input to study eq. (1.22) with different Skyrme

parametrisations, pairing interactions and pairings schemes. The transition-dependent

parameters, Kβα, Fβα, G(2)
βα and G(4)

βα , shall be extracted from [5] and [8]. Eventually, we

shall associate an error to each computed nuclear property due to code’s resolution.

17



2. Nuclear structure calculations

The aim of this chapter is to introduce the 2D axially-symmetric nuclear code, SKYAX[9],

used throughout this work. SKYAX determines axially symmetric, time-reversal invari-

ant, stationary solutions to the self-consistent mean-field model based on Skyrme energy

functional augmented by a density-dependent pairing functional and optionally by a

constraint on low-order multipole moments [9]. SKYAX enables us to obtain fundamental

nuclear properties such as the point-proton radius, for example. As a matter of fact,

nuclear information will be of utter importance to compute important features about iso-

tope shifts of even-even neighbouring Yb isotopes. SKYAX has a wide variety of Skyrme

forces that can be selected in the input file in order to obtain the nuclear properties but

with different Skyrme parametrisations, pairing interactions and pairing shcemes.

This chapter is structured as follows. In section 2.1 we introduce the Skyrme-Hartree-

Fock (SHF) theory. Eventually, in section 2.2 we characterise how precise is SKYAX ob-

taining the nuclear properties of interest, hence quantifying the error due to the code’s

precision.

2.1. Skyrme-Hartree-Fock theory

There are several situations of highly correlated many-body systems where a full treat-

ment is beyond current analytical, or even numerical capabilities. For example, the nu-

cleus of an atom can be conceived as a finite, quantum-mechanical many-body system

where the nucleons -protons and neutrons- are governed by the nuclear interaction. De-

spite the fact that nuclear interaction combines both a strong attraction and an enormous

short-range repulsion, a simpler phenomenological treatment such as the independent

nuclear shell model allows one to arrange all structural properties and basic low-energy

excitations in the range up to giant resonances [16]. The assumption that nucleons move

independently in an average potential produced by all of the nucleus is thus justified by

the success of the phenomenological shell model. However, these models are limited by

their empirical nature, as well as the neglected residual interactions between nucleons.

Noteworthy advantages emerge from the HF method as a better microscopic under-

standing is achieved due to the fact that in self-consistent mean-field models, the mean-

18



2. Nuclear structure calculations

field Hamiltonian is not explicitly prescribed but generated from the many-body system

itself [9].

The foundation for the HF setup starts with assuming a Hamiltonian which contains

a one-body part which takes into account the kinetic energy of each nucleon and a one-

body potential, denoted by T̂, and a two-body interaction, denoted by V̂. In coordinate

space this looks like

Ĥ = T̂ + V̂ =
A

∑
k=1

[
−h̄2

2m
52

k +Uext(xk)

]
+

1
2

A

∑
k,l=1

v(xk, xl , ...),

where the indices of summation stand for the nucleons, x stands for the spatial coordi-

nates and spin: xk = {rk, σ̂k} and A stands for the total number of nucleons of particles k

and l. The dots inside the two-body interaction indicate that the potential might depend

on additional properties like their momenta and possibly isospins. The one-body part of

the Hamiltonian accounts for the kinetic energy and one-body potential.

In terms of the second quantization and Fermi anihilation â, and creation â† operators,

the Hamiltonian can be written as

Ĥ = ∑
αβ

tαβ â†
α âβ +

1
2 ∑

αβγδ

vαβγδ â†
α â†

β âδ âγ, (2.1)

where the indices α, β, γ and δ label the single-particle states in some complete or-

thonormal basis, tαβ refers to the kinetic energy and the vαβγδ are the matrix elements

of the two-body interaction. The eigenstates of this Hamiltonian are determined by the

stationary Schrödinger’s equation

Ĥ|Ψ〉exact = Eexact|Ψ〉exact. (2.2)

In virtue of the variational principle, one can show that the Schrödinger equation, eq. (2.2),

is equivalent to the variational equation

δE[Ψ] = 0. (2.3)

The approximation of such variational methods consists of the fact that |Ψ〉exact is re-

stricted to a set of trial wave functions. As soon as the exact function is not in this set,

the minimal solution of eq. (2.3) is an approximation of the exact wave function. The

variational method is useful for determining the ground state, since for any trial wave

function |Ψ〉, one can show that the ground state energy will always be a lower bound of

a variational calculation [20].
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2. Nuclear structure calculations

Even though HF theory has the advantage to obtain a mean-field Hamiltonian gener-

ated from the many-body system itself, short-range correlations due to free-space two-

nucleon force make HF theory not applicable for the bare nucleon-nucleon interaction.

Instead, one can use Density Functional Theory (DFT). DFT incorporates the correlations

into effective energy-density functionals (EDF).

The SHF approach is a non-relativistic approach regarded in the meantime as reliable

and flexible nuclear DFT. Moreover, the SHF apporach is traditionally described by a

density-dependent effective interaction, also known as Skyrme energy-density functional

or ”Skyrme force”. There have been many applications of the HF method over the years

using different EDFs. Only using density dependent forces it is possible to simultane-

ously reproduce the binding energies, the radii, and other nuclear properties of light and

heavy nuclei all over the nuclear chart [21].

Any mean-field model is built up from a set of single-nucleon wave functions or single-

particle (sp) wave functions together with a fractional occupation amplitudes vα. In order

to deal with partially open shells, one augments that by a nuclear pairing scheme [21],

which associates an occupation amplitude, vα with each single-nucleon state ϕα:

{ϕα, vα; α = 1, ..., Ω}. (2.4)

The occupation amplitude can take values in the interval [0,1]. The complementary non-

occupation amplitude is uα =
√

1− v2
α, so that u2

α + v2
α = 1. In the Bardeen–Cooper–Schrieffer

(BCS) approximation [22] , the nuclear many-body state is written as follows

|Ψ〉 = ∏
α>0

(uα + vα âα âα
†)|0〉, (2.5)

where |0〉 is the vacuum state. This BCS state comprises all the information carried in

eq. (2.4). The quantity Ω > A denotes the size of the pairing-active space. Dynamical

degrees of freedom are the single-particle wavefunctions ϕα which yield the mean-field

Schrödinger equation and variations with respect to the complementary non-occupation

amplitude, uα yield the pairing equations.

Wavefunctions and occupations amplitudes uniquely define the full one-body density

matrix. EDFs such as the Skyrme-energy-density functional are defined in terms of only
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2. Nuclear structure calculations

a few local densities and currents:

ρq = ∑
α∈q

fαv2
α|ϕα|2 (density), (2.6)

sq = ∑
α∈q

fαv2
α ϕ†

ασ̂ϕα (spin density), (2.7)

jq = Im

{
∑
α∈q

fαv2
α ϕ†

α5 ϕα

}
(current), (2.8)

Jq = −i ∑
α∈q

fαv2
α ϕ†

α5⊗σ̂ϕα (spin-orbit density), (2.9)

τq = ∑
α∈q

fαv2
α| 5 ϕα|2 (kinetic density), (2.10)

τq = −i ∑
α∈q

fαv2
α5 ϕ†

α · 5σ̂ϕα (kinetic spin-density), (2.11)

ξq = ∑
α∈q

fαuαvα ϕα ϕα (pairing density), (2.12)

where q labels the nucleon species with q = p for protons and q = n for neutrons. ϕα

is the time reversal partner of ϕα. fα is a phase-space weight which provides a smooth

cutoff of the space of single-particle states included in paring. All the expressions are local

quantities depending on r and referring to the local wavefunction components ϕ = ϕ(r).

The Skyrme potential can be parametrised as [21]

VSk = t0(1 + x0P̂σ)δ(r12) +
t3

6
(1 + x3P̂σ)ρ

γ(r1)δ(r12)

+
t1

2
(1 + x1P̂σ)

(
δ(r12)k̂2 + k̂2δ(r12)

)
+ t2(1 + x2P̂σ)k̂δ(r12)k̂

− it4δ(r12)(σ̂ + σ̂′) · (k̂′ × k̂), (2.13)

where the labels in r12 = r1 − r2 refer to particle 1 and 2 and P̂σ = 1
2 (1 + σ̂1σ̂2) is

the spin-exchange operator and the σ̂ are Pauli spin matrices. The k̂ = −i5 are the

momentum operators (divided by h̄). Note that the t0,1,2 terms in eq. (2.13), correspond

to the zero-range limit of a Gogny-type force up to the second order in the derivatives

[23, 24]. In addition, t3 accounts for the three-body force. Nonetheles, in HF calculations

of even-even nuclei, as it is the case of our work, this force is equivalent to a two-body

density-dependent interaction, where the density dependence is determined by the γ

parameter. Eventually, t4 term accounts for the spin-orbit interaction. The t0,1,2,3,4 and
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2. Nuclear structure calculations

x0,1,2,3 force parameters are fitted to nuclear properties solving HF equations. We would

like to highlight that in SKYAX, time-odd pieces such as current, spin-density and kinetic

spin-density are ignored [9].

Despite the fact that VSk is not a true interaction [25], eq. (2.13) serves as a generator of

the Skyrme interaction functional

Esk = 〈Ψ|VSk|Ψ〉. (2.14)

The starting point for the SHF approach, as in any DFT, is the total energy which is

expressed as follows

Etot = Ekin + Esk + ECoul + Epair + Ecm, (2.15)

with kinetic energy

Ekin = ∑
q∈p,n

h̄2

2mq

∫
dVτq, (2.16)

where dV is the volume element in the full three-dimensional space. Skyrme energy

E =
∫

dV

(
b0

2
ρ2 − b′0

2 ∑
q

ρ2
q +

b3

3
ργ+2 − b′3

3
ργ ∑

q
ρ2

q −
b2

2
ρ∆ρ +

b′2
2 ∑

q
ρq∆ρq

+ b1ρτ − b′1 ∑
q

ρqτq − b4ρ5 ·J − b′4 ∑
q

ρq5 ·Jq − c1 J2 + c′1 ∑
q

J2
q

)
, (2.17)

Coulomb energy

EC =
e2

2

∫
dVdV ′

ρp(r)ρp(r′)
|r− r′| −

∫
dV

3e2

4

( 3
π

)
ρ4/3

p , (2.18)

where e is the elementary charge with e2 = 1.43989MeV · f m. The second term in

eq. (2.18) is the Slater approximation to the exchange term [26, 27] And pairing energy

Epair =
1
4 ∑

q∈p,n
Vpair,q

∫
dV|ξq|2

[
1− ρ

ρ0,pair

]
, (2.19)
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where ρ0,pair accounts for the regulation between volume and surface pairing[28].

Despite the fact that the pairing energy is given as a functional, eq. (2.19) is deduced

from a density-dependent delta interaction (DDDI) V(DDDI)
pair = δ(r1− r2)[1− ρ(r)/ρ0,pair].

However, DDDI pairing is quite often simplified taking ρ0,pair −→ ∞, which means that

the pairing energy is related to a volume delta interaction (VDI) and thus replacing the

surface pairing.

The Skyrme parameters, bi, are written in terms of the force parameters ti and xi as

follows:

b0 =t0(1 +
1
2

x0),

b′0 =t0(
1
2
+ x0),

b1 =
1
4
[t1(1 +

1
2

x0 + t2(1 +
1
2

x2)],

b′1 =
1
4
[t1(

1
2
+ x0 + t2(

1
2
+ x2)],

b2 =
1
8
[3t1(1 +

1
2

x1)− t2(
1
2
+ x2)],

b′2 =
1
8
[3t1(

1
2
+ x1) + t2(1 +

1
2

x2)],

b3 =
1
4

t3(1 +
1
2

x3),

b′3 =
1
4

t3(
1
2
+ x3),
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b4 =
1
2

t4,

b′4 =
1
2

t4,

c1 =ηtls
1
16

(t1x1 + t2x2),

c′1 =ηtls
1
16

(t1 − t2), (2.20)

where ηtls ∈ [0, 1] controls the contribution from the tensor spin-orbit term. The force

definition, see eq. (2.13), fixes the definition of b
′
4. In addition, this turns out to be too

restrictive for detailed observables and this parameter is usually left as a free parameter.

In this work, we have selected four Skyrme parametrisations:

• SLY4, a Skyrme-like effective interaction usually used to describe neutron stars, su-

pernovae and neutron-rich nuclei is constrained to the pure neutron matter equation-

of-state in addition to the standard properties of symmetric infinite nuclear matter

in order to have a good behaviour with respect to the isospin degree of freedom

[29].

• SKI3 which complements the standard relativistic and non-relativistic effective in-

teractions. Relativistic and non-relativisitic interactions did not predict the same

behaviour of the isotope shifts in the Pb [30]. Within the SKI family of parametri-

sations, SKI3 allows for a b4 6= b′4 = 0 value – e.g. in page 479 in Ref.[30]. For

the set SKI3, we have imposed the constraint b ' 0. In this way, we enforce a

density dependence of the spin-orbit form factor proportional to ρ = ρp + ρn as in

the relativistic mean field.

• UNEDF0, a nuclear EDF restricted to time-even densities, specially designed to

study spherical or axially deformed nuclei. The functional is fitted to reproduce

experimental data for 72 nuclei. 11 nuclei are below A = 66 while the rest are

above A > 106, making an emphasis on heavy nuclei. In particular, the fit con-

siders the binding energies of 44 well-deformed even-even nuclei, including the

binding energies of the 170Yb and 178Yb isotopes. The remaining 28 selected nuclei

are spherical[31].
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Table 2.1.: Fitted ti values for the Skyrme parametrisations used in this work.

Skyrme Force t0 t1 t2 t3 t4

SLY4 -2488.913 486.818 -546.395 13777.000 123.000

SKI3 -1762.880 561.608 -227.0.90 8106.200 188.508

UNEDF0 -1883.688 277.500 607.565 13901.948 250.322

UNEDF1 -2078.328 239.401 1574.243 14263.646 76.736

Table 2.2.: Fitted xi and b′4 parameters values for the Skyrme parametrisations used in this work.

Skyrme Force x0 x1 x2 x3 b′4

SLY4 0.834 -0.344 -1.000 1.254 61.500

SKI3 0.30830 -1.17220 -1.09070 1.29260 0.00001

UNEDF0 0.010182022 -1.7786241 -1.6775989 -0.37954858 -91.26040

UNEDF1 0.05430437 -5.0781477 -1.3665705 -0.16116885 71.31652

• UNEDF1,is a subsequent version of UNEDF0, which incorporates an improved

description of fission properties of the actinide nuclei. The main achievement of

this parametrisation with UNEDF0 is the removal of the center-of-mass correction.

UNEDF1 provides a description of global nuclear properties comparable to UN-

EDF0[32].

In table 2.1 and table 2.2 we list the values of ti and xi for each parametrisations,

respectively.

2.1.1. Pairing correlations

The mean field approach is specially useful but, in principle, it is only justified when the

gap between the highest occupied shell and the first empty level is sizeable. Otherwise,

in subshell closures, it is rather easy to have excitations of particle-hole (ph) pairs which

would lead to more complicated wave-functions than a Slater determinant. Because of

that, the HF method is more accurate for the ground state of magical nuclei rather than in

other nuclei with a few particles outside the closed shell configuration. These nuclei may

show a small deformation in the HF method and have several nearly degenerate levels

in the vicinity of the Fermi surface [20].

We are looking for a wave-function that was able to describe the nucleus. The solution
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of the corresponding equation led to a transformation from a given sp basis to a better

one. The HF method partially takes into account the long-range part of the nuclear inter-

action as the variational principle is equivalent to the requirement that there are no matrix

elements between the ground state and the most simple excitations: the ph-excitations.

On the other hand, the short-range part of the nuclear interaction is the responsible for

particle-particle (pp) correlations. The formulation of these pp correlations can be done

similarly to the ph picture by introducing a generalised product of wave-functions con-

formed of quasi-particles.

The study of pairing correlations allowes one to understand a large number of relevant

effects unexplained in the pure HF picture. For example, the spectra of deformed nuclei

differ if one observes an even or an odd nuclei. Even-even nuclei have only few collective

levels up to, typically ∼ 1.5MeV, while the picture is very different for even-odd nuclei,

which have many collective and single-particles states in the same energy interval. The

former is well described as rotational and vibrational bands, while the latter can be un-

derstood using pairing correlations arguments. Another experimental feature that can

be explained with pairing correlations is the very well known odd-even effect where

the total binding energy of an odd-even nucleus is smaller than the mean value of the

binding energies of the two neighbouring even-even nuclei. Also, the moments of inertia

of deformed nuclei can be measured from the level structure of rotational bands. Pure sp

calculations deviate from experiments by a factor of two whilst the agreement between

theory and experiment is rather improved if one includes pairing correlation, leading to

a better agreement between both parts.

The coupled mean-field equations are derived by a variation with respect to the sp

wave function, (
ĥ +

uα

vα∆(r)

)
ϕα = εα ϕα, (2.21)

(εα − εF,qα)(u
2
α − v2

α) = ∆αwαuαvα, (2.22)

where εF,q stands for the Fermi energy, wα is the cutoff profile, ∆(r) is the BCS gap

potential, ∆α is the average sp gap and ĥ is the sp hamiltonian. Both eq. (2.21) and

eq. (2.22), represent the Hartree-Fock-Bogoliugov equations. However, its solution is

rather involved due to the state dependent contribution of the gap potential in eq. (2.21).

Therefore, SKYAX omits this last term and deals with the BCS approximation. The so-

lution of the gap equation, eq. (2.22), applies to even-even nuclei which is the common
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application of SKYAX and our nuclei of interest. Therefore, we disregard the case of even-

odd or odd-even nuclei which require a blocked state with ν2
α = 0.5. Nonetheless, the

BCS approximation may lead to unstable solutions[9]. These disadvantages disappear

if particle-number projection is applied before the variational derivation of the coupled

mean-field equations. A simpler way to approximate particle-number projection is given

by the Lipkin-Nogami (LN) scheme. SKYAX use an alternative way to represent the

LN scheme that has the same effect, called stabilised pairing, which amounts to direct

modification of the gaps,

∆α −→ ∆α

(
1 +

E2
stab

E2
pair,qα

)
, (2.23)

where Estab is numerical parameter and Epair,qα
the pairing energy associated with the

nucleon type of the state α.

SKYAX allows us to select, in the input file, a pairing interaction (VDI or DDDI) and a

pairing scheme (BCS or LN scheme) for a given Skyrme parametrisation. However, not

all pairing interactions, VDI and DDDI, are allowed to be combined with every Skyrme

parametrisations as given by table 2.3. We would like to highlight that the only Skyrme

parametrisation that is allowed to work with both VDI and DDDI pairing is SKI3. This is

due to the fact that the authors of Ref.[33] tested the predictive power of several Skyrme

forces comparing the results obtained for the VDI and DDDI pairing with respect to low

lying quadrupole spectra along some chains of isotopes around neutron shell closure

N = 82. They found that neutron rich isotopes are depend on the change of Skyrme

parametrisations and on the adjustment of the pairing interaction [33].

Table 2.3.: List of each type of pairing, VDI or DDDI, supported by each Skyrme parametrisation

with its pairing scheme, BCS and LN.

Skyrme Force

VDI DDDI

BCS LN BCS LN

SLY4 Yes Yes No No

SKI3 Yes Yes Yes Yes

UNEDF0 Yes Yes No No

UNEDF1 Yes Yes No No
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2.2. Theoretical uncertainties

In this section we estimate one of the theoretical uncertainties of the nuclear properties

calculated with SKYAX. The uncertainty related to the precision of the numerical calcu-

lations. SKYAX is written in cylindrical coordinates, thus:

r =
√

x2 + y2, z = z. (2.24)

The dimension of the axial coordinate-space grid is given by,

Lr × Lz, (2.25)

where

Lr = dr Nr, Lz = dzNz. (2.26)

On the one hand Nr and Nz are the number of cells defined in the radial and azimutal

direction, respectively. On the other hand, dz and dr are the cell length defined in the r

and z direction, respectively. Both quantities, dr and dz, are defined in f m. Before getting

into details, fig. 2.1 shows a 2D density plot of the 170Yb isotope in its ground state. As we

can see, the shape of the isotope is far away from spherical, thus presenting a permanent

quadrupole deformation in its ground state. Consequently, the theoretical uncertainties

due to dr and dz need to be studied separately.

Figure 2.1.: Ground state density of 170Yb along the {r, z}-plane.
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2.2.1. Dimension of the grid

Firstly, we would like to find a suitable box for our calculations. In order to do that, we

check how the box lengths, Lr and Lz, affect the convergence of the nuclear properties

we aim to determine. We assume that the convergence of nuclear properties does not

depend (or depends very smoothly) on the choice of the isotope. Consequently, we have

chosen 170Yb for this purpose. Figure 2.2 shows the point-proton radius as a function

of the box lengths Lr and Lz. The results have been obtained varying the mesh but an

squared box, Lr = Lz. Notice that, when Lr = Lz ≥ 22 f m, the point-proton radius, rp, is

almost constant with respect to box length. In contrast, when Lr = Lz ≤ 22 f m there is an

evident dependence on the box length, which is not appropriate to run the calculations.

Furthermore, the inset in fig. 2.2 shows that the results are in agreement up to 2 · 10−4 f m

for the 30 f m ≤ Lz(Lr) ≤ 45 f m range, the precision is about 2 · 10−4 f m with an overall

error of, ε(L) = ±10−4 f m.

We repeat the same procedure for Rp4 in fig. 2.3 which shows a steeper evolution of

Rp4 in comparison to Rp. However, we would like to emphasise that the dependence

of Rp4 with respect to the box size is very small for Lr(Lz) ≥ 25 f m. In the restricted

zone, 30 f m ≤ Lr(Lz) ≤ 36 f m, the uncertainty in Rp4 is of the same order as in Rp,

Figure 2.2.: Rms point-proton radius, Rp as a function of box length of 170Yb isotope. We have

selected the same value for Lz and Lr (squared box). In addition, each value has been

computed keeping dz and dr (cell lengths) constant and varying the number of cells,

Nz and Nr, inside the squared-box. Red line indicates dr = dz = 0.6 f m, blue line

dr = dz = 0.7 f m, green line dr = dz = 0.8 f m, cyan line indicates dr = dz = 0.9 f m

and violet line dr = dz = 1.0 f m.

29



2. Nuclear structure calculations

Figure 2.3.: Fourth moment point radius, R4
p, as a function of box length of 170Yb isotope. Same

color code as in fig. 2.2

thus ε
(4)
L = 10−4 f m. Thus we shall limit the calculations of Rp4 inside of the restricted

range in order to achieve this level of precision. In conclusion, all nuclear properties

show an uncertainty with the box length of about 10−4 f m. In the following, we use

Lr = Lz = 32 f m box.

2.2.2. Optimising mesh parameters

Now we would like to study the theoretical uncertainty of the nuclear properties when

we vary the number of cells, Nr and Nz, in the grid and the minimum size of the mesh,

defined by dr and dz, but keeping the total box dimension constant, 32 f m× 32 f m as we

found previously. Figures 2.4 and 2.5, show the dependence with respect to the mesh

parameters, dr and dz. Figure 2.4 highlights that the computed Rp values are very similar

for dr = 0.6, 0.7, 0.8, 0.9 f m. The case is quite the opposite for dr = 1.0 f m and dr =

1.1 f m which lead to different Rp values. Inside the zoomed region we spot a quite soften

dependence of Rp with respect dr and dz, more precisely for dz = 0.4 f m to dz = 0.8 f m

and dr = 0.6 f m to dr = 0.9 f m, leading to an uncertainty about ε
(M)
Rp

= ±10−4 f m.

Figure 2.5 highlights that the computed Rp4 values are very similar for dr = 0.6, 0.7

, 0.8, 0.9 f m. The case is quite the opposite for dr = 1.0 f m and dr = 1.1 f m which lead

to different Rp4 values. In the inset figure we spot a quite soften dependence of Rp4

with respect dr and dz, more precisely for dz = 0.4 f m to dz = 0.8 f m and dr = 0.6 f m to

dr = 0.9 f m, leading to an uncertainty about ε
(M)
Rp4

= ±10−4 f m.
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Figure 2.4.: Rms point-proton radius as a function of mesh dz parameter. Calculations computed

with different mesh dr parameter and varying the number of cells, Nr and Nz, so as

to keep the box dimension constant: 32 f m× 32 f m. A zoom in has been included to

have a better resolution inside the converged zone.

The error due to code’s resolution in both nuclear properties are calculated as follows

ε
(C)
k =

√
ε
(M)
k

2
+ ε

(L)
k

2
, (2.27)

where k = Rp, Rp4 Since uncertainties in the dimension of the grid and the mesh are

the same for both nuclear properties we shall assign the same name for the theoretical

uncertainty, see eq. (2.27). The uncertainties are listed in table 2.4.

Table 2.4.: Mesh, dimension of the grid and theoretical uncertainties associated to both Rp and

Rp4 nuclear quantities.

ε
(L)
k [ f m] ε

(M)
k [ f m] ε

(C)
k [ f m]

10−4 10−4 1, 4 · 10−4

We would like to note that, despite the fact that reducing the mesh parameters and

increasing the number of cells lead to a better resolution of the results, this improvement

was at expense of a higher computational time. As a consequence, we have chosen

suitable values of dr, dz, Nr and Nz that are compatible both with a reasonable com-

putational time and the best precision. As mentioned in [9], a good compromise with

both computational time and precision is reached for dr, dz = 0.7 f m. Four our purposes,
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Figure 2.5.: Fourth moment point-proton radius, Rp4, as a function of mesh dz parameter. Same

details as in fig. 2.4.

dr = dz = 0.7 f m and Lr = Lz = 32 f m to compute the nuclear properties of the five Yb

isotopes.

In the forthcoming section we present the nuclear properties obtained with SKYAX for

different Skyrme parametrisations, pairing interactions and pairing schemes. In addi-

tion to the uncertainty due to the code’s precision, we define a new uncertainty due to

the pairing interaction. Moreover, both sources of uncertainty shall be propagated into

King’s plots to study possible non-linearities and whether they can be due to nuclear

uncertainties.
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3. Results

In this chapter we present a detailed analysis of the main results obtained in this thesis.

The structure of this chapter follows the steps represented in fig. 3.1. First, we use SKYAX

to extract the nuclear quantities evaluated in section 2.1 for neighbouring even-even Yb

isotopes with zero nuclear spin: AYb where A ∈ {168, 170, 172, 174, 176}. From these

results we obtain the nuclear properties of interest discussed in chapter 1 such as the

differential squared charge radius, δ〈r2〉, and the differential fourth order charge radius,

δ〈r4〉. In addition, all these nuclear properties have an associated theoretical error. One

Figure 3.1.: Flow diagram describing the steps followed to calculate deviations from linearity in

the IS of Yb.

Nuclear structure
calculation
SkyAx

Nuclear in-
put: Rp, Rp4

ε
(C)
Rp

, ε
(C)
Rp4

Include
pairing

uncertainty?

Rp, Rp4

ε
(C+P )
Rp

, ε
(C+P )
Rp4

Rp, Rp4

ε
(C)
Rp

, ε
(C)
Rp4

〈r2〉1/2, 〈r4〉1/4
ε〈r2〉1/2 , ε〈r4〉1/4

δ〈r2〉, δ〈r4〉
εδ〈r2〉, εδ〈r4〉

να, νβ
ενα , ενβ

Linear fit
ν
(FIT )
β

Deviations
from linearity

δ, εδ

Yes No

1

33



3. Results

source of theoretical error is the code’s precision. The second source of theoretical uncer-

tainty takes into account the uncertainty due to different pairing schemes using the same

Skyrme parametrisation. With the nuclear properties and its theoretical uncertainties we

determine the theoretical frequency shifts for both α and β transitions and their respective

uncertainties. Eventually we calculate the deviation from linearity and its theoretical

uncertainty.

Since SKI3 is the only Skyrme parametrisation that incorporates both pairing interac-

tions, VDI and DDDI, we obtain 4 values of the same nuclear property for a given isotope.

The other Skyrme parametrisations are restricted to VDI only, thus resulting in 2 values

of the same nuclear property for each parametrisation. Consequently, for a given isotope

we obtain 10 different values of the same nuclear property. For the sake of simplicity, we

only present results coming from SLY4 Skyrme parametrisation. The rest can be found in

appendices B to F.

3.1. Point-proton and fourth moment point-proton radii with

theoretical uncertainties

3.1.1. Results with the code’s uncertainty

In this subsection, we present the point-proton radius, Rp, and the fourth moment point-

proton radius, Rp4, for each Yb isotope of interest. Before getting into details, we would

like to remark that the code’s precision calculated in the previous chapter is the same

for both Rp and Rp4, ε(C) = 1.4 · 10−4 f m. In table 3.1 we present the results obtained

using the SLY4 parametrisation. When we consider the pairing schemes separately, the

Table 3.1.: Point-proton radius obtained with SKYAX using the SLY4 Skyrme parametrisation and

different pairing schemes (BCS or LN). The uncertainties within this table are due to

the code’s precision.

Isotope
Rp [ f m] Rp4 [ f m]

BCS LN BCS LN

168Yb 5.24220(14) 5.24252(14) 5.59947(14) 5.59996(14)
170Yb 5.25812(14) 5.25879(14) 5.61610(14) 5.61716(14)
172Yb 5.27116(14) 5.27120(14) 5.62845(14) 5.62867(14)
174Yb 5.28232(14) 5.28218(14) 5.63868(14) 5.63795(14)
176Yb 5.29344(14) 5.29282(14) 5.64644(14) 5.63794(14)
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total theoretical uncertainty, ε(T), is given by the code’s precision, ε(C). Consequently,

ε
(T)
Rp

= ε
(T)
Rp4

= 1.4 · 10−4 f m for both point-proton radii. In the following subsection we

introduce a different type of uncertainty, extracted from the difference between both

pairing schemes for a given pairing interaction, namely the pairing uncertainty.

3.1.2. Results with pairing uncertainty

When we take into account both pairing schemes (BCS+LN), the nuclear properties of

interest are calculated taking the mean value between both pairing schemes,

X =
X(BCS) + X(LN)

2
, (3.1)

where X ∈ {Rp, Rp4, 〈r2〉1/2, 〈r4〉1/4, δ〈r2〉, δ〈r4〉}. In order to characterise the pairing

uncertainty for the point-proton radii we take the absolute difference between the results

obtained with the two pairing schemes:

ε
(P)
X =

|X(BCS) − X(LN)|
2

. (3.2)

However, we highlight that X in eq. (3.2) refers only to the point-proton radii, Rp and

Rp4. This notation is maintained throughout the rest of this work. For the point-proton

radii, this uncertainty is combined with the code’s precision so that the overall theoretical

uncertainty is calculated as follows

ε
(T)
X =

√(
ε(C)

)2
+
(

ε
(P)
X

)2
. (3.3)

The uncertainties related to the remaining nuclear quantities are calculated by means of

the error propagation of eq. (3.3), and the value of the nuclear quantities are computed in

virtue of eq. (3.1) The total theoretical uncertainty has three possible outcomes:

• ε(C) >> ε
(P)
X , the error due to the code’s precision is much larger than the pairing

uncertainty. As a consequence, the total theoretical uncertainty is dominated by the

code’s precision, ε
(T)
X ∼ ε(C).

• ε(C) << ε
(P)
X , the error due to the code’s precision is much smaller than the pairing

uncertainty, which dominates the total theoretical uncertainty, ε
(T)
X ∼ ε

(P)
X .

• ε(C) ' ε
(P)
X , the code’s precision and the pairing uncertainty are of the same order.

Table 3.2 lists the point-proton radii, Rp and Rp4, obtained in virtue of eqs. (3.1) to (3.3).

We highlight that the introduction of the pairing uncertainty has, in general, a noticeable

impact in the total theoretical uncertainty. In first place, the point-proton radius total
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Table 3.2.: Point-proton radius, Rp and fourth moment point-proton radius, Rp4, with theoretical

error including the pairing uncertainty and code’s precision.

Isotope Rp [ f m] Rp4 [ f m]

168Yb 5.24236(21) 5.59971(28)
170Yb 5.25845(36) 5.61663(55)
172Yb 5.27118(14) 5.62856(18)
174Yb 5.28225(16) 5.63832(39)
176Yb 5.29313(34) 5.64608(39)

uncertainty is, in general, governed by the difference between both pairing schemes,

thus ε
(T)
Rp
∼ ε

(P)
Rp

. In comparison, the theoretical uncertainty when we include the pairing

uncertainty is 2.5 times greater, at most, than when we only considered the code’s pre-

cision as the only source of theoretical uncertainty, see table 3.1. Nonetheless, there are

two exceptions: the 172Yb isotope has a theoretical uncertainty that is equal to the code’s

precision, ε
(T)
Rp
∼ ε(C), due to the fact that the difference between both pairing schemes is

1.4 · 10−4 f m, which greater than the code’s precision. Meanwhile, the 174Yb isotope both

the pairing and the code’s uncertainty have similar values. In appendix B.1 we gathered

the point-proton radius values with the remaining Skyrme forces. For all the remaining

Skyrme forces, , see tables B.1 to B.3, the inclusion of the pairing uncertainty is, in general,

larger than the code’s precision, leading to a noticeable impact on the point-proton radius

theoretical uncertainty. In some particular cases, the pairing uncertainty is smaller than

the code’s precision, meaning that the relative difference between both pairing schemes

is smaller than the actual precision of the code. However, this special does not affect

the same isotope when we change the Skyrme force. For example, for UNEDF0, see

table B.3, 168Yb and 174Yb isotopes have a smaller pairing uncertainty than the code’s

precision. Meanwhile, for SKI3 with VDI pairing interaction, see table B.1, is the 170Yb

which has a smaller discrepancy between pairing schemes than the code’s precision. The

same happens with the fourth moment. Typically, the inclusion of pairing uncertainty

leads to larger Rp4 theoretical uncertainties than when we treat both pairing schemes

separately. The Rp4 values for the remaining Skyrme forces are listed in appendix B.2.

In the following sections we derive the nuclear properties of interest for the character-

isation of the Yb+ IS with theoretical uncertainties.
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3.2. Charge radius

The squared rms charge radius of a given Yb isotope is given by eq. (1.5):

〈r2〉 = R2
p + 〈r2

p〉+ 〈r2
p〉so +

N
Z

(
〈r2

n〉+ 〈r2
n〉so

)
. (3.4)

The numerical values of the electromagnetic mean-square radius of the proton and neu-

tron used within this work are taken from [34], and their values are 〈r2
p〉 = 0.7071(7) f m2

and 〈r2
n〉 = −0.1161(22) f m2, respectively. In this work we take the approximation of

neglecting both proton and neutron spin-orbit corrections. As a consequence, the rms

charge radius is written as follows

〈r2〉1/2 =

√
R2

p + 〈rp〉2 +
N
Z
〈rn〉2. (3.5)

However, nuclear correlations lead to complex spin-orbit corrections to charge radii [15]

that can amount up to 0.01 f m in some nuclei [35]. In particular, some calculations suggest

that spin-orbit contributions can lead to a 0.001 f m correction of the 176Yb rms charge

radius [15]. Therefore, our results should be taken as an approximation.

All theoretical uncertainties, regarding the nuclear properties, are calculated assuming

that there are no correlations between the variables that define each nuclear property. We

use the statistical standard deviation formula taking into account independent variables

[36, 37]. Therefore, the theoretical rms charge radius uncertainty is given by

ε〈r2〉1/2 =

√√√√(∂〈r2〉1/2

∂Rp
ε
(T)
Rp

)2

+

(
∂〈r2〉1/2

∂〈r2
n〉

ε〈r2
n〉

)2

+

(
∂〈r2〉1/2

∂〈r2
p〉

ε〈r2
p〉

)2

=

√
(2Rpε

(T)
Rp

)2 + (N
Z ε〈r2

n〉)
2 + (ε〈r2

p〉)
2

2〈r2〉1/2 , (3.6)

where ε
(T)
Rp

= ε(C) if we consider pairing schemes independently, see the second and

third column in Table 3.3. In this case, the dominant term in eq. (3.6) is due to the

error propagation of ε〈r2
n〉. This term is one order of magnitude larger than the other

terms in eq. (3.6). However, this dominant term is nearly constant over the isotopic chain

considered in this work, about 33 · 10−5 f m. The ascending trend in the second digit of

the uncertainty is justified by the increase in Rp as we increase the number of neutrons in

the Yb isotopic chain. On the other hand, when we include the pairing uncertainty, see

the last column in table 3.3, the conclusion is different. In some cases, the first and the

second terms of eq. (3.6) has the same nearly the same value ' 33 · 10−5 f m. This is the

case of 168Yb, 170Yb and 176Yb isotopes. However, for 172Yb and 174Yb isotopes the main
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Table 3.3.: Theoretical rms charge radius obtained with the SLY4 Skyrme parametrisation. The

second and third columns are obtained using BCS and LN pairing schemes, respec-

tively. The fourth column takes the mean value of both pairing schemes.

Isotope
〈r2〉1/2

[ f m] 〈r2〉1/2 [ f m]

BCS LN BCS+LN

168Yb 5.29389(33) 5.29421(33) 5.29405(37)
170Yb 5.30934(33) 5.31000(33) 5.30967(47)
172Yb 5.32194(34) 5.32198(34) 5.32196(34)
174Yb 5.33269(34) 5.33254(34) 5.33262(35)
176Yb 5.34339(35) 5.34278(35) 5.34308(46)

source of uncertainty is the second term in eq. (3.6) because the theoretical uncertainty in

Rp is nearly the code’s precision.

In the following subsection we compute the differential squared charge radius for con-

secutive neighbouring Yb isotopes, including the corresponding error. This quantity is

directly related to the King’s plot.

3.3. Differential squared charge radius

The differential squared charge radius between two Yb isotopes, namely AYb and A+2Yb

is given by eq. (1.4):

δ〈r2〉ji = 〈r2〉j − 〈r2〉i.

where i = A + 2 and j = A, leading to i = j + 2. Substituting eq. (3.5) into eq. (1.4) we

can obtain the differential squared charge radius in terms of Rp, 〈r2
n〉 and 〈r2

p〉:

δ〈r2〉ji = R2
p,j − R2

p,i −
2
Z
〈r2

n〉. (3.7)

Thus, eq. (3.7) depends on the differential squared point-proton radius between two

consecutive even-even Yb isotopes and, since we are dealing with Yb isotopes (Z = 70),

it also has a small −1/35 dependence with 〈r2
n〉. The intrinsic proton dependence is

cancelled out since it does not vary between different isotopes. The corresponding un-
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Table 3.4.: Theoretical differential squared charge radii obtained using the SLY4 Skyrme

parametrisation. Columns shows results for different pairing schemes as in table 3.3.

Yb isotope pair

(j, i)

δ〈r2〉ji [ f m2] δ〈r2〉ji [ f m2]

BCS LN BCS+LN

(168,170) -0.1639(21) -0.1675(21) -0.1657(44)

(170,172) -0.1339(21) -0.1274(21) -0.1307(41)

(172,174) -0.1145(21) -0.1125(21) -0.1135(26)

(174,176) -0.1142(21) -0.1092(21) -0.1117(40)

certainty is given by

εδ〈r2〉 =

√√√√(∂δ〈r2〉ji
∂Rp,i

ε
(T)
p,i

)2

+

(
∂δ〈r2〉ji

∂Rp,j
ε
(T)
p,j

)2

+

(
∂δ〈r2〉ji
∂〈r2

n〉
ε〈r2

n〉

)2

=

= 2

√
(Rp,jε

(T)
p,j )

2 + (Rp,iε
(T)
p,i )

2 + (ε〈r2
n〉/Z)2. (3.8)

Table 3.4 presents the results for δ〈r2〉ji. In the second and the third columns, we take

the pairing schemes independently so that the propagated theoretical uncertainty in Rp

is due the code’s precision solely. In this case, the first two terms of eq. (3.8) account for

85% to 99% of εδ〈r2〉, and the contribution of ε〈r2
n〉 is tiny in comparison due to the 1/Z

factor. The propagated error in the first two columns has a constant value over different

isotope pairs as the product RpεRp does not vary (up to the third non-zero digit) between

them. The relative uncertainty is about 1% to 2%. In the fourth column of table 3.4 we

take both pairing schemes, including the pairing uncertainty into ε
(T)
p . In this scenario,

the relative uncertainty in δ〈r2〉ji is about 2.5% to 3.6%, nearly 2 times bigger than when

we consider the pairing schemes independently. This is because the pairing uncertainty

is typically larger than the code’s precision. However, the (172, 174) Yb isotope pair is an

exception. For this isotope pair, the pairing uncertainty is similar to the code’s precision

and, consequently, in this case the propagated uncertainty in δ〈r2〉 is similar to when we

consider the pairing schemes independently.

Here we note that a recent extraction from the deuteron points to a slightly smaller

value of the electromagnetic mean-square radius of the neutron, 〈r2
n〉 = −0.106+0.007

−0.005 f m2

[38] . Therefore, different values of 〈r2
n〉 could lead to discrepancies in δ〈r2〉, since eq. (3.7)

depends on this value. The actual discrepancy between the results obtained in [34] and

[38] are of∼ 10%, resulting in a∼ 0.1% discrepancy in δ〈r2〉. Even if we had not included

the additional pairing uncertainty, the main source of uncertainty in δ〈r2〉 would still be
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the first two terms in eq. (3.8).

3.4. Differential fourth moment charge radius

The differential fourth moment charge radius between to neighbouring even-even Yb

isotopes, namely jYb and iYb, where j = A and i = A + 2 is given by eq. (1.20):

δ〈r4〉ji = 〈r4〉j − 〈r4〉i.

The fourth moment charge radius 〈r4〉 is related to the fourth moment point-proton ra-

dius Rp4 adding corrective terms [39]. However, we neglect spin-orbit corrections for

consistency with the approximation taken for the charge radius, see eq. (1.5). Conse-

quently, the expression for 〈r4〉 is given as follow

〈r4〉 = (Rp4)
4 +

10
3

[
〈r2

p〉R2
p + 〈r4

p〉+
N
Z

(
〈r2

n〉R2
n + 〈r4

n〉
)]

, (3.9)

where 〈r4
p(n)〉, is the fourth moment of charge distribution of the proton (neutron) and

Rn is the point-neutron radius. Therefore, the differential fourth order charge radius is

given by

δ〈r4〉ji =
(

Rp4,j

)4
−
(

Rp4,i

)4
+

10
3

[
〈r2

p〉
(

R2
p,j − R2

p,i

)
+
〈r2

n〉
Z

(
NR2

n,i − (N + 2)R2
n,j

)

− 2
Z
〈r4

n〉
]

. (3.10)

Table 3.5.: Theoretical differential fourth order charge radii obtained with the SLY4 Skyrme

parametrisation. Columns show the results for different pairing schemes as in ta-

ble 3.3.

Yb isotope pair

(j,i)

δ〈r4〉ji [ f m4] δ〈r4〉ji [ f m4]

BCS LN BCS+LN

(168,170) -11.74(14) -12.14(14) -11.94(43)

(170,172) -8.78(14) -8.18(14) -8.48(41)

(172,174) -7.32(14) -6.64(14) -6.98(31)

(174,176) -5.57(14) -5.58(14) -5.58(40)
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Nonetheless, in this work we neglect the corrective terms inside the bracket of eq. (3.10),

as a first approximation. Consequently, eq. (3.10) reduces to

δ〈r4〉ji '
(

Rp4,j

)4
−
(

Rp4,i

)4
, (3.11)

and its uncertainty is given by

εδ〈r4〉 =

√√√√(∂δ〈r4〉ji
∂Rp4,j

ε
(T)
p4,j

)2

+

(
∂δ〈r4〉ji
∂Rp4,i

ε
(T)
p4,i

)2

=

= 4

√√√√((Rp4,j

)3
ε
(T)
p4,j

)2

+

((
Rp4,i

)3
ε
(T)
p4,i

)2

. (3.12)

Table 3.5 presents the differential fourth moment charge radii of even-even neighbouring

Yb isotopes using the SLY4 Skyrme parametrisation. In the second and third columns, we

consider the BCS and LN pairing schemes independently and the theoretical uncertainty

in the fourth moment point-proton radius is given by the code’s precision. In this case, the

propagated uncertainty εδ〈r4〉 has a constant value across the isotope pairs with a relative

uncertainty about 1% to 2%. The last column in table 3.5 takes both pairing schemes. In

this case, the propagated uncertainty is, typically, 2.5 times larger than when we consider

the pairing schemes independently, and it is not constant across the isotope pairs due to

the inclusion of the pairing uncertainty in ε
(T)
Rp4

, see eq. (3.3). The relative error is about

3% to 7%. Nonetheless, the impact of the corrective terms in eq. (3.10) are of the order of

0.3 f m4 for the (170, 172) isotope pair, which is of the same order of the uncertainty in Rp4

when we compute the two pairing schemes, see fourth column of table 3.5.

In the forthcoming section we calculate frequency shifts of interest, να,ji and νβ,ji with

theoretical uncertainties. With these, we study the King’s relation and the inclusion of

NL terms, as well as the impact of theoretical uncertainties.

3.5. King’s Plot with theoretical uncertainties

Here we calculate the frequency shifts of both α and β transitions of Yb+ in addition

to their theoretical uncertainties. For simplicity, we only show in the main text the re-

sults obtained using the SLY4 Skyrme parametrisation. The remaining plots using other

Skyrme functionals can be found in Appendix C.

In table 3.6 we list all the necessary atomic quantities to compute the frequency shifts

for the α and β transitions of the Yb+ ion. There is a choice of different constants de-

pending on the many-body schemes. For example, in Ref.[5] they calculate F as a leading
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Table 3.6.: Atomic parameters for α and β transitions. No error is assumed in the calculation of

these quantities taken from Refs.[5, 8].

Kα [GHz · u][5] -1678.3

Kβ [GHz · u][5] -1638.5

Kβα [GHz · u][5] 77.8974

Fα [GHz/ f m2][8] -17.6035

Fβ [GHz/ f m2][8] -18.0028

Fβα [8] 1.0227

G(2)
α [GHz/ f m4][8] 0.02853

G(2)
β [GHz/ f m4][8] 0.02853

G(2)
βα [kHz/ f m4][8] -647.15

G(4)
α [GHz/ f m4][8] 0.01308

G(4)
β [GHz/ f m4][8] 0.01337

G(4)
βα [kHz/ f m4][8] -6.6935

term of the Seltzer moment expansion at the origin for the total electron density and then

they use partial derivatives of the FS to to calculate G(2) and G(4). This procedure is

done for configurational interaction method and MBPT many-body perturbation theory

to calculate the atomic quantities. Furthermore, in Ref.[8] they use Brueckner orbitals and

the random phase approximation method to calculate F and G(4), and the perturbation

theory to find G(2). In this work, we use the values of Kα, Kβ, and Kβα from [5], since

these quantities are only computed in there. We take the other atomic quantities from [8]

because they provide four digits in G(2) and G(4) to avoid the effect of rounding on the

nonlinearity.

The frequency shifts, mνα,ji and mνβ,ji, are computed in virtue of eqs. (1.18) and (1.19):

mνα,ji = Kα + Fαmδ〈r2〉ji + G(2)
α m

[
δ〈r2〉ji

]2
+ G(4)

α mδ〈r4〉ji,

mνβ,ji = Kβ + Fβmδ〈r2〉ji + G(2)
β m

[
δ〈r2〉ji

]2
+ G(4)

β mδ〈r4〉ji,

In order to calculate the frequency-shifts uncertainties we assume the nuclear properties

µji, δ〈r2〉ji and δ〈r4〉ji as independent variables. In addition, we assume that all atomic

quantities carry no error, see table 3.6. Therefore, the propagated uncertainties for both

frequency shifts, namely εα,ji and εβ,ji, are given by
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Table 3.7.: Measured inverse-mass differences, µji, [5].

Isotope pair (j, i) µji [10−6u−1]

(168, 170) 70.113 698(46)

(170, 172) 68.506 890 50(63)

(172, 174) 66.958 651 95(64)

(174, 176) 65.474 078 21(65)

εω,ji =

√√√√( ∂(mνω)

∂mδ〈r2〉ji

)2

ε2
mδ〈r2〉ji +

(
∂(mνω)

∂mδ〈r4〉ji

)2

ε2
mδ〈r4〉ji =

=

√(
Fω + 2G(2)

ω δ〈r2〉ji
)2

ε2
mδ〈r2〉ji +

(
G(4)

ω

)2
ε2

mδ〈r4〉ji , ω = α, β, (3.13)

where the uncertainties associated to the modified differential squared charge radius,

εmδ〈r2〉ji , and modified differential fourth moment charge radius, εmδ〈r4〉ji , are obtained as

εmQ =

√√√√(∂mQ
∂Q

)2

ε2
Q +

(
∂mQ
∂µji

)2

ε2
µji

= mQ
√( εQ
Q
)2

+
( εµji

µji

)2
, (3.14)

with Q = δ〈r2〉ji, δ〈r4〉ji. The experimental inverse-mass differences, in addition to its

experimental uncertainty, are listed in table 3.7.

Figure 3.2 shows the standard King’s plot between the modified frequency shifts, mνα

and mνβ using BCS (left panel) and LN (right panel) pairing schemes. In both panels,

the red line is obtained from a linear fit to the blue points, which, in principle, represents

King’s linearity, see eq. (1.16). The theoretical uncertainties, εα,ji and εβ,ji, are about 1%

of the calculated theoretical frequency shifts. These large theoretical uncertainties are

also found with other parametrisations, see figs. C.1 to C.4. In addition, both panels

compare our results with the experimental frequency shift. We find a discrepancy of

26% to 35% between the experiment and theoretical frequency shifts. Similarly, fig. 3.3

shows the standard King’s plot combining both pairing schemes. In this case, the relative

error amounts to 2%, which is two times larger than in fig. 3.2 (when we treated each

pairing scheme independently), because fig. 3.3 incorporates the pairing uncertainty. In

the previous sections we discussed that, typically, the pairing uncertainty has a noticeable

impact on the propagated uncertainties of the nuclear quantities of interest for isotopic

shift calculations, see tables 3.4 and 3.5. However, there are some cases in which the

pairing uncertainty is smaller than the code’s precision, e.g. in fig. 3.3 the first blue point

starting from the left, has smaller uncertainties in comparison to the other points. The
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Figure 3.2.: Standard King Plot, see eq. (1.22), for α : 2S1/2 −→ 2D5/2, and β : 2S1/2 −→ 2D3/2

transitions for pairs of neighbouring even-even Yb+. Theoretical results in blue are

obtained isotopes using the SLY4 parametrisation and BCS (Left) and LN (Right)

pairing schemes, with errorbars calculated with eq. (3.13). The red lines indicate the

best linear fit to the four points and the black points indicate experimental values [5].
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Figure 3.3.: Same caption details as fig. 3.2 but including both the BCS and LN pairing schemes.
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Table 3.8.: Frequency shift of the α transition with its uncertainty. Both quantities are extracted

from the experiment taken from Ref.[5].

Isotope pair (j, i) να,ji [kHz]

(168, 170) 2 179 098.93(21)

(170, 172) 2 044 854.78(34)

(172, 174) 1 583 068.42(36)

(174, 176) 1 509 055.29(28)

discrepancy between the experiment and the theoretical frequency shift does not improve

when we include the pairing uncertainty.

Eventually, with the current method used within this section we reproduce King’s lin-

ear relation between both modified frequency shifts. However, theoretical uncertainties

on mνα,ji and mνβ,ji it could only describe non-linearities larger than 1%-2%. Therefore,

with the current approach nuclear theory uncertainties prevent the identification of an

experimental non-linearity as a sign of physics beyond the SM. In the following section

we introduce an alternative approach in order to avoid these large theoretical uncertain-

ties introduced by the FS term.

3.6. Another approach: Non-linearity based on a experimentally

measured frequency shift

Here we present an alternative way to predict the deviations from linearity of the Yb+

isotopic chain. The main idea is to reduce the uncertainties getting rid of the main source

of theoretical error in our calculations, that is, the FS term, with an error dominated by

the theoretical uncertainty in δ〈r2〉ji, see eq. (1.22). For this purpose, we use the exper-

imentally measured frequency shift of the α transition, with its uncertainty, in order to

calculate the frequency shift of the β transition. In this way we take advantage of the fact

that the relative error of the experimental data is about 1 · 10−7 to 2 · 10−7, see table 3.8.

This error is way smaller than the theoretical relative error obtained in section 3.5, about

1% to 2%.

Therefore, in this new approach we only have to determine mνβ,ji from the mνα,ji tran-

sition. In virtue of eq. (1.22)

mνβ,ji = Kβα + Fβαmνα,ji + G(2)
βα m

[
δ〈r2〉ji

]2
+ G(4)

βα mδ〈r4〉ji,

where the definitions of the atomic quantities Kβα, Fβα, G(2)
βα and G(4)

βα are below the eqs. (1.16)
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and (1.19). The theoretical frequency shift uncertainty εmνβ,ji is given by

εmνβ,ji =

√√√√(∂mνβ,ji

∂mνα,ji
ενmα,ji

)2

+

(
∂mνβ,ji

∂(mδ〈r2〉ji)
εmδ〈r2〉ji

)2

+

(
∂νmβ,ji

∂(mδ〈r4〉ji)
εmδ〈r4〉ji

)2

=

√(
Fβαεmνα,ji

)2
+
(
2G(2)

βα mδ〈r2〉jiεmδ〈r2〉ji
)2

+
(
G(4)

βα εmδ〈r4〉ji
)2. (3.15)

In contrast to eq. (3.13), eq. (3.15) has two main advantages. On the one hand, the

theoretical differential squared charge radius error coming from the FS term has been

replaced by the measured frequency shift of the α transition. This replacement does

not impact the prediction of theoretical deviations from linearity as the FS is linear by

definition and, consequently, does not contribute to the non-linearity. On the other hand,

the redefinition of the atomic parameters also leads to smaller uncertainties in the NL

terms as G(2)
βα is suppressed by a factor of ' 44 with respect to G(2)

α , and G(2)
β and G(4)

βα is

suppressed by a factor of ' 2000 with respect to G(4)
β and G(4)

α , see table 3.6.

Figures 3.4 and 3.5 show the King’s Plot obtained using the SLY4 Skyrme parametri-

sation with BCS and LN pairing schemes, respectively. They take into account the exper-

imental values and errors for each mνα,ji point and compute mνβ and its uncertainty in

virtue of eqs. (1.22) and (3.15), respectively. The red line indicates a linear fit to the former

points. A deviation from linearity is observed when we zoom our points by a factor of 106

in both figures. In contrast to section 3.5, the theoretical uncertainties are typically smaller

than the deviation from linearity, except for the (168, 170) point with the BCS pairing

scheme and (174, 176) with the LN pairing scheme, where deviation from linearity are of

the same order as the theoretical uncertainties . For (168, 170), the horizontal and vertical

errorbars are larger than in other isotope pairs due to a larger experimental uncertainty in

the inverse-mass difference, see table 3.7. Comparing figs. 3.4 and 3.5 the same deviation

pattern is observed. From (174, 176) to (168, 170): (- + - +), where ”+” indicates that the

point deviates upwards with respect to the red line (linearity) and ”-” indicates that the

point deviates downwards.

The results obtained with other Skyrme parametrisations can be found in appendix D.

For different Skyrme parametrisation there is a pattern discrepancy, see figs. D.1 to D.7.

In particular, SKI3 shows a (+ - - +) deviation pattern with the VDI pairing interaction

and with the DDDI pairing interaction and LN pairing scheme, see figs. D.1 and D.4b,

respectively. Meanwhile, for UNEDF0, UNEDF1 and SkI3 with DDDI pairing interaction

and BCS pairing scheme the deviation from linearity is of the order of the theoretical

uncertainty and, consequently, it is unclear whether the calculated points are linear or

not, see figs. D.4a, D.5 and D.7
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Figure 3.4.: Same King’s plot as fig. 3.2 but based on the experimental να,ji value and its error,

extracted from [5]. The vertical errorbars include the theoretical uncertainties in the

modified frequency shift mνβ,ji, see eq. (3.15). The insets zoom the points by a factor

of 106.
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Figure 3.5.: Same details as fig. 3.4 but using the LN pairing scheme.
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Figure 3.6 is the same plot as in figs. 3.4 and 3.5 the combination of both pairing

schemes for the SLY4 parametrisation. In this scenario, the introduction of the paring

uncertainty increases the total theoretical uncertainty in mνβ,ji, in general, hampering

the theoretical prediction of non-linearities. Nonetheless, two out of the four points,

(170, 172) and (172, 174) evidence a non linear behaviour when we include the pairing

uncertainty into the total uncertainty in our calculations. A similar behaviour appears

for the remaining parametrisations. In particular, see figs. D.10a to D.12b appendix D

show large theoretical uncertainties in mνβ,ji hamper the possibility to assign a theoretical

deviation from linearity from our nuclear calculations.

In the literature, there is disagreement on which is the dominant NL term in eq. (1.22).

For instance, in Ref.[5] it is pointed out that the QFS is the dominant NL term, while in

Ref.[8] stated that the FOMS is the largest source of non-linearity. In order to study the

impact of each NL term in our calculations, we present the following approach. First we

define two modified frequency shifts that shall only take into account one out of the two

NL terms, that is

mν
(QFS)
β,ji = Kβα + Fβαmνα,ji + G(2)

βα [mδ〈r2〉ji]2, (3.16)

for the QFS term. Its associated theoretical uncertainty is written as follows

Figure 3.6.: Same caption details as in fig. 3.4 but using both pairing schemes.
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ε
ν
(QFS)
β,ji

=

√√√√(∂ν
(QFS)
β,ji

∂µji
εµji

)2

+

(
∂ν

(QFS)
β,ji

∂
(
δ〈r2〉ji

) εδ〈r2〉ji

)2

+

(
∂ν

(QFS)
β,ji

∂να,ji
ενα,ji

)2

=

=

√(
Kβαεµji

)2
+
(

Fβαενα,ji

)2
+
(
2G(2)

βα δ〈r2〉jiεδ〈r2〉ji
)2, (3.17)

Likewise, we do the same for the FOMS term,

mν
(FOMS)
β,ji = Kβα + Fβαmνα,ji + G(4)

βα mδ〈r4〉ji, (3.18)

with theoretical uncertainty given by

ε
ν
(FOMS)
β,ji

=

√√√√(∂ν
(FOMS)
β,ji

∂µji
εµji

)2

+

(
∂ν

(FOMS)
β,ji

∂
(
δ〈r4〉ji

) εδ〈r4〉ji

)2

+

(
∂ν

(FOMS)
β,ji

∂να,ji
ενα,ji

)2

=

=

√(
Kβαεµji

)2
+
(

Fβαενα,ji

)2
+
(
G(4)

βα εδ〈r4〉ji
)2. (3.19)

Furthermore, we adopt the approach followed in [5] to quantify the deviation from

Figure 3.7.: Residual deviations from linearity in the King’s plot using the SLY4 parametrisation

and the BCS pairing scheme. Theoretical deviations caused by both FOMS and QFS

terms are shown as blue circles, while those caused by the QFS term are shown as

magenta squares and for the FOMS term as green triangles. The points are shifted

from the central mνα,ji value for clarity.
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linearity. In order to do so, we make a linear fit for each set of points {mνα,ji, mνβ,ji},
{mνα,ji, mν

(QFS)
β,ji } and {mνα,ji, mν

(FOMS)
β,ji }. Thus, the resulting fitted points, namely mν

( f it)
β,ji ,

mν
(QFS)( f it)
β,ji and mν

(FOMS)( f it)
β,ji describe a linear relation with mνα. The resulting residual

deviation from linearity is obtained as follows

δ =
mνβ,ji −mν

( f it)
β,ji

mνβ,ji
. (3.20)

Neither Ref.[5] nor Ref.[8] give an estimation of the uncertainties associated to δ with

their calculations and assumptions. In this work we propose the following approach in

order to quantify the theoretical deviation uncertainty. First we take the minimum and

maximum vertical deviations of a given point {mνα,ji, mνβ,ji} with respect to the linear fit

mνβ,ji, that is

δ(min) ≡
min

(
mνβ,ji ± ενβ,ji −mν

( f it)
β,ji

)
mνβ,ji

, (3.21)

δ(max) ≡
max

(
mνβ,ji ± ενβ,ji −mν

( f it)
β,ji

)
mνβ,ji

(3.22)

Figure 3.8.: Same caption details as fig. 3.7 but using the LN pairing scheme.
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Figure 3.9.: Same as fig. 3.7 but for the combined BCS and LN pairing schemes.
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Then, the theoretical deviation uncertainty is given by

εδ =
δ(max) − δ(min)

2
. (3.23)

Figures 3.7 and 3.8 show the contribution of the QFS and the FOMS NL terms to the

total deviation from linearity, labelled in the figures as QFS+FOMS, using SLY4 with BCS

and LN pairing schemes, respectively. The red line represents the King’s linear relation.

In fig. 3.7 the total non-linearity (QFS+FOMS) is found in between the QFS (magenta)

and FOMS (green) deviations for two isotope pairs, (168, 170) and (170, 172), because the

FOMS and QFS deviations are opposite in sign. Consequently, the total deviation has

the sign of the dominant NL term which in this case is the FOMS term. To contrast, for

(172, 174) and (174, 176) isotope pairs both FOMS and QFS NL contributions are share the

same sign, here the dominant term is again the FOMS term. In appendix E, see figs. E.9

to E.12, we show the deviation from linearity for the remaining Skyrme parametrisations.

They systematically predict a predominance of the FOMS term as the main source of

non-linearity within the SM, in agreement with Ref.[8].

Figure 3.9 shows the residual deviation taking into account the combination of BCS

and LN pairing schemes. Here the error in the y-axis is larger than in each pairing

scheme independently because of the pairing uncertainty. In some pairs like (168, 170)
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Figure 3.10.: Residual deviations from the linearity of the King’s plot with all four parametrisa-

tions used in this work and BCS+LN pairing schemes compared to experiment [5].

The points have been displaced in the horizontal axis for visibility.
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and (174, 176) the uncertainty associated to the theoretical deviations is larger than the

theoretical deviation. We find deviations from linearity for the remaining isotopes. Nonethe-

less, including theoretical uncertainties the leading source of non-linearity is the FOMS

term. The corresponding figures for the other Skyrme forces are collected in appendix E,

see figs. E.9 to E.12. For SKI3 we also find deviations from linearity for some isotope

pairs, see figs. E.9 and E.10, dominated by the FOMS term. However, for UNEDF0 and

UNEDF1 the theoretical uncertainty is larger than the deviation from linearity for all

isotope pairs, which hinders any possible discussion of non-linearity.

Figures 3.10 and 3.11 summarise the main results of this work. In both figures we

exclude SkI3 with VDI pairing interaction for simplicity. Figure 3.11 gathers the theo-

retical deviations for each isotope pair for all four Skyrme parametrisations combining

BCS and LN pairing schemes. On the one hand, for SLY4 and SKI3 we find that, for

some isotopes pairs, the theoretical deviation from linearity is larger than its theoretical

uncertainty. For these Skyrme forces we conclude that our calculations predict a NL

behaviour of the order δ ∼ 10−6. On the other hand, UNEDF0 and UNEDF1 predict

10−7 deviations from linearity which seems rather promising since this is the order of
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Figure 3.11.: Same caption details as fig. 3.10 but using LN pairing scheme.
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magnitude found in experiment [5]. However, the theoretical uncertainties for these

parametrisations are εδ ∼ 5 · 10−7, which are significantly larger than the theoretical

deviations. Therefore, the current level of uncertainty for these Skyrme forces prevents

any prediction of non-linearities. The main source of uncertainty in fig. 3.10 is due to the

propagation error of the pairing uncertainty.

To overcome the theoretical limitation introduced by the pairing uncertainty, we rep-

resent the same plot but now considering only the LN pairing scheme. The main motiva-

tion of this plot is to consider only one pairing scheme and test if the uncertainty of the

IS non-linearity is smaller than its magnitude in a systematic manner. The predilection

in choosing the LN pairing scheme is arbitrary since the results with BCS pairing scheme

are similar. In this figure the uncertainty drops significantly, allowing the prediction of

deviations from linearity for UNEDF0 and UNEDF1. This result is very encouraging

because allows us to identify two Skyrme parametrisations with δ ∼ 10−7 NL behaviour

in the Yb IS, in agreement with the experiment [5].
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3.6.1. Discrepancy with respect to Counts et.al

In this subsection we expand on the discrepancy between our results and these of [5]. Our

results predict larger contributions of the FOMS term for all Skyrme forces used within

this work. On the contrary, Ref.[5] assumed a proportional relation between 〈r4〉i and

〈r2〉i, expected to hold over different isotopes:

〈r4〉i = b
[
〈r2〉i

]2
. (3.24)

Under this assumption, eq. (1.18) is rewritten as follows,

mνα,ji = Kα + Fαmδ〈r2〉ji + Gαm
[
δ〈r2〉ji

]2
, (3.25)

where Gα ≡ G(2)
α + bG(4)

α is the effective QFS electronic factor.

Ref.[5] concludes that the main source of non-linearity within the SM is the QFS. In

table 3.9, we present the b ratio using both 〈r4〉 and 〈r2〉 obtained with SLY4 parametrisa-

tion. The values of b for the remaining parametrisations can be found in Appendix F.

Table 3.9.: 〈r4〉-to-〈r2〉 ratio, b ,see eq. (3.24), for Yb isotopes with the SLY4 Skyrme parametrisa-

tion. ∆b/b stands for the fractional variation, where ∆b is the standard deviation of b

coefficients divided by their mean value, b.

Yb isotope
BCS LN

b ∆b/b b ∆b/b

168 1.2517

0.0016

1.2518

0.0018

170 1.2519 1.2522

172 1.2510 1.2512

174 1.2500 1.2495

176 1.2469 1.2468

δνNL
βα = G(2)

βα

[
δ〈r2〉ji

]2
+ G(4)

βα δ〈r4〉ji (3.26)

= Gβα

[
δ〈r2〉ji

]2
, (3.27)

where Gβα = G(2)
βα + bG(4)

βα . Again, eq. (3.26) holds generally but eq. (3.27) is true if and

only if b relation holds. Table 3.9 we show the b-ratio of the Yb isotopic chain of interest

within this work. In appendix F we show the b ratio with the remaining parametrisations,

see tables F.1 to F.4. In our calculations we find a 0.1% deviation in b for consecutive
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isotopes. This dependence of b on the transition suggests that the assumption in [5] may

not hold for Yb, and explains why in our calculations we found the FOMS to be the

dominant NL term in contrast to the experiment [5].

55



4. Summary and conclusions

In this work we have calculated the deviations, within the SM, from King’s linear relation

between the IS of four neighbouring pairs of even-even Yb isotopes with zero nuclear

spin on two narrow optical quadrupole transitions 2S1/2 −→ 2D3/2, 2S1/2 −→ 2D5/2.

For this purpose, we used a state-of-the-art many-body nuclear code, SKYAX, that

enabled us to solve the HF equations for five AYb isotopes, A ∈ {168, 170, 172, 174, 176}
in two spatial dimensions assuming axial symmetry using Skyrme forces as interaction

model and the inclusion of pairing interaction at the BCS level. The use of SKYAX in this

work was justified mainly by two features of the code. First, the current implementation

of SKYAX is restricted to even-even nuclei with axial deformation. Second, the HFB+BCS

model is valid for well-bound nuclei far from the neutron and proton drip lines where a

full Hartree-Fock-Bogoliugov treatment would be more suitable. SKYAX provided sev-

eral Skyrme functionals –SLY4, SKI3, UNEDF0, UNEDF1 have been selected in this

work– with a density-dependent pairing functional handled at the BCS level, optionally

with an approximate particle-number projection Lipkin-Nogami scheme.

We have associated a theoretical uncertainty to the point-proton radii, Rp and Rp4, by

varying the grid spacing, dr and dz, and the grid dimension, Lr and Lz, on a particular

Yb isotope. The uncertainty introduced by the code’s precision is 1.41̇0−4fm. In addition,

we have introduced another source of uncertainty due to the discrepancies between the

point-proton radii between the BCS and LN pairing schemes given a particular Skyrme

force. We have found that, typically, the pairing uncertainty has a noticeable impact on

the total theoretical uncertainty for both point-proton radii and varied between different

isotopes. For a few isotopes, the pairing uncertainty was smaller than the code’s preci-

sion. If this case happened for the same isotope (or isotopes) for different Skyrme forces,

this could be a direct evidence of nuclear structure effects for these isotopes. However,

this seems to happen arbitrarily for the isotopic Yb chain when using different Skyrme

forces.

We have calculated the relevant nuclear quantities for IS measurements in addition

to their uncertainties from the error propagation of the uncertainties in the point-proton

radii. At this point, we have taken the approximation of neglecting spin-orbit contribu-

tions on the calculation of the charge radii, 〈r2〉 and 〈r4〉. However, for 〈r2〉 we would
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like to stress that recent publications on this subject predict corrections up to 0.01 f m and,

since δ〈r2〉 is sensible to variations of the rms charge radius, these corrections should

be taken into account in the future. More precisely, the Yb isotopes considered in this

work are open-shell systems in which contributions from deformed spin-orbit densities

could be appreciable. At least, these corrections should be larger than the code’s precision

,1.4 · 10−4 f m, in order to have a noticeable impact in the results presented in this work.

In addition, we took 〈r4〉 ' (Rp4)
4 as a first approximation, assuming that the corrective

terms would not have any impact on δ〈r4〉. In this sense, our results should not have been

affected by the corrective terms in 〈r4〉 if the magnitude of these corrections were smaller

than the theoretical uncertainty in Rp4. Nonetheless, the impact of the corrective terms in

δ〈r4〉 are of the order of 0.3 f m4 for the (170, 172) isotope pair, which is of the same order

of the uncertainty in Rp4 when we computed the two pairing schemes. A more detailed

study in this direction is an aspect of our work that should be improved in the future.

Combining the nuclear quantities determined in this work and the atomic parame-

ters given by Refs.[5, 8] we have determined the theoretical frequency shifts, mνα,ji and

mνβ,ji. Nonetheless, the theoretical uncertainty introduced by the FS term overshadowed

any possible discrimination of deviation from linearity within the SM. In order to solve

that, we have adopted another approach that had two main advantages with respect

the previous approach. First, a strong suppression in the atomic parameters. Second,

experimentally measured frequency shifts for the α transition with a relative error of

2 · 10−7, at most. Both assets led to a noticeable reduction of mνβ,ji uncertainty, allowing

us to determine some features about the evidence for non-linear IS in Yb+.

We have observed a discrepancy between the non-linear deviation patterns when we

used different Skyrme forces. In particular, for SLY4 we have found that the observed

deviation pattern is (+ - + -) whereas for SKI3 the deviation pattern is (+ - - +), for some

pairing schemes. However, for UNEDF0 and UNEDF1 the observed deviations from

linearity were typically smaller than the theoretical uncertainty in δ. This obstructed any

deviation pattern prediction for these parametrisations.

We have also calculated the contributions of each NL term within the SM to the total

deviation from the linearity. To do that, we have computed the deviations from linearity

following the same procedure as Ref.[5]. We have fitted the predicted IS to its best linear

regression. The deviation δ from linearity was then computed taking the relative differ-

ence between each point from its linear fit. In addition we have proposed and determined

the theoretical uncertainties in δ, which has never been done in previous works on this

topic. All Skyrme forces systematically predicted a predominance of the FOMS term

over the QFS term as a main source of non-linearity within the SM. These results are
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in agreement with Ref.[8] and in disagreement with Ref.[5]. In Ref.[5] they assumed a

correlation, 〈r4〉 = b〈r2〉2, where b was expected to be identical for all Yb isotopes. We

computed the b ratio for all Skyrme forces and found a 0.1% deviation between different

isotopes. This dependence of b suggests that the main assumption in Ref.[5] may not

hold for Yb. This could explain the discrepancy between our results and the experiment

[5] on which is the dominant NL term within the SM.

Eventually, we have been able to predict deviations from linearity for all four Skyrme

forces. For SLY4 and SKI3 we have been able to predict deviations from linearity even

considering the pairing uncertainty. The deviations from linearity with these Skyrme

forces are δ ∼ 10−6 which are one order of magnitude larger than the experiment [5].

UNEDF0 and UNEDF1 did not predict any deviation from linearity when we include

the pairing uncertainty, due to the fact the uncertainty was greater than the current de-

viation from linearity. However, the predicted deviations by UNEDF0 and UNEDF1

are of δ ∼ 10−7. This seems quite encouraging since this is the order of magnitude

predicted by the experiment [5]. In order to overcome the limitation on the prediction

of non-linearities when we included the pairing scheme, we have considered the results

with each pairing scheme. In this case, the only source of theoretical uncertainty was due

to the code’s precision. This consideration reduced the deviation uncertainty, allowing

us to predict deviations from linearity of the same order of magnitude as the experiment

[5] for UNEDF0 and UNEDF1.
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A. Appendix A

In this appendix we derive the formal definition of the field isotope shift employed in

eq. (1.9) following the steps detailed in [13]. This procedure does have an impact on the

resulting King Plot and non-linearities studied in this work since it is derived taking into

account some considerations and approximations and, consequently, it is of utter impor-

tance show its derivation. The following procedure is principally based on a central-field

approximation which provides the foundation of the theory. The objective is thus to find

the energy difference from one isotope to another, of a single electron in an s state outside

closed shells. In virtue of first-order perturbation theory we can split the field shift as a

product of two quantities [13]: in one hand a transition-dependent, isotope-independent

parameter, N, and on the other hand, a transition-independent, isotope-dependent pa-

rameter, namely Λ. The frequency shift associated is therefore written as follows:

ν =
δE
h

=
1
h

NΛ, (A.1)

where h is the Planck constant. The first term in eq. (A.1), N is the relativistic probability

density of the electron being at the origin, r = 0. This term is insensitive to the form of the

nuclear charge distribution and it is depends on the electronic structure of the particular

atomic state . The second term in eq. (A.1), Λ, depends on the nuclear charge distribution

of both isotopes, thus a nuclear-dependent parameter, and is written as follows

Λ = N
( Ze2

4πε0

)
λ, (A.2)

where λ is the so-called Seltzer moment [12] and it is defined as follows:

λ =
∞

∑
n=2

Snδ〈rn〉ji, (A.3)

where 〈rn〉 =
∫

ρ(r)rnr2dr∫
ρ(r)r2dr and Sn = 6

n(n+1) are the coefficients of the changes in 〈rn〉.
Therefore, the Seltzer moment expansion relates the field shift and the expansion of the

radial electron density which contains the functional dependence of the radial probability
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density on r (supplemental material in [5]). One can rearrange some terms in eq. (A.1)

and obtain:

νFS
α,ji =

∞

∑
n=2

cα
′
Z

2π

ξ
(n)
α

n(n + 1))
δ〈rn〉ji =

∞

∑
n=2

H(n)
α δ〈rn〉ji (A.4)

where α
′ ' 1/137 is the fine-structure constant. It can be shown that the first four odd co-

efficients of the Seltzer moment expansion, are typically zero [13]. Therefore, expanding

eq. (A.4) up to the second non-zero term one obtains:

νFS
α,ji = H(2)

α δ〈r2〉ji + H(4)
α δ〈r4〉ji +O(δ〈r6〉ji), (A.5)

in our notation H(2)
α ≡ Fα and H(4)

α ≡ G(4)
α . The first term in eq. (A.5) is the leading term

of this expansion, that is the reason why is often called the field shift -even though it is

not- and the second term is called fourth moment shift throughout this work and it is

regarded as a source of non-linearity in King’s Plot.
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In this appendix we list the nuclear properties calculated with the nuclear many-body

SKYAX code and the remaining Skyrme parametrisations discussed in chapter 3.

B.1. Point-Proton radius

Here are listed the theoretical values of the point-proton radius obtained with the re-

maining Skyrme parametrisations. All calculations take into account their respective

theoretical uncertainty discussed and computed in sections 3.1.1 and 3.1.2. In tables B.1

to B.3 we show the predicted point-proton radius using SKI3, UNEDF0 and UNEDF1

Skyrme parametrisations, respectively.

Table B.1.: Point-proton radius of neighbouring even-even Yb isotopes extracted from SKYAX

using SKI3 skyrme parametrisation.

Isotope

Rp [ f m]

VDI DDDI

BCS LN BCS+LN BCS LN BCS+LN

168Yb 5.20722(14) 5.20811(14) 5.20766(47) 5.20778(14) 5.20830(14) 5.20804(30)
170Yb 5.22638(14) 5.22459(14) 5.22549(90) 5.22603(14) 5.22598(14) 5.22600(14)
172Yb 5.23923(14) 5.23934(14) 5.23928(15) 5.23877(14) 5.23932(14) 5.23905(31)
174Yb 5.25082(14) 5.25150(14) 5.25116(37) 5.25017(14) 5.25065(14) 5.25041(28)
176Yb 5.26312(14) 5.26320(14) 5.26316(15) 5.26233(14) 5.26296(14) 5.26264(34)
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Table B.2.: Same caption details as table B.1 but using UNEDF0 parametrisation.

Isotope Rp [ f m]

BCS LN BCS+LN

168Yb 5.21863(14) 5.21961(14) 5.21912(51)
170Yb 5.23618(14) 5.23730(14) 5.23674(58)
172Yb 5.25236(14) 5.25215(14) 5.25225(17)
174Yb 5.26663(14) 5.26577(14) 5.26620(45)
176Yb 5.27948(14) 5.27831(14) 5.27890(60)

Table B.3.: Same caption details as table B.1 but using UNEDF1 parametrisation.

Isotope Rp [ f m]

BCS LN BCS+LN

168Yb 5.22943(14) 5.22945(14) 5.22944(14)
170Yb 5.24701(14) 5.24628(14) 5.24665(39)
172Yb 5.26211(14) 5.26123(14) 5.26167(46)
174Yb 5.27516(14) 5.27513(14) 5.27515(14)
176Yb 5.28828(14) 5.28841(14) 5.28835(16)
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B.2. Fourth moment point-proton radius

Here are listed the theoretical values of the fourth order point-proton radius obtained

with the remaining Skyrme parametrisations. All calculations take into account their

respective theoretical uncertainty discussed and computed in sections 3.1.1 and 3.1.2.

In tables B.4 to B.6 we show the predicted fourth order point-proton radius using SKI3,

UNEDF0 and UNEDF1 Skyrme parametrisations, respectively.

Table B.4.: Fourth moment point-proton radius of neighbouring even-even Yb isotopes extracted

from SKYAX code using SKI3 Skyrme parametrisation.

Isotope

R(4)
p [ f m]

VDI DDDI

BCS LN BCS+LN BCS LN BCS+LN

168Yb 5.55563(14) 5.55669(14) 5.55616(54) 5.55621(14) 5.55678(14) 5.55650(32)
170Yb 5.57719(14) 5.57441(14) 5.5758(14) 5.57610(14) 5.57591(14) 5.57601(17)
172Yb 5.58816(14) 5.58831(14) 5.58823(16) 5.58718(14) 5.58800(14) 5.58759(43)
174Yb 5.59742(14) 5.59838(14) 5.59790(50) 5.59623(14) 5.59687(14) 5.59655(35)
176Yb 5.60793(14) 5.60805(14) 5.60799(15) 5.60661(14) 5.60749(14) 5.60705(46)

Table B.5.: Same caption details as table B.4 but using UNEDF0 parametrisation.

Isotope
R(4)

p [ f m]

BCS LN BCS+LN

168Yb 5.56959(14) 5.57036(14) 5.56997(41)
170Yb 5.58775(14) 5.58908(14) 5.58841(68)
172Yb 5.60399(14) 5.60378(14) 5.60388(18)
174Yb 5.61765(14) 5.61669(14) 5.61717(50)
176Yb 5.62950(14) 5.62809(14) 5.62877(74)

63



B. Appendix B

Table B.6.: Same caption details as table B.4 but using UNEDF1 parametrisation.

Isotope
R(4)

p [ f m]

BCS LN BCS+LN

168Yb 5.57654(14) 5.57583(14) 5.57618(38)
170Yb 5.59444(14) 5.59295(14) 5.59369(76)
172Yb 5.60882(14) 5.60733(14) 5.60808(76)
174Yb 5.62021(14) 5.62009(14) 5.62015(15)
176Yb 5.63168(14) 5.63185(14) 5.63177(16)
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B.3. Charge radius

Here are listed the predicted theoretical values for the charge radius obtained with the re-

maining Skyrme parametrisations. All calculations take into account their respective the-

oretical uncertainty discussed and computed in section 3.2. In tables B.7 to B.9 we show

the predicted charge radius using SKI3, UNEDF0 and UNEDF1 Skyrme parametrisa-

tions, respectively.

Table B.7.: Charge radius of neighbouring even-even Yb isotopes using SKI3 skyrme parametri-

sation.

Isotope

〈r2〉1/2 [ f m]

VDI DDDI

BCS LN BCS+LN BCS LN BCS+LN

168Yb 5.25925(33) 5.26013(33) 5.25969(55) 5.25980(33) 5.26032(33) 5.26006(42)
170Yb 5.27791(34) 5.27614(34) 5.27702(94) 5.27756(34) 5.27750(34) 5.27753(33)
172Yb 5.29031(34) 5.29042(34) 5.29037(34) 5.28986(34) 5.29041(34) 5.29013(43)
174Yb 5.30149(35) 5.30216(35) 5.30182(48) 5.30084(35) 5.30131(34) 5.30108(41)
176Yb 5.31335(35) 5.31343(35) 5.31339(35) 5.31257(35) 5.31319(35) 5.31288(47)

Table B.8.: Same caption details as table B.7 but using UNEDF0 parametrisation.

Isotope
〈r2〉1/2 [ f m]

BCS LN BCS+LN

168Yb 5.27055(33) 5.27152(33) 5.27103(58)
170Yb 5.28761(34) 5.28872(34) 5.28816(65)
172Yb 5.30332(34) 5.30311(34) 5.30322(35)
174Yb 5.31714(34) 5.31629(34) 5.31672(55)
176Yb 5.32956(35) 5.32840(35) 5.32898(68)
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Table B.9.: Same caption details as table B.7 but using UNEDF1 parametrisation.

Isotope
〈r2〉1/2 [ f m]

BCS LN BCS+LN

168Yb 5.28124(33) 5.28126(33) 5.28125(33)
170Yb 5.29834(34) 5.29761(33) 5.29798(49)
172Yb 5.31298(34) 5.31210(34) 5.31254(55)
174Yb 5.32559(34) 5.32556(34) 5.32558(34)
176Yb 5.33828(35) 5.33841(35) 5.33834(35)
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B.4. Differential squared charge radius

Here are listed the predicted theoretical values for the differential squared charge radius

obtained with the remaining Skyrme parametrisations. All calculations take into account

their respective theoretical uncertainty discussed and computed in section 3.3. In ta-

bles B.10 to B.12 we show the predicted differential squared charge radius using SKI3,

UNEDF0 and UNEDF1 Skyrme parametrisations, respectively.

Table B.10.: Differential squared charge radius of consecutive even-even Yb isotope pairs using

SKI3 Skyrme parametrisation.

Yb isotope pair

(j,i)

δ〈r2〉ji [ f m2]

VDI DDDI

BCS LN BCS+LN BCS LN BCS+LN

(168, 170) -0.1966(21) -0.1871(21) -0.1919(40) -0.1688(21) -0.1811(21) -0.1749(76)

(170, 172) -0.1311(21) -0.1301(21) -0.1306(37) -0.1510(21) -0.1362(21) -0.1436(75)

(172, 174) -0.1184(21) -0.1162(21) -0.1173(47) -0.1243(21) -0.1155(21) -0.1199(49)

(174, 176) -0.1259(21) -0.1245(21) -0.1252(58) -0.1197(21) -0.1260(21) -0.1229(51)

Table B.11.: Same caption details as table B.10 but using UNEDF0 parametrisation.

Yb isotope pair

(j,i)

δ〈r2〉ji [ f m2]

BCS LN BCS+LN

(168, 170) -0.1801(21) -0.1816(21) -0.1809(80)

(170, 172) -0.1664(21) -0.1525(21) -0.1594(63)

(172, 174) -0.1468(21) -0.1399(21) -0.1434(51)

(174, 176) -0.1322(21) -0.1288(21) -0.1306(80)
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Table B.12.: Same caption details as table B.10 but using UNEDF1 parametrisation.

Yb isotope pair

(j,i)

δ〈r2〉ji [ f m2]

BCS LN BCS+LN

(168, 170) -0.1809(21) -0.1730(21) -0.1770(44)

(170, 172) -0.1553(21) -0.1537(21) -0.1545(64)

(172, 174) -0.1342(21) -0.1432(21) -0.1387(51)

(174, 176) -0.1353(21) -0.1369(21) -0.1361(22)
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B.5. Differential fourth moment charge radius

Here are listed the predicted theoretical values for the differential fourth moment charge

radius obtained with the remaining Skyrme parametrisations. All calculations take into

account their respective theoretical uncertainty discussed and computed in section 3.4.

In tables B.13 to B.15 we show the predicted differential fourth moment charge radius

using SKI3, UNEDF0 and UNEDF1 Skyrme parametrisations, respectively.

Table B.13.: Differential fourth Seltzer moment charge radius of consecutive even-even Yb iso-

tope pairs using SKI3 Skyrme parametrisation.

Yb isotope pair

(j,i)

δ〈r4〉ji [ f m4]

VDI DDDI

BCS LN BCS+LN BCS LN BCS+LN

(168, 170) -14.87(14) -13.72(14) -14.29(44) -12.22(14) -13.20(14) -12.71(54)

(170, 172) -7.63(14) -7.70(14) -7.66(53) -9.67(14) -8.41(14) -9.04(55)

(172, 174) -6.48(14) -6.33(21) -6.40(56) -7.05(14) -6.21(14) -6.62(56)

(174, 176) -7.38(14) -7.29(14) -7.34(64) -6.80(14) -7.46(14) -7.13(58)

Table B.14.: Same caption details as table B.13 but using UNEDF0 parametrisation.

Yb isotope pair

(j,i)

δ〈r4〉ji [ f m4]

BCS LN BCS+LN

(168, 170) -12.61(14) -13.01(14) -12.81(55)

(170, 172) -11.38(14) -10.30(14) -10.84(49)

(172, 174) -9.65(14) -9.12(21) -9.38(38)

(174, 176) -8.43(14) -8.07(14) -8.25(64)
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Table B.15.: Same caption details as table B.10 but using UNEDF1 parametrisation.

Yb isotope pair

(j,i)

δ〈r4〉ji [ f m4]

BCS LN BCS+LN

(168, 170) -12.48(14) -11.92(14) -12.20(59)

(170, 172) -10.11(14) -10.11(14) -10.11(75)

(172, 174) -8.06(14) -9.03(21) -8.54(54)

(174, 176) -8.17(14) -8.38(14) -8.28(16)
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In this appendix we show the same plots as in section 3.5 with the remaining Skyrme

parametrisations. In figs. C.1 to C.4 we have considered both paring schemes indepen-

dently and propagated the corresponding theoretical uncertainty. In contrast, in figs. C.6a

to C.8b we have included the pairing uncertainty into the total theoretical uncertainty in

order to check the impact in the resulting King’s plot.

Figure C.1.: Standard King Plot, see eq. (1.22), for α : 2S1/2 −→ 2D5/2, and β : 2S1/2 −→ 2D3/2

transitions for pairs of neighbouring even-even Yb+. Theoretical results in blue are

obtained isotopes using the SKI3 Skyrme parametrisation with VDI pairing interac-

tion and BCS (Left) and LN (Right) pairing schemes, with errorbars calculated with

eq. (3.13). The red lines indicate the best linear fit to the four points and the black

points indicate experimental values [5].
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Figure C.2.: Same caption details as fig. C.1 but using DDDI pairing interaction.
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Figure C.3.: Same caption details as fig. C.1 but using the UNEDF0 parametrisation.
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Figure C.4.: Same caption details as fig. C.1 but using the UNEDF1 parametrisation.
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Figure C.5.: Same caption details as fig. C.1 but using using a combination of the two pairing

schemes (BCS+LN). Left panel: with VDI pairing interaction. Right panel: with

DDDI pairing interaction.
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Figure C.7.: Same caption details as fig. C.1 but using using a combination of the two pair-

ing schemes (BCS+LN). Left panel: UNEDF0 Skyrme parametrisation. Right

panel:UNEDF1 Skyrme parametrisation.
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In this appendix we show the King’s plot with the remaining Skyrme parametrisations

using the new approach presented in section 3.6. In figs. D.2a to D.8b we have consid-

ered both paring schemes independently and propagated the corresponding theoretical

uncertainty. In contrast, in figs. D.10a to D.12b we have included the pairing uncertainty

into the total theoretical uncertainty in order to check the impact in the resulting King’s

plot.

Figure D.1.: King’s plot based on the experimental να,ji value and its error, extracted from [5]

with SKI3 with VDI pairing interaction and: (a) BCS pairing scheme, (b) LN pairing

shceme. The vertical errorbars include the theoretical uncertainties in the modified

frequency shift mνβ,ji, see eq. (3.15). The insets zoom the points by a factor of 106.
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Figure D.3.: Same caption as in fig. D.1 but with DDDI pairing interaction.
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Figure D.5.: Same caption as in fig. D.1 but with UNEDF0 pairing interaction.
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Figure D.7.: Same caption as in fig. D.1 but with UNEDF0 pairing interaction.
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Figure D.9.: Same caption as in fig. D.1 but using a combination of the two pairing schemes

(BCS+LN) for: (a) VDI pairing interaction. (b) DDDI pairing interaction.
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(b) SkI3 DDDI

2.0 2.4 2.8 3.2 3.6

mνα,ji [1010kHz · u]

2.0

2.4

2.8

3.2

3.6

m
ν β
,j
i

[1
01

0
k
H
z
·u

]

3.107940 3.107960
3.186689

3.186709
(168, 170)2.984885 2.984895

3.060814

3.060824
(170, 172)

2.364242 2.364252
2.426007

2.426017
(172, 174)

2.304809 2.304819
2.365221

2.365231
(174, 176)

77



D. Appendix D

Figure D.11.: Same caption as in fig. D.1 but using a combination of the two pairing schemes

(BCS+LN) for: (a) UNEDF0. (b) UNEDF1.
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(b) UNEDF1
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In this appendix we show the predicted theoretical deviation from linearity and its NL

contributions presented in section 3.6 for the remaining Skyrme parametrisations. In

figs. E.1 to E.8 we have considered both paring schemes independently and propagated

the corresponding theoretical uncertainty. In contrast, in figs. E.9 to E.12 we have in-

cluded the pairing uncertainty into the total theoretical uncertainty in order to check the

impact in the resulting King’s plot.

Figure E.1.: Residual deviations from linearity in the King’s plot using the SKI3 parametrisation

with VDI pairing interaction and the BCS pairing scheme. Theoretical deviations

caused by both FOMS and QFS terms are shown as blue circles, while those caused

by the QFS term are shown as magenta squares and for the FOMS term as green

triangles. The points are shifted from the central mνα,ji value for clarity.
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Figure E.2.: Same caption details as fig. E.1 but with the LN pairing scheme.
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Figure E.3.: Same caption details as fig. E.1 but with DDDI pairing interaction and BCS pairing

scheme.
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Figure E.4.: Same caption details as fig. E.1 but with DDDI pairing interaction and LN pairing

scheme.
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Figure E.5.: Same caption details as fig. E.1 but with UNEDF0 and BCS pairing scheme.
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Figure E.6.: Same caption details as fig. E.1 but with UNEDF0 and LN pairing scheme.
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Figure E.7.: Same caption details as fig. E.1 but with UNEDF1 and BCS pairing scheme.
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Figure E.8.: Same caption details as fig. 3.7 but using the UNEDF0 parametrisation.
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Figure E.9.: Residual deviations from linearity in the King’s plot using the SKI3 parametrisa-

tion with VDI pairing interaction and a combination of the two pairing schemes

(BCS+LN). Theoretical deviations caused by both FOMS and QFS terms are shown

as blue circles, while those caused by the QFS term are shown as magenta squares

and for the FOMS term as green triangles. The points are shifted from the central

mνα,ji value for clarity.
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Figure E.10.: Same caption details as fig. E.9 but with the DDDI pairing interaction.
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Figure E.11.: Same caption details as fig. E.9 but with the UNEDF0 Skyrme parametrisation.
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Figure E.12.: Same caption details as fig. E.9 but using the UNEDF1 Skyrme parametrisation.
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In this appendix we present the same tables as section 3.6.1 for the remaining Skyrme

parametrisations.

Table F.1.: 〈r4〉-to-〈r2〉 ratio, b ,see eq. (3.24), for Yb isotopes with the SKI3 Skyrme parametrisa-

tion and VDI pairing interaction. ∆b/b stands for the fractional variation, where ∆b is

the standard deviation of b coefficients divided by their mean value, b.

Isotope
BCS LN

b ∆b/b b ∆b/b

168Yb 1.2452

0.0019

1.2453

0.0017

170Yb 1.2468 1.2460
172Yb 1.2449 1.2450
174Yb 1.2427 1.2429
176Yb 1.2409 1.2409

Table F.2.: Same details as in table F.1 but with SKI3 and DDDI pairing interaction.

Isotope
BCS delta LN delta

b ∆b/b b ∆b/b

168Yb 1.2452

0.0019

1.2453

0.0017

170Yb 1.2462 1.2461
172Yb 1.2445 1.2447
174Yb 1.2422 1.2424
176Yb 1.2405 1.2407
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Table F.3.: Same details as in table F.1 but with UNEDF0.

Isotope
BCS LN

b ∆b/b b ∆b/b

168Yb 1.2470

0.0010

1.2468

0.0010

170Yb 1.2471 1.2473
172Yb 1.2468 1.2468
174Yb 1.2460 1.2459
176Yb 1.2448 1.2446

Table F.4.: Same details as in table F.1 but with UNEDF1.

Isotope
BCS LN

b ∆b/b b ∆b/b

168Yb 1.2431

0.0015

1.2425

0.0013

170Yb 1.2430 1.2423
172Yb 1.2420 1.2415
174Yb 1.2403 1.2402
176Yb 1.2386 1.2387
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