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1 Introduction

Precise calculations of the neutrinoless double-beta 0νββ decay nuclear matrix elements
(NME) used to calculate the 0νββ decay rate are relevant to the study of neutrino physics,
since this decay rate also depends on a combination of the neutrino masses and mixing ma-
trix elements. Our goal will be to improve the calculations of these NME by including pre-
viously neglected precision components, such as the contribution of very low-momentum
(ultrasoft) neutrinos (Chapter 2) and the use of realistic radial wavefunctions (Chapter 3).

In this starting chapter, we will introduce and discuss the basic concepts that will make
up the foundations of this work, as well as its objectives. In the first section (1.1) we will
deal with the concept of neutrinoless double-beta decay and its significance and interest
towards neutrino physics. In the second section (1.2), we will provide an insight of the
nuclear shell model, which will be the framework of our calculations.

1.1 Neutrinoless double-beta decay and neutrino physics

Double-beta decay is a transition between isobaric nuclei in which two neutrons simultane-
ously decay into protons, meaning that the parent nucleus decays into a daughter nucleus
with two fewer neutrons and two more protons. Being a second-order weak-interaction
process, it is strongly suppressed and only observable for isotopes in which single beta
decay is forbidden. This results in typical half-lives ranging from 1018 to 1024 yr, as ob-
served in 11 different nuclei undergoing ββ decay [1] and 3 undergoing double electron
capture εε [2]. So far, all measured double-beta decay processes have been two-neutrino
double-beta (2νββ) decay (corresponding to Figure 1a), which can be expressed as

A
ZX −−→ A

Z+2Y + e−1 + e−2 + ν̄e,1 + ν̄e,2 , (1)

where A
ZX and A

Z+2Y are the parent and daughter nuclei; A,Z and N are the number of
nucleons, protons and neutrons (such that N = A−Z), e−1,2 are the emitted electrons and
ν̄e;1,2 are the emitted antineutrinos.

One particular detail about neutrinos is that they are the only neutral fermions we know
of. As such, neutrinos are the only known particles that may be Majorana fermions,
which means that they would be their own antiparticle. This would imply the existence
of a yet-hypothetical alternate decay mode, the neutrinoless double-beta (0νββ) decay

A
ZX −−→ A

Z+2Y + e−1 + e−2 (2)

As their own antiparticle, Majorana neutrinos could virtually annihilate each other in the
decay, as depicted in Figure 1b.

The inverse half-life of a 0νββ decay between JP = 0+ states of the parent and daughter
nuclei can be written as[

T 0ν
1/2 (0+

i → 0+
f )
]−1

= G0ν(Qββ, Z) g4
A |M0ν |2m2

ββ , (3)
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(a) Two-neutrino double-beta decay (b) Neutrinoless double-beta decay

Figure 1: Feynman diagrams for (a) 2νββ and (b) 0νββ decay. Two neutrons (n) decay
into two protons (p), emitting two electrons (e) and (a) two antineutrinos (ν̄) or (b) no
neutrinos, implying that they are Majorana particles (νM) in the second case. From [3].

where G0ν(Qββ, Z) is a phase space factor that can be calculated with great precision [4],

Qββ = Ei − Ef − 2me (4)

is the Q value of the reaction, M0ν is the ”nuclear matrix element” (NME)

M0ν = M0ν
GT −

g2
V

g2
A

M0ν
F +M0ν

T , (5)

with each of the terms corresponding to the Gamow-Teller, Fermi and tensor NME con-
tributions, respectively. gV = 1 and gA ' 1.27 are the vector and axial coupling, and mββ

a combination of the neutrino masses mj and mixing matrix elements Uej, defined as

mββ ≡

∣∣∣∣∣∑
j

mjU
2
ej

∣∣∣∣∣ =
∣∣m1|Ue1|2 +m2|Ue2|2ei(α2−α1) +m3|Ue3|2ei(−α1−2δ)

∣∣ . (6)

where mj are the neutrino mass eigenstates (not the same as the neutrino flavor eigen-
states: m1 leaning heavily towards electron flavor, m2 being a more even blend of the
three lepton flavors and m3 mostly muon and tau flavor), δ is the so-called Dirac phase
and α1,2 are Majorana phases that vanish if neutrinos are Dirac particles [3].

Likewise, we can express the inverse half-life for 2νββ decay as

[
T 2ν

1/2

]−1
= G2ν(Qββ, Z) g4

A

∣∣∣∣M2ν
GT −

g2
V

g2
A

M2ν
F

∣∣∣∣2 ' G2ν(Qββ, Z) g4
A

∣∣M2ν
GT

∣∣2 . (7)

where the Fermi contribution can be safely neglected when the isospin T of the initial
and final nuclei is different.
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Obtaining reliable values of M0ν is key to obtain the value of mββ, since experimen-
tally observing a 0νββ decay would provide its half-life, T 0ν

1/2. This would provide vital
information about the absolute scale of the neutrino masses and, potentially, about its
ordering. As illustrated in Figure 2, knowing the value of mββ along with the mass of
the lightest neutrino (a parameter β decay experiments and cosmological observations
like the KATRIN [5] and Planck [6] collaborations are sensible to) could confirm which
of the neutrino-mass hierarchies is correct: the normal hierarchy (m1 < m2 < m3) or
the inverted hierarchy (m3 < m1 < m2). This would have fundamental implications for
neutrino physics and cosmology [7], since it could shed some light on the mechanism of
neutrino mass generation.

0νββ decay would violate the conservation of the total lepton number, as well as the con-
servation of the ”B−L” quantity (baryon-lepton number), the latter being a fundamental
symmetry of the Standard Model [1]. Accordingly, the detection of this process would
imply Physics beyond the Standard Model. Additionally, the existence of the aforemen-
tioned violation of the lepton number could be very useful to explain the generation of
the matter-antimatter asymmetry in our universe via a process known as ”leptogenesis”
[8, 9].

Figure 2: Left panel: bands for the value of the parameter mββ as a function of the mass of
the lightest neutrino, for the case of normal (NH, red band) and inverted (IH, green band)
neutrino-mass hierarchies. The present best experimental upper limits on mββ are shown
in the blue band. Right panel: present best upper limits, with uncertainty bars, on mββ

from experiments performed on each ββ emitter, as a function of mass number A. The
uncertainty bands and bars include experimental uncertainties and ranges of calculated
nuclear matrix elements. From [10].
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1.2 The nuclear shell model

1.2.1 From the independent particle model to the interacting shell model

The nuclear shell model was originally introduced by M. Goeppert-Mayer [11] and H.
Jensen et al. [12] to explain the regularities of the nuclear properties associated with
magic numbers. They proposed an independent particle model, assuming that the main
effect of the two-body nucleon-nucleon (NN) and three-body (3N) interactions was to
generate a mean field [13].

This nuclear mean field was constructed as a surface corrected harmonic oscillator whose
main novelty was the very strong spin-orbit splitting needed to explain these magic num-
bers [14]. It is described as follows:

U(r) =
1

2
mω2r2 +Dl2 − Cl · s, (8)

where m is the mass of the particle, ω its the angular frequency, r its radial component,
l and s are the angular momentum and spin operators (respectively) and C and D are
parameters to be fit for best results.

Figure 3 shows the single particle levels of the nuclear mean field. From left to right, we
first find the shell structure of the harmonic oscillator, then the splitting due to the l2

term in Equation (7) and, in the middle of the figure, the actual single particle levels,
that take into account the spin-orbit splitting [14]. On the right hand side we find three
rows of numbers corresponding to, respectively, the maximum occupancy of the level, the
accumulated occupancy and the predicted magic numbers for protons and neutrons (2, 8,
20, 28, 50, 82 and 126). Alternately to the notation in Figure 3, the principal quantum
number n of the lowest level is sometimes defined as n = 0 instead of n = 1, such that
N = 2n+ l. This is the convention we will be following.

The success of the independent particle model strongly suggests that the very singular
free NN interaction can be regularized in the nuclear medium. Starting with this bare
interaction, the exact solution of the many-body problem in the infinite Hilbert space built
on the mean field orbits is approximated in the large scale shell model calculations by the
solution of the Schrödinger equation in the valence space, using an effective interaction
[13, 14] such that observables are preserved:

H|Ψ〉 = E|Ψ〉 → Heff |Ψeff〉 = E|Ψeff〉. (9)

Note that Heff includes interactions between nucleons, therefore describing physics beyond
the mean field of Equation (8).

In general, effective operators have to be introduced to account for the restrictions of the
Hilbert space, such as
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Figure 3: Structure of the spherical mean field, see text for details. From [14].

〈Ψ|O|Ψ〉 = 〈Ψeff |Oeff |Ψeff〉. (10)

Once we adopt a regularized interaction that is compatible with the experimental mean
field (in this case, magic numbers) we can proceed using the spherical mean field orbits
as the basis for the occupation number space (Fock space). We will have states i, j, k, ...
with energies εi, εj, εk, ... that will bunch in shells, giving rise to magic numbers when the
energy difference between them is large enough.

This motivates the separation of the full space intro three different regions:

• Inert core: encompasses the orbits that are always full, therefore not undergoing any
change. If this core is made up of Zc protons and Nc neutrons, there will remain
zv = Z − Zc valence protons and zv = N −Nc valence neutrons.

• Valence space: formed by the orbits that are available to the aforementioned valence
particles, which will partially occupy them according to the dictates of the effective
interaction Heff .

• External space: refers to all the remaining orbits, which always remain empty.

In the valence space, a formal solution to the A-body problem can be obtained through
the following procedure:

• First, we choose a single particle basis: a+
i |0〉.
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• We will then proceed to build the A-particle wavefunctions as Slater determinants:

|Φα〉 =
A∏
i

a+
i |0〉. (11)

• The physical states are then expressed as a linear combination of these Slater de-
terminants:

|Ψeff〉 =
∑
α

Cα|Φα〉. (12)

• Lastly, the solution of the many-body problem Heff |Ψeff〉 = E|Ψeff〉 is given by the
eigenvalues and eigenvectors of the many-body matrix 〈Φα|Heff |Φ′α〉.

1.2.2 The Lanczos method

If one aims to carry out large scale shell model calculations, standard diagonalization
methods where CPU times increase as N3

dim [15, 16] (Ndim being the dimension of the
many-body matrix) are not suitable. Taking into account that, in general, only a small
number of eigenvalues and eigenvectors are needed, we can try to use another approach
to this problem. This is where the Lanczos algorithm comes in handy.

The Lanczos method is based in the building of an orthogonal basis in which the many-
body matrix has a tridiagonal structure. We initialize the algorithm with a normalized
vector Φ1 (that we call the ”pivot” state) and apply the effective hamiltonianHeff operator.
We will then get a parallel and an orthogonal component of the pivot Φ1:

Heff |Φ1〉 = E11|Φ1〉+ E12|Φ2〉, (13)

where E11 = 〈Φ1|Heff |Φ1〉 and E12|Φ2〉 = Heff |Φ1〉 − E11|Φ1〉.

Applying Heff on Φ2, we will generate a third vector Φ3 orthogonal to Φ1 and Φ2:

Heff |Φ2〉 = E21|Φ1〉+ E22|Φ2〉+ E23|Φ3〉, (14)

where the hermicity of Heff implies E21 = E12. Analogously to the previous step, E22 =
〈Φ2|Heff |Φ2〉, and E23 is obtained through normalization:

E23|Φ3〉 = (Heff − E22)|Φ2〉 − E21|Φ1〉. (15)

Continuing this process, at iteration n, we obtain the diagonal energy of the vector |Φn〉,
a new vector |Φn+1〉 and the non-diagonal energy En,n+1:

Enn = 〈Φn|Heff |Φn〉, (16)

Heff |Φn〉 = En,n−1|Φn−1〉+ Enn|Φn〉+ En,n+1|Φn+1〉, (17)
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En,n+1|Φn+1〉 = (Heff − Enn)|Φn〉 − En,n−1|Φn−1〉, (18)

always remembering that En,n−1 = En−1,n. Due to Heff being hermitic, the construction
of the Lanczos matrix ensures that Eij = 0 if |i − j| > 1, thus obtaining a tridiagonal
matrix:



E11 E12 0 0 · · ·
E21 E22 E23 0 · · ·
0 E32 E33 E34 · · ·
0 0 E43 E44 · · ·
...

...
...

...
. . .


(19)

This matrix is diagonalized every certain number of steps. When the eigenvalues obtained
through the diagonalization meet an established convergence criterion, the calculation will
stop.

1.2.3 The choice of the basis

For a given valence space, the choice of the basis is simply driven by convenience. Depend-
ing on the properties we want to describe, one or another basis may be more appropriate.
There are two possible choices: the m-scheme and the J-coupled scheme.

In the m-scheme, the basis is composed of all the Slater determinants made from all the
possible partitions of the valence particles among every valence orbit |nljmτ〉 [14], such
that

|Φα〉 =
∏

i=nljmτ

a+
i |0〉. (20)

where n, l, j, m and τ are the principal, orbital, total angular momentum, magnetic and
isospin quantum numbers, respectively.

The principal advantage of this representation is the simplicity of the calculation of the
many particle matrix elements, since they reduce to the two-body matrix elements of H
in m-scheme with a phase [16]. Its major drawback, however, lies in the fact that only Jz
and Tz are good quantum numbers, meaning that the basis takes into account all possible
(J ,T ) states. This causes the dimensions of the matrix to be maximal, being proportional
to

Ndim ∝
(
dπ
zv

)
·
(
dν
nv

)
, (21)

where dπ and dν are the total degeneracies of the proton and neutron valence spaces and
zv and nv are the valence protons and neutrons (as explained on section 1.2.1).
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This is the basis the shell model code ANTOINE [15, 17] is based on, which we will use
when we have to calculate states with J 6= 0 (for example, intermediate 1+ states in a
double-beta decay).

If one wants to avoid carrying on the full dimension of the m-scheme, one option is to
implement ”a priori” symmetries of the hamiltonian in the construction of the many par-
ticle basis. The full matrix is then divided in blocks and, for each ensemble of values with
given quantum numbers, the dimensions are smaller. This is what we call the J-coupled
scheme, and the dimensional reduction it provides turns out to be specially useful for
J = 0, which is why we will be using the shell model code NATHAN [15] when we only
have to deal with this kind of states.

However, when compared to the simplicity of the m-scheme, the calculation of the many-
particle matrix elements is way more complex, involving products of cfp’s (used to guar-
antee anti-symmetry) and 9j coefficients (related to angular momentum coupling).
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2 Contribution of ultrasoft neutrinos to 0νββ decay

In this chapter, we follow an article by V. Cirigliano et al. [9] and introduce the ultra-
soft contribution to the 0νββ decay amplitude: that is, the contribution of very low-
momentum neutrinos to the total decay amplitude. In addition, we quantify for the first
time the magnitude of this correction.

Our objective will be to calculate this new contribution (M0ν
usoft) for nuclei that have been

experimentally observed to undergo double-beta decay (like 48Ca → 48Ti and 136Xe →
136Te) using the nuclear shell model. Then, we will calculate the nuclear matrix element
M0ν in order to quantify the M0ν

usoft/M
0ν ratio and check the estimation given in [9].

We will study the use of different interactions in shell model calculations and its im-
pact in the results. We will also discuss the systematics of the M0ν

usoft/M
0ν ratio along

isotopic chains to estimate the NME value for computationally demanding decays like
128Te→ 128Xe and 130Te→ 130Xe.

To close this chapter, we will study the 2νββ decay amplitude, as it is calculated using
the same transition matrix elements as M0ν

usoft but through a different energy-dependent
weighted sum. Thus, we will compare the energies of the intermediate states to which the
two cases are most sensitive to.

2.1 Conventional formalism of the 0νββ decay amplitude

The rate of the 0νββ decay can be calculated using the second order Fermi’s Golden rule
[18]:

dΓ0ν = 2π
∑
spin

|R0ν |2δ(E1 + E2 + Ef − Ei)dΩe1dΩe2 , (22)

where Γ0ν = ln 2 · [T 0ν ]
−1

, E1 and E2 are the energy of the emitted electrons, Ei and
Ef are the energies of the initial and final states (|i〉 and |f〉) and R0ν is the transition
amplitude [19], that can be expressed as

R0ν =
G2
F

8
√

2πR

∫
dx

∫
dy(1− P12)ē(ε1,x)γµ(1− γ5)γµeC(ε2,y)

× g2
A

∑
j

mjU
2
ej

× R

g2
A

∫
dk

2π2

eik(x−y)

Eν

∑
n

〈f |Jµ(x)|n〉〈n|Jµ(y)|i〉
Eν + µn − 1

2
(E1 − E2)

,

(23)

Looking back to Equation (3), the first line of Equation (23) constitutes the necessary
components to calculate the phase space factor G0ν(Qββ, Z), the second line is g2

Amββ
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and the last line corresponds to M0ν , where R = 1.2A1/3 fm is the nuclear radius, µn is
defined as

µn ≡ En −
1

2
(Ei + Ef ), (24)

En being the energy of the intermediate state |n〉, and Eν =
√
m2
ν + k2 ∼ |k| is the

energy of the virtual neutrino. Since nucleons are typically a few fermi apart in nuclei,
nuclear wavefunctions will select the preferred momentum for the virtual neutrino to be
|k| ∼ kF ∼ 100 MeV [19]. This corresponds to the so-called ”soft” neutrinos [9], which
will constitute the principal contribution to the 0νββ decay amplitude. Thus, for light
neutrinos in the soft region, ω ∼ |k| and the dependence on the neutrino mass can be
neglected. We can express the momentum integral from Equation (23) in spherical coor-
dinates in order to get rid of the singularity 1/|k| and now having |k| in the numerator
instead.

Additionally, when compared to |k|, E1−E2 can be safely neglected (as it can amount up
to Qββ (typically a few MeV) and vanishes on average [19]) and the intermediate energies
En, which can differ from one another by a few MeV, can be replaced by an average value
〈En〉. This way, we can redefine µn to remove its dependence with the intermediate states:

µn ' µ ≡ 〈En〉 −
1

2
(Ei + Ef ). (25)

Thus, these intermediate states are no longer needed in the calculation, since the closure
relation

∑
n|n〉〈n| = 1 can be applied to the summation of Equation (23) such that

∑
n

〈f |Jµ(x)|n〉〈n|Jµ(y)|i〉
Eν + µn − 1

2
(E1 − E2)

' 1

|k|+ µ

∑
n

〈f |Jµ(x)|n〉〈n|Jµ(y)|i〉

=
1

|k|+ µ

∑
n

〈f |Jµ(x)Jµ(y)|i〉.
(26)

where Jµ(x) is the hadronic nuclear current

Jµ(x) =
A∑
i

τ+
i

[
gµ0J0

i (k2) + gµjJji (k
2)
]
δ(x− ri), (27)

with

J0
i (k2) = gV (k2), (28)

Jji (k
2) = igM(k2)

σi × k

2mN

+ gA(k2)σi − gP (k2)
k(k · σi)

2mN

, (29)

where mN is the nucleon mass and gM(k2) and gP (k2) are hadronic couplings.
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By substituting these hadronic currents, the expressions of the Gamow-Teller, Fermi and
tensor components of the nuclear matrix element M0ν are given by

M0ν
GT =

2R

πg2
A

∫ ∞
0

|k| d|k|〈f |
∑
a,b

j0(|k|rab)hGT (|k|)σa · σb
|k|+ µ

τ+
a τ

+
b |i〉, (30)

M0ν
F =

2R

πg2
A

∫ ∞
0

|k| d|k|〈f |
∑
a,b

j0(|k|rab)hF (|k|)
|k|+ µ

τ+
a τ

+
b |i〉, (31)

M0ν
T =

2R

πg2
A

∫ ∞
0

|k| d|k|〈f |
∑
a,b

j2(|k|rab)hT (|k|) [3σj · r̂abσk · r̂ab − σa · σb]
|k|+ µ

τ+
a τ

+
b |i〉, (32)

where τ+ is the isospin raising operator, j0 and j2 are spherical Bessel functions, rab = |ra−
rb| is the module of the inter-nucleon position vector whose unit vector is r̂ab = |ra−rb|/rab
and the h parameters are called the neutrino potentials, defined in momentum space as

hGT (|k|) ≡ g2
A(k2)− g2

A(k2)g2
P (k2)k2

3mN

+
g2
P (k2)k4

12m2
N

+
g2
M(k2)k2

6m2
N

, (33)

hF (|k|) ≡ g
2
V (k2)

g2
A

, (34)

hT (|k|) ≡ g
2
A(k2)g2

P (k2)k2

3mN

− g2
P (k2)k4

12m2
N

+
g2
M(k2)k2

12m2
N

. (35)

2.2 Contribution of ultrasoft neutrinos (|k| � kF)

In the previous section, we mentioned how neutrinos in the ”soft” region (|k| � kF ∼
100 MeV) constitute the principal contribution to the 0νββ decay amplitude. However,
because of the treatment given to the momentum integral in Equation (23), |k| appears
in the numerator (Equations (30), (31) and (32)), suppressing the contribution of low-
momentum neutrinos. This is known as the ”ultrasoft” region (|k| � kF ), and it might
carry a non-negligible contribution to the 0νββ decay amplitude that we are ignoring as a
consequence of how we expressed the momentum integral. In addition, for ultrasoft neutri-
nos, the approximations performed in Equation (26) are no longer valid (|k| � 100 MeV).
Thus, the intermediate states of the transition play a role when calculating the ultrasoft
contribution to the 0νββ amplitude.

In a recent article, V. Cirigliano et al. deal with the 0νββ decay in chiral effective field
theory (χEFT) [9], and obtain expressions for this contribution for the first time. The
0νββ transition amplitude is modified as

R0ν =
G2
F

8
√

2πR

∫
dx

∫
dy(1− P12)ē(ε1,x)γµ(1− γ5)γµeC(ε2,y)

× g2
Amββ (M0ν +M0ν

usoft),

(36)
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The full expression of M0ν
usoft is

Musoft =− πR

g2
A

∑
n

∫
dd−1k

(2π)d−1

1

|k|

×
[

〈f |Jµ|n〉〈n|Jµ|i〉
|k|+ E2 + En − Ei − iη

+
〈f |Jµ|n〉〈n|Jµ|i〉

|k|+ E1 + En − Ei − iη

]
,

(37)

where the hadronic nuclear current for |k| ∼ 0 is reduced to

Jµ(x) =
A∑
i

τ+
i

[
gµ0gV + gµjgAσi

]
δ(x− ri). (38)

As we explained in section 1.1, the Fermi term can be neglected, only keeping the Gamow-
Teller operator. Evaluating the loop integral in dimensional regularization [9], it can be
found that

Musoft(µus) =
R

2π

∑
n

〈f |στ+|n〉〈n|στ+|i〉 ×
[
(E2 + En − Ei)

(
ln

µus

2(E2 + En − Ei)
+ 1

)
+(E1 + En − Ei)

(
ln

µus

2(E1 + En − Ei)
+ 1

)]
,

(39)

where we define στ+ ≡
∑

i σiτ
+
i and consider the approximation E1 = E2 = Qββ/2,

where Qββ is the Q value of the double-beta decay. The reliability of this approximation
is discussed in Appendix A.

The ultraviolet divergence and the logarithmic dependence on the renormalization scale
µus can be shown to be reabsorbed by a another term in the double-beta decay hamilto-
nian [9]. This way, the total amplitude is shown to be independent of µus, which will in
practice can be replaced by a convenient scale such as µus = mπ ∼ kF ∼ 100 MeV, where
mπ ∼ 100 MeV < is the scale of the pion mass.

In the article [9], the scaling of the relation Musoft/M
0ν is shown to be of the order

M0ν
usoft

M0ν
∼
∑
n

(
Qββ

2
+ En − Ei

)
4kF

× 〈f |στ
+|n〉〈n|στ+|i〉

〈f |στ+στ+|i〉
. (40)

As we will see in section 2.4, the energy differences En−Ei between bound nuclear states
have a typical size of O(5− 10) MeV and Qββ ranges between ∼ 2− 4 MeV. The overlap
matrix elements will quickly die out for En−Ei > 10 MeV, further reaffirming our choice
of the energy difference scale.



14

Finally, we find the ratio Musoft/M
0ν ∼ 10−2− 10−1, meaning that the ultrasoft contribu-

tion is between one and two orders down with respect to the soft, leading contribution.
This would imply a correction to the NME potentially ranging between 1% and 10%,
which should not be neglected if we want more precise values of the NME, as we dis-
cussed in section 1.1.

2.3 Numerical calculations of M 0ν
usoft in ββ decaying nuclei

In the following subsections, we will carry out numerical calculations of M0ν
usoft in exper-

imentally relevant nuclei. In addition, we will check if our results are in agreement with
the estimation from χEFT, M0ν

usoft/M
0ν ∼ 10−2.

2.3.1 Calculating transition matrix elements

The shell model code ANTOINE [15, 17], described in subsection 1.2.3, provides us with
the tools that will allow us to calculate the transition matrix elements 〈f |στ+|n〉〈n|στ+|i〉.
We will use the following method:

• First of all, we will obtain the wavefunctions of the initial and final 0+ ground states
|i〉 and |f〉 corresponding to the parent and daughter even-even nuclei by performing
a Lanczos calculation, such that

Heff |i〉 = E∗i |i〉 , Heff |f〉 = E∗f |f〉 , (41)

where E∗i and E∗f are the calculated eigenvalues but not the energies we will be
using, as we will see in the following subsection.

• We will apply the Gamow-Teller operator to the initial state |i〉. The output of this
step will be a new state that we will call |GT, i〉 and a normalization constant Ni

such that

στ+|i〉 = Ni|GT, i〉. (42)

• Next, in order to find a set of 1+ states of the intermediate odd-odd nucleus (|n〉),
we will carry out a Lanczos calculation using the previously obtained |GT, i〉 as the
pivot. This will provide us with a chosen number (nmax) of |n〉 states, as well as the
overlaps of these intermediate states with |GT, i〉 (that is, 〈n|GT, i〉). Since the |n〉
states we are interested on are the ones that contribute the most to our calculation,
we will keep those that provide a higher value of the 〈n|GT, i〉 overlap. As a side
note, in this particular calculation, we projected the Lanczos vectors on J2 in order
suppress the emergence of spurious intermediate states with J 6= 1.

• Analogously to what we did with the initial state, we will then apply the Gamow-
Teller operator to |f〉 in order to obtain |GT, f〉 as well as Nf , such that

στ+|f〉 = Nf |GT, f〉. (43)
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• Last, we will calculate the overlaps of the nmax |n〉 states with |GT, f〉, obtaining
〈n|GT, f〉. With this, we have everything we need to calculate the (nmax) overlap
matrix elements as

〈f |στ+|n〉〈n|στ+|i〉 = NiNf〈f,GT|n〉〈n|GT, i〉. (44)

It is important to note that Equation (36) takes into account the complete set of infi-
nite |n〉 intermediate states. As we obviously cannot carry out infinite calculations, we
will need to find an appropriate value of nmax that guarantees the convergence of the result.

As an additional check,

S(nmax) ≡
nmax∑
n=1

〈f |στ+|n〉〈n|στ+|i〉 (45)

should converge towards

Sfi ≡ 〈f |στ+στ+|i〉 = NiNf〈f,GT|GT, i〉 , (46)

since the closure relation
∑

n |n〉〈n| = 1 implies

nmax∑
n=1

|n〉〈n| nmax→∞−−−−−→ 1. (47)

2.3.2 Calculating M0ν
usoft

With the transition matrix elements we just calculated, we only need the corresponding
energies from Equation (36) in order to obtain values for M0ν

usoft.

We will calculate the energy of the initial state (Ei) using the binding energies per nucleon
(B/A) that can be found in [20, 21]. This way,

Ei = Zmp +Nmn − (B/A)A
ZW · A , (48)

where A
ZW is the parent nucleus.

To calculate the ground state energy of the intermediate states (that is, the energy of

the lowest-lying intermediate state, E1+1
), we will also need an EGS→1+1 excitation energy,

which we will be taking from [22]. So, it follows that

E1+1
= (Z + 1)mp + (N − 1)mn − (B/A) A

Z+1X
· A+ E

GS→1+1
A

Z+1X
, (49)
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where A
Z+1X is the intermediate nucleus.

For experimentally observed double-beta decays, we will take Qββ from the literature
[23, 24]. Otherwise, we will simply take

Qββ = Ei − Ef − 2me = 2(mn −mp) + [(B/A) A
Z+2Y
− (B/A)A

ZW]− 2me , (50)

where

Ef = (Z + 2)mp + (N − 2)mn − (B/A) A
Z+2Y
· A ; (51)

A
Z+2Y being the daughter nucleus. Now that we have everything we need to calculate
M0ν

usoft, we will begin by representing S(nmax) for a certain range of values of nmax in
order to find an appropriate nmax that guarantees the convergence S(nmax)→ Sfi, as we
discussed in the previous subsection (2.3.1).

In Figures 4 and 5 we have represented S(nmax) with 10 ≤ nmax ≤ 60 for the double-beta
decay of 48Ca and 136Xe using the KB3 and GCN5082 interaction, respectively. As we
can see, S(nmax) is well converged to Sfi for nmax = 60. We can also appreciate this
convergence if we represent M0ν

usoft as a function of nmax, as shown in Figures 6 and 7.

As a note, we have performed this convergence check for all nuclei and interactions con-
sidered in this chapter. For the sake of brevity, we will present its corresponding figures
in Appendix B (Figures 25-30).

Figure 4: S(nmax) for the double-beta decay of 48Ca, using the KB3 interaction. The
value of Sfi is depicted with a red dashed line.
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Figure 5: S(nmax) for the double-beta decay of 136Xe, using the GCN5082 interaction.

Figure 6: Matrix element M0ν
usoft with respect to the number 1+ of intermediate states

nmax for the double-beta decay of 48Ca, using the KB3 interaction.
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Figure 7: Matrix element M0ν
usoft with respect to the number 1+ of intermediate states

nmax for the double-beta decay of 136Xe, using the GCN5082 interaction.

Thus, we will calculate M0ν
usoft for two different experimentally observed double-beta decay-

ing nuclei: 48Ca, where we will work in the valence space consisting on 0f7/2, 1p3/2, 0f5/2

and 1p1/2 (also known as the pf -shell), using the KB3 interaction; and 136Xe, working in
the 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 0h11/2 valence space and using the GCN5082 interaction.
The results are presented in Table 1 below.

Now, in order to calculate theM0ν
usoft/M

0ν ratio, we will use the shell model code NATHAN.
Since the intermediate 1+ states do not play any role in the calculation, only J = 0 states
will be involved, an optimal condition for J-coupled scheme code like NATHAN, as we
discussed in subsection 1.2.3.

Parent Interaction Ei (MeV) E1+1
(MeV) Ef (MeV) Qββ (MeV) M0ν

usoft

48Ca KB3 44657.259 44658.669 44651.970 4.263 [23] 1.12 · 10−2

136Xe GCN5082 126569.136 126569.306 126565.657 2.458 [24] 9.86 · 10−2

Table 1: Energies, Qββ value and M0ν
usoft (calculated for nmax = 60) for the ββ emitters

48Ca and 136Xe. The energies Ei, En,GS and Ef are taken from [20, 21, 22].

Parent Interaction M0ν
usoft M0ν M0ν

usoft/M
0ν

48Ca KB3 1.12 · 10−2 0.93 1.2 · 10−2

136Xe GCN5082 9.86 · 10−2 2.30 4.3 · 10−2

Table 2: M0ν
usoft, M

0ν and its ratio for the 0νββ decay of 48Ca and 136Xe.
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As we can see, the ratio M0ν
usoft/M

0ν ∼ 10−2 holds up for both of the calculated cases. In
particular, the ultrasoft contribution for the 0νββ decay of 48Ca and 136Xe represents a
correction to the conventional NME of around 1.2% and 4.3% respectively. This, in turn,
implies a correction to the 0νββ decay rate (Equation (3)) of ∼ 2.4% and ∼ 8.6%, which
should not be neglected if one wants precise values of the NME.

2.3.3 Sensitivity of M0ν
usoft to the nuclear interaction

In the previous subsection, for the calculations involving the double-beta decay of 136Xe,
we used the GCN5082 interaction, which is an effective hamiltonian based in a renor-
malized G-matrix obtained from the Bonn-C potential and constructed through a fit to
about 300 energy levels from ∼ 90 nuclei [25], making it a more realistic and sophisticated
interaction.

However, it might be interesting to repeat the calculations using three different G-matrices
based on the different Bonn potentials to see how much they differ from the GCN5082
calculations. In Table 3 below, we present the calculated values of M0ν

usoft, M
0ν and its

ratio using these Bonn interactions (A through C), including the previously calculated
case for the GCN5082 interaction.

Parent Interaction M0ν
usoft M0ν M0ν

usoft/M
0ν

136Xe Bonn-A 2.88 · 10−2 1.11 2.6 · 10−2

136Xe Bonn-B 3.52 · 10−2 1.18 3.0 · 10−2

136Xe Bonn-C 4.05 · 10−2 1.25 3.2 · 10−2

136Xe GCN5082 9.86 · 10−2 2.30 4.3 · 10−2

Table 3: M0ν
usoft, M

0ν and its ratio for the 0νββ decay of 136Xe using different nuclear
interactions.

Table 3 shows that the results are pretty similar for the three variants of the Bonn
interaction. Even though both M0ν

usoft and M0ν increase by around a factor 2 for the
GCN5082 interaction with respect to Bonn-C, the ratio between the two values roughly
stays the same for all interactions, leading to a very robust M0ν

usoft correction.

2.3.4 Computationally complex nuclei: 0νββ decay of 128Te and 130Te

In addition to 48Ca and 136Xe, we would have also wanted to study other experimentally
observed double-beta decaying nuclei, like 128Te and 130Te.

However, as we mentioned in subsection 1.2.3, the dimension of the many-body matrix
increases proportionally to the product of two binomial coefficients that depend on the
total degeneracy of the valence spaces and the number of valence nucleons.
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The maximum dimension that can be handled by the version of ANTOINE we used is
Ndim,max = 2 · 108, while the dimensions of the matrices needed to calculate the daughter
nuclei 128Xe and 130Xe are

Ndim(128Xe) =

(
32

4

)
·
(

32

24

)
∼ 4 · 1011 , (52)

Ndim(130Xe) =

(
32

4

)
·
(

32

26

)
∼ 3 · 1010 . (53)

We could, however, do a preliminary study and carry out calculations for similar nuclei
that are computationally feasible (like 132Te and 134Te) in order to check how the relative
contribution of M0ν

usoft varies along an isotopic chain.

To do this, we will first study Ca isotopes around 48Ca like 46Ca and 50Ca using the same
nuclear interaction.

Parent Interaction Qββ (MeV) M0ν
usoft M0ν M0ν

usoft/M
0ν

46Ca KB3 0.988 [20, 21] 1.04 · 10−2 1.20 8.7 · 10−3

48Ca KB3 4.263 [23] 1.12 · 10−2 0.929 1.2 · 10−2

50Ca KB3 5.921 [20, 21] 9.97 · 10−4 1.063 9.4 · 10−4

Table 4: M0ν
usoft, M

0ν and its ratio for different Ca isotopes, alongside it’s Qββ value.

Table 4 shows that the obtained values of M0ν
usoft are reasonably similar for 46Ca and 48Ca,

but decrease an order of magnitude for 50Ca. However, as can be seen in Figures 4, 6,
27 and 28, the individual contributions of each term in the summation are comparable
for the three cases, with the exception that, for 50Ca, they cancel each other more often,
resulting in an overall lower total value.

Therefore, our results suggest that calculations for certain nuclei can qualitatively give us
an idea of the results for similar isotopes.

Parent Interaction Qββ (MeV) M0ν
usoft M0ν M0ν

usoft/M
0ν

132Te GCN5082 4.090 [20, 21] 6.34 · 10−2 2.55 2.5 · 10−2

134Te GCN5082 5.592 [20, 21] 8.58 · 10−2 1.94 4.4 · 10−2

Table 5: M0ν
usoft, M

0ν and its ratio for different Te isotopes, alongside it’s Qββ value.

Table 5 shows the results for 132Te and 134Te, which are comparable to those obtained for
136Xe. As such, we can expect a similar contribution of M0ν

usoft for the 0νββ decay of 128Te
and 130Te.
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2.4 Energy dependence: comparison to 2νββ decay

The transition matrix elements 〈f |Jµ|n〉〈n|Jµ|i〉 from Equation (36) that we calculated
in the previous subsections also control the 2νββ decay amplitude, although through a
different En-dependent weighted sum [9].

In particular, the Gamow-Teller matrix element M2ν
GT [26] can be written as

M2ν
GT = me

∑
n

〈f |στ+|n〉〈n|στ+|i〉
En − (Ei + Ef )/2

. (54)

We will analyze the dependence with respect to En of M2ν
GT and M0ν

usoft. In particular,
we will represent the running sum with respect to the energy difference between the
corresponding intermediate state and the initial state, En−Ei. This way, we can visualize
the contribution of each state to M2ν

GT and M0ν
usoft. We define

S2ν
GT (n) = me

〈f |στ+|n〉〈n|στ+|i〉
En − (Ei + Ef )/2

, (55)

S0ν
usoft (n) =

R

2π
〈f |στ+|n〉〈n|στ+|i〉× 2

(
Qββ

2
+ En − Ei

)ln
mπ

2
(
Qββ

2
+ En − Ei

) + 1

 ,

(56)

such that M2ν
GT =

∑
n S

2ν
GT (n) and M0ν

usoft =
∑

n S
0ν
usoft (n).

Figure 8: Running sum of M2ν
GT and M0ν

usoft with respect to En − Ei for the double-beta
decay of 48Ca, using the KB3 interaction.
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Figure 8 shows that, as expected due to its dependence on En, M2ν
GT is more sensitive to

low-energy intermediate states (En −Ei < 5 MeV) than to the ones with a higher energy
difference like those in the 5 MeV < En − Ei < 10 MeV region (depicted between red
dashed lines for clarity). This implies higher values of S2ν

GT (n) for the low-energy region
and thus a more abrupt change in the value of the running sum. After that, the values of
S2ν
GT (n) practically vanish for En − Ei > 10 MeV.

On the other hand, and following the same reasoning, M0ν
usoft is much more sensitive to

states in the 5 MeV < En − Ei < 10 MeV region than M2ν
GT , after which S0ν

usoft (n) also
rapidly decays for high energies.

This is even clearer for the double-beta decay of 136Xe. In Figure 9 we can distinguish
how M0ν

usoft is more sensitive to states between 5 MeV < En − Ei < 10 MeV than M2ν
GT .

This is consistent with the estimation of subsection 2.1, where we said that the energy
differences En − Ei between bound nuclear states have a typical size of O(5 − 10) MeV,
while the transition matrix elements 〈f |Jµ|n〉〈n|Jµ|i〉 (and, consequently, S2ν

GT (n) and
S0ν

usoft (n)) rapidly die out for En − Ei > 10 MeV.

Figure 9: Running sum of M2ν
GT and M0ν

usoft with respect to En − Ei for the double-beta
decay of 136Xe, using the GCN5082 interaction.
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3 Realistic radial wavefunctions in NME calculations

In order to solve Heff |Ψeff〉 = E|Ψeff〉, the radial part of the wavefunctions is not explicitly
assumed, since only matrix elements of Heff are needed and Ψeff is given as a combination
of Slater determinants. However, in order to evaluate NME of r-dependent operators, the
explicit form of the radial wavefunction is needed. While the harmonic oscillator is the
conventional choice, it might be too simple if we want to obtain accurate results.
In the following chapter we will study the impact of realistic radial wavefunctions on
the value of nuclear matrix elements, as well as the choice of the valence space. In
particular, we will present the differences between harmonic oscillator and Woods-Saxon
radial wavefunctions and compare them to the results obtained through the more accurate
variational Monte Carlo (VMC) calculations.
Following an article by X.B. Wang et al. [27], we will study the effects of these radial
wavefunctions towards the calculation of the NME of the double-beta decay of light nuclei
(A = 10 and A = 12), as well as the differences that arise from using a simple valence
space (like the p-shell) or an extended valence space (psd-shell). We extend this study
taking into account all three contributions to M0ν (M0ν

F , M0ν
GT and M0ν

T , the last of which
is neglected) in order to produce a more accurate result. In addition, for the first time we
extend this study towards the double-beta decay of heavier nuclei (A = 48).

3.1 Harmonic oscillator wavefunctions

Typically, instead of going through the steps that lead to self-consistency, one simply
selects a particular type of mean-field potential. The use of such phenomenological po-
tentials is a practical shortcut taken at the expense of theoretical preciseness [28].

The simplest frequently used potential is the three-dimensional harmonic oscillator (HO)
potential:

vHO(r) = −V1 + kr2 = −V1 +
1

2
mNω

2r2, (57)

where V1 and k are parameters to be fitted for best results. Given this potential, the
harmonic oscillator wavefunctions gnl(r) are solutions of the radial Schrödinger equation

−~2

2mN

[
∇2
r −

l(l + 1)

r2

]
gnl(r) +

(
−V1 +

1

2
mNω

2r2

)
gnl(r) = εnlgnl(r), (58)

where

2n+ l = N = 0, 1, 2, 3, ... (59)

are the radial quantum numbers and
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εnl = −V1 +

(
N +

3

2

)
~ω = −V1 +

(
2n+ l +

3

2

)
~ω (60)

are the energy eigenvalues.
As we previously mentioned in section 1.2, we will be using the convention where the prin-
cipal quantum number n = 0, 1, 2, 3, ... indicates the number of nodes of the wavefunction.

The HO radial wavefunction can explicitly be written as [29]

gnl(r) =

√
2n!

b3Γ(n+ l + 3
2
)

(r
b

)l
e−r

2/2b2L
(l+ 1

2
)

n

(
r2

b2

)
, (61)

where b is the oscillator length and L
(l+ 1

2
)

n (x) is the associated Laguerre polynomial [30].
The oscillator length, as the name suggests, characterizes the width of the oscillator
potential, and it can be expressed as

b ≡
√

~
mNω

=
~c√

(mNc2)(~ω)
≈ 197.33√

940 · ~ω
fm, (62)

where we will take the value of ~ω from the Blomqvist-Molinari formula [31], based on a
fit to charge radii across the nuclear chart:

~ω =
(
45A−1/3 − 25A−2/3

)
MeV. (63)

Instead of directly using the associated Laguerre polynomials, numerical values of gnl(r)
can be obtained via auxiliary functions, as we explain in Appendix C. This way, we can
generate the HO radial wavefunctions gnl(r), which we can use, for example, to obtain
the nucleon density profile (either for protons or neutrons) ρ(r), defined as

ρ(r) = |Ψ(r)|2 =
∑
nl

a2
nl |gnl(r)|2, (64)

where a2
nl is the occupancy of orbitals with quantum numbers nl and the sum runs over

all orbitals of the inert core and the chosen valence space.

We will use the shell model code NATHAN to calculate these occupancies. Following
Wang’s paper [27], we will use 2 different valence spaces for the study of light nuclei: the
p-shell (0p3/2 and 0p1/2) and the psd-shell (0p3/2, 0p1/2, 0d5/2, 1s1/2 and 0d3/2), where the
PSDMWK shell model hamiltonian [32, 33] will be used, adding a correction that takes
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into account center-of-mass (CoM) excitations [34] for the psd-shell. For example, for the
10Be nucleus, we obtain the occupancies of Table 6 below.

Valence space Nucleon 0p3/2 0p1/2 0d5/2 0d3/2 1s1/2

p-shell
Protons 1.7385 0.2615 0.0000 0.0000 0.0000

Neutrons 3.5119 0.4881 0.0000 0.0000 0.0000

psd-shell
Protons 1.6675 0.2871 0.0140 0.0275 0.0039

Neutrons 3.2032 0.5732 0.1421 0.0710 0.0105

Table 6: Nucleon occupancies of the 10Be nucleus for calculations in two different valence
spaces using the PSDMWK interaction, with a correction that takes into account CoM
excitacions for the psd-shell case.

The orbitals of the inert core (0s) are full by definition, so its occupancy is trivial: a2
0s = 2

for both protons and neutrons. For the time being, since the HO radial wavefunctions do
not depend on the total angular momentum quantum number j, we will only care about
the occupancies of the nl orbitals, meaning that the p-shell occupancy is also trivial:
a2

0p = Z − 2 for protons and a2
0p = N − 2 for neutrons.

Using these occupancies, we can finally obtain the nucleon density profile. This way,
we will be able to compare it to the density profile of 10Be obtained through variational
Monte Carlo (VMC) [35].

Figure 10: Proton density profile of 10Be. The dotted (dashed) red line corresponds
to shell model calculations in the p-shell (psd-shell) configuration space using HO radial
wavefunctions and the black points correspond to VMC calculations [35]. The asymptotic
behaviour of the density profile has been included.
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Figure 11: Neutron density profile of 10Be. The dashed red lines correspond to shell
model calculations for p- and psd-shell using HO radial wavefunctions. The black points
correspond to VMC calculations.

Figures 10 and 11 show that there are discrepancies at very small r < 1 fm, but a reason-
able agreement at medium values of r. However, if we zoom in for larger values of r, we
observe that the HO radial wavefunction dies out way faster than VMC, the latter being
a more sophisticated calculation. Consequently, we conclude that the harmonic oscillator
does not accurately reproduce asymptotic behaviour; pointing out the need for better,
more realistic radial wavefunctions.

3.2 Woods-Saxon wavefunctions

A phenomenological potentials associated with more realistic radial wavefunctions is the
Woods-Saxon potential [28]

vWS(r) =
−V0

1 + e(r−R)/a
. (65)

The typically used parametrization [28] is

R = r0A
1/3 = 1.27A1/3 fm, (66)

a = 0.67 fm, (67)

V0 =

(
51± 33

N − Z
A

)
MeV, (68)
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where R is the nuclear radius, a is known as ”surface diffuseness” and the ± in V0 is taken
as + for protons and − for neutrons. The associated radial Schrödinger equation is

{
−~2

2mN

[
∇2
r −

l(l + 1)

r2

]
+ vWS(r) + vC(r)

+
1

2

[
j(j + 1)− l(l + 1)− 3

4

]
~2vLS(r)

}
fnlj(r) = εnljfnlj(r),

(69)

where the Coulomb potential is given by a uniformly charged sphere of radius R for
protons

vC(r) =
Ze2

4πε0

{
3−(r/R)2

2R
, r ≤ R

1
r
, r > R

(70)

and vC(r) = 0 for neutrons; and the spin-orbit potential is taken as

vLS(r) = v
(0)
LS

(r0

~

)2 1

r

[
d

dr

1

1 + e(r−R)/a

]
, (71)

with v
(0)
LS = 0.44V0, and fnlj(r) is the Woods-Saxon (WS) radial wavefunction.

As opposed to the HO case, the radial Schrödinger equation cannot be solved analytically
for the WS case, and as such fnlj(r) does not have an analytical expression. However,
fnlj(r) can be expanded as a linear combination of HO radial wavefunctions gnl(r):

fnlj(r) =
∑
ν

A(nlj)
ν gνl(r), (72)

with the normalization condition

∑
ν

[
A(nlj)
ν

]2
= 1. (73)

This way, we will find the solution by constructing the hamiltonian matrix in the HO
basis and diagonalizing it. The hamiltonian matrix elements are

〈ν ′|hlj(r)|ν〉 ≡
∫ ∞

0

r2 dr gν′l(r)hlj(r)gνl(r), (74)
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where hlj(r) is the hamiltonian used in Equation (69). To avoid prior numerical differen-
tiation by the ∇2

r term in hlj(r), we will take ∇2
rgnl(r) from the HO equation (58) [28].

This leaves Equation (74) as

〈ν ′|hlj(r)|ν〉 =

∫ ∞
0

r2 dr gν′l(r)gνl(r)

{
−~2

2mNb2

[
(4n+ 2l + 3)δν′ν +

(r
b

)2
]

+ vWS(r) + vC(r) +
1

2

[
j(j + 1)− l(l + 1)− 3

4

]
~2vLS(r)

}
.

(75)

Diagonalizing the matrix, we will obtain the eigenvalues εnlj and the eigenvectors fnlj(r)

in the HO basis, thus obtaining the oscillator amplitudes A
(nlj)
ν .

Tables 7 and 8 show these oscillator amplitudes for 10Be. Using the shell model occupan-
cies from Table 6, we obtain the WS density profile and compare it to the HO case as
well as with the VMC data in Figures 12 and 13.

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -28.765 0.999 0.041 0.024 -0.011 -0.002 -0.003

0p3/2 -14.653 0.998 0.007 0.064 -0.023 0.005 -0.007

0p1/2 -7.522 0.990 -0.068 0.111 -0.040 0.021 -0.012

0d5/2 -1.398 0.978 -0.111 0.155 -0.076 0.040 -0.024

1s1/2 -0.022 -0.028 0.909 -0.292 0.255 -0.138 0.061

0d3/2 6.189 0.768 -0.406 0.372 -0.263 0.172 -0.085

Table 7: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 10Be, calculated using the WS parameters from Eqs. (66)-(68).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -21.520 0.999 -0.038 0.032 -0.018 0.002 -0.003

0p3/2 -8.917 0.987 -0.117 0.095 -0.050 0.019 -0.012

0p1/2 -3.852 0.960 -0.205 0.161 -0.086 0.046 -0.023

0d5/2 2.145 0.904 -0.292 0.246 -0.160 0.093 -0.048

1s1/2 1.736 0.051 0.810 -0.426 0.331 -0.203 0.093

0d3/2 6.277 0.667 -0.472 0.421 -0.317 0.209 -0.103

Table 8: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for neutron single-

particle states in 10Be, calculated using the WS parameters from Eqs. (66)-(68).
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Tables 7 and 8 show that the main oscillator component for each state corresponds to
ν = n. The wavefunctions of the lowest-lying Woods-Saxon states match the correspond-
ing oscillator states to a great degree. Nevertheless, as the energy increases, the other
oscillator components (ν 6= n) begin to acquire a non-negligible amplitude, thus deviating
from the corresponding HO wavefunction.

Figure 12: Proton density profile of 10Be. Same as Figure 10, with the addition of
shell model calculations in the p- and psd-shell configuration spaces using WS radial
wavefunctions (blue dotted and dashed lines, respectively).

Figure 13: Neutron density profile of 10Be. Same as Figure 11, with the addition of
shell model calculations in the p- and psd-shell configuration spaces using WS radial
wavefunctions (blue dotted and dashed lines, respectively).
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In Figures 12 and 13 we can see that, as well as with the HO case, the WS densities differ
from the VMC calculations at small r, but are in reasonable agreement for intermediate
values of r. However, in Figures we can distinguish how the asymptotic behaviour of the
WS wavefunctions is in a good agreement with the VMC data, in contrast to the HO
case. This makes the Woods-Saxon potential a more realistic potential to use.

We can expect a overall similar behaviour for A = 12, but it might be useful to check if it
also holds up for the heavier cases like A = 48. Thus, we present the oscillator amplitudes
(Tables 9 and 10) and nucleon density profiles (Figures 14 and 15) of 48Ca. Figures 14
and 15 show a similar asymptotic behaviour when comparing HO and WS wavefunctions
for A = 48.

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -25.423 0.989 -0.143 -0.029 -0.010 0.005 0.003

0p3/2 -17.753 0.994 -0.107 -0.025 -0.024 0.003 0.004

0p1/2 -15.709 0.997 -0.066 -0.014 -0.027 -0.001 0.001

0d5/2 -9.410 0.996 -0.079 -0.002 -0.039 0.002 0.001

1s1/2 -5.961 0.138 0.977 -0.146 0.036 -0.061 0.010

0d3/2 -5.237 0.997 -0.045 0.036 -0.044 0.003 -0.006

Table 9: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 48Ca, calculated using the WS parameters from Eqs. (66)-(68).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -35.021 0.995 -0.098 -0.035 -0.011 0.003 0.003

0p3/2 -26.724 0.998 -0.053 -0.032 -0.023 0.000 0.004

0p1/2 -24.711 0.999 -0.012 -0.019 -0.024 -0.004 0.001

0d5/2 -17.768 0.999 -0.016 -0.012 -0.033 -0.004 0.001

1s1/2 -14.269 0.096 0.993 -0.051 0.011 -0.046 -0.001

0d3/2 -13.566 0.999 0.027 0.022 -0.032 -0.005 -0.005

0f7/2 -8.421 0.999 -0.003 0.027 -0.046 -0.002 -0.005

1p3/2 -5.043 0.050 0.981 -0.135 0.094 -0.086 0.014

0f5/2 -1.938 0.992 -0.026 0.107 -0.061 0.018 -0.019

1p1/2 -3.084 0.012 0.972 -0.159 0.140 -0.099 0.022

Table 10: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for neutron single-

particle states in 48Ca, calculated using the WS parameters from Eqs. (66)-(68).
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We have included the Woods-Saxon energies and oscillator amplitudes of all the other
cases we will be treating in this chapter in Appendix D (Tables 15-24). Note that this
only refers to neutrons of the parent nuclei and protons of the daughter nuclei, as we are
interested in the study of double-beta decay.

Figure 14: Proton density profile of 48Ca. The dashed red (blue) line corresponds to shell
model calculations in the pf -shell configuration space using HO (WS) radial wavefunc-
tions. The asymptotic behaviour of the density profile has been included.

Figure 15: Neutron density profile of 48Ca. The dashed red (blue) line corresponds
to shell model calculations in the pf -shell configuration space using HO (WS) radial
wavefunctions. The asymptotic behaviour of the density profile has been included.
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3.2.1 Separation energies

Up until now, we have followed the usual parametrization for the Woods-Saxon potential
(Eqs. (66)-(68)). However, Wang et al. [27] introduced a different parametrization: they
took the p-shell proton and neutron asymptotic wavefunction behaviour to be determined
by the corresponding separation energies, while the unbound sd-shell particles are as-
sumed to be bound by ∼ 0.05 MeV.

HO wavefunctions decay rapidly at great distances, with an asymptotic form e−(r/b)2 . WS
wavefunctions, on the other hand, decay less dramatically, like e−kr [36], with

k =

√
2µBs

~
, (76)

where µ is the reduced mass of the last nucleon and the resulting nucleus and

Bs = B(AX)−B(A−1Y) (77)

is the separation energy of the last nucleon. We calculate Bs from the binding energies of
the original (AX) and the resulting nucleus (A–1Y), taken from [20, 21].
Thus, using Equation (76), we can find the k parameter for each case and fit the asymp-
totic behaviour of our p-shell WS wavefunctions by modifying the V0 parameter of the
WS potential. From now on, the usual parametrization will be referred as Suhonen (S)
parametrization, while the new one based on the separation energies will be called Wang
(W) parametrization.

AX N Bs (MeV) k (fm−1) V0,S (MeV) kS (fm−1) V0,W (MeV) kW (fm−1)
10Be n 6.812 0.543 44.4 0.822 33.7 0.639
10C p 4.007 0.417 44.4 0.782 42.3 0.748

12Be n 3.171 0.374 40.0 0.647 29.7 0.574
12C p 15.957 0.839 51.0 0.909 46.2 0.839

Table 11: Suhonen and Wang WS parametrizations for the nuclei involved in the double-
beta decays 10Be→ 10C and 12Be→ 12C.

As we can see in Table 11 above, it is not possible to exactly fit kW to k for most of the
cases. This is because, as V0 decreases, the single-particle states become more unbound.
As such, we fitted kW as close as we could to k while keeping all the single-particle states
of the p-shell bound by ∼ 0.05 MeV. However, for the case of the 12C protons, we have
been able to fit k = kW since none of the p-shell states became unbound.

We extended this parametrization to the double-beta decay of heavier nuclei like 48Ca. In
this case, we fitted the asymptotic behaviour of the wavefunction up to the pf -shell, while
making sure that all single-particle states are bound by ∼ 0.05 MeV. Here, each orbital
of the pf -shell has its own V0 (which is what we did for the sd-shell in the previous case),
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which is the reason why we did not present any single V0 values in Table 12 as we did in
Table 11.

AX N Bs (MeV) k (fm−1) kS (fm−1) kW (fm−1)
48Ca n 9.952 0.685 0.900 0.685
48Ti p 11.878 0.749 0.993 0.832

Table 12: Suhonen and Wang WS parametrizations for the nuclei involved in the double-
beta decay 48Ca→ 48Ti.

The Woods-Saxon energies and oscillator amplitudes obtained through Wang’s parametriza-
tion have been included in Appendix D.

3.3 Transition densities

Prior to begin studying the nuclear matrix elements, we will first compare the wavefunc-
tion transition densities, defined as

C(r) = 〈f |
∑
a<b

δ(r − rab)τ+
a τ

+
b |i〉. (78)

Shell model calculations generally use HO radial wavefunctions, since the HO basis pro-
vides the advantage of a simple well-defined method of separating into center-of-mass and
relative coordinates via a Talmi-Moshinsky transformation [37, 38].

For that reason, we built a new option which, introducing the oscillator amplitudes we
obtained in section 3.2, finally allows us to obtain results with WS wavefunctions. To do
this, we also generalized the Talmi-Moshinsky transformation from HO wavefunctions to
WS wavefunctions in HO basis.

Following Equation (72), we express the two-body WS wavefunction in HO basis as

|n1l1j1t1, n2l2j2t2; J〉WS =
∑
ν1ν2

A(n1l1j1)
ν1

A(n2l2j2)
ν2

|ν1l1j1t1, ν2l2j2t2; J〉HO (79)

so we can expand the corresponding Talmi-Moshinsky transformation as

WS〈n′1l′1j′1p, n′2l′2j′2p; J |Oα|n1l1j1n, n2l2j2n; J〉WS = (80)

=
∑

ν1ν2ν′1ν
′
2

A′ν′1
(n′

1l
′
1j

′
1)A′ν′2

(n′
2l

′
2j

′
2)A(n1l1j1)

ν1
A(n2l2j2)
ν2 HO〈ν ′1l′1j′1p, ν ′2l′2j′2p; J |Oα|ν1l1j1n, ν2l2j2n; J〉HO

where Oα = τ+
1 τ

+
2 SαHα(r) H̃α(R), with r = |r1 − r2| the relative radial coordinate (dis-

tance between decaying neutrons) and R = |r1 + r2| the center-of-mass radial coordinate.
The full expansion of this transformation can be found in Appendix E.
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Figure 16: The normalization densities C(r), for (a) A = 10, and (b) A = 12. The N = 1
model space (p-shell only) and extended model space of psd shell model calculation results
are shown. The different choices of radial wavefunctions, HO, and WS, are also shown.
VMC results with shell-model-like wavefunctions are labeled as “VMC-1”, and those with
cluster-like wave functions are labeled as “VMC-2”. Taken from [27].

Figure 17: Our rendition of the normalization densities C(r) for A = 10 and A = 12. The
green dotted and dashed lines would correspond to our version of the WS data in Figure
16, using the same parametrization as [27]. The blue lines would correspond to the usual
WS parametrization.
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Figure 16 shows the transition density of 10,12Be→ 10,12C calculated with the shell model
in the p- and psd-shell configurations spaces, compared to VMC calculations as obtained
in reference [27]. On the other hand, Figure 17 aims to reproduce the shell model results
of Figure 16 by using the Suhonen and Wang Woods-Saxon parametrization sets described
in subsection 3.2.1.

Figure 16 shows that the WS wavefunctions provide a better description at large dis-
tances, as we previously checked in section 3.2. The normalization of C(r) for the A = 10
transition is

∫∞
0
C(r) dr = 1 due to the parent and daughter nuclei being mirror nuclei

(10Be and 10C), while being
∫∞

0
C(r) dr = 0 for the A = 12 transition.

However, the normalizations we obtained in our first WS results ranged around 0.90-0.98
for A = 10 and 10−3-10−2 for A = 12, making us realize our calculation wasn’t correct.
This made us acknowledge the isospin symmetry breaking introduced by the oscillator
amplitudes A

(nlj)
ν . Accordingly, we upgraded our code in order to distinguish between

protons and neutrons, and modified the effective hamiltonian files to substitute the gen-
eral nucleon-nucleon interactions for proton-proton, neutron-neutron and proton-neutron
interactions. This way, the normalizations correctly converged to 1 for A = 10 and 0 for
A = 12.

An important thing to note is that, for A = 12, there is a node around r ∼ 5 fm that
appears for p-shell calculations and does not for psd and VMC, highlighting the impact
that different model spaces can have for the calculation.

Figure 18: Normalization density C(r) for A = 48. The color code is the same as Figures
16 and 17, but for the pf -shell instead.
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Even though our results are qualitatively similar to Wang et al.’s, there exist a couple
differences regarding our Wang WS parametrization: the second peak for A = 10 appears
to be smoothed out, and the positive peak of the p-shell calculation for A = 12 seems
to be slightly lower. We have tried to pinpoint the source of this difference without success.

We also calculated the normalization density for A = 48 using the WS parametrizations
described in subsection 3.2.1. Figure 18 indicates that, although the differences are not
as obvious as for lighter nuclei, there still exist non-negligible discrepancies between HO
and WS wavefunctions, especially for Wang’s parametrization.

3.4 Radial distribution of the NME components

Just as we calculated the normalization densities in the previous section, we can also
represent the radial NME distributions CGT (r), CF (r) and CT (r), which fulfill the property

M0ν
GT =

∫ ∞
0

CGT (r) dr , M0ν
F =

∫ ∞
0

CF (r) dr , M0ν
T =

∫ ∞
0

CT (r) dr , (81)

where M0ν
GT , M0ν

F and M0ν
T are explained in section 1.1 and defined in Equations (29)-(31).

As we have seen in the previous section, the extended psd-shell configuration space pro-
vides a better description than p-shell for light (A = 10, 12) nuclei. Thus, we have
represented the radial distributions from Equation (81) in Figures 19-24 and the inte-
grated matrix elements in Tables 13 and 14 working in the psd-shell for A = 10, 12 and
the pf -shell for A = 48, using HO and WS radial wavefunctions.

Figures 19 through 22 show a lower first peak in the radial distribution of the NMEs for
the WS results in light nuclei (except for the tensor component in the A = 10 case, which
presents a higher peak for WS calculations). As we can see in Table 13, this results in
lower values of the total NME M0ν , which implies corrections ranging between ∼ 13%-
16% for A = 10 and ∼ 7%-15% for A = 12, depending on the chosen WS parametrization.

On the other hand, for heavier nuclei (A = 48), Figures 23 and 24 show that the Suhonen
WS parametrization gives off radial distributions very similar to the HO case, while the
Wang parametrization presents slightly more prominent differences to both of them. Table
14 shows us this true for M0ν

F and M0ν
T , presenting differences below 1% between Suhonen

WS and HO results. However, even while having a visually similar profile, this difference
goes up to more than 4% for M0ν

G T . This is due to different cancellations happening
beyond the first peak: as we can see in Figure 23, in the second peak HO results present
more negative values than Suhonen WS’s. If we zoom in at the tail of the profile (r > 4fm),
we can distinguish how CGT (r) still presents a negative value until r ∼ 7 fm for the
HO results, while Suhonen WS’s CGT (r) stays positive beyond r ∼ 4.5 fm. Both of this
differences add up, resulting in a more important cancellation for the HO case, and finally
resulting in a ∼ 4.5% difference for the total NME M0ν . Wang’s parametrization, on the
other hand, presents roughly half that difference, at ∼ 2.2%.
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Figure 19: Radial distribution CGT (r) (Equation (77)) for A = 10, calculated in the
psd-shell configuration space and using different radial wavefunctions.

Figure 20: Radial distributions CF (r) and CT (r) (Equation (77)) for A = 10, calculated
in the psd-shell configuration space and using different radial wavefunctions.
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Figure 21: Radial distribution CGT (r) (Equation (77)) for A = 12, calculated in the
psd-shell configuration space and using different radial wavefunctions.

Figure 22: Radial distributions CF (r) and CT (r) (Equation (77)) for A = 10, calculated
in the psd-shell configuration space and using different radial wavefunctions.
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Figure 23: Radial distribution CGT (r) (Equation (77)) for A = 48, calculated in the pf -
shell configuration space and using different radial wavefunctions. The tail is shown in
detail to observe the different cancellations.

Figure 24: Radial distributions CF (r) and CT (r) (Equation (77)) for A = 10, calculated
in the pf -shell configuration space and using different radial wavefunctions.
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Regarding the introduced corrections, Table 13 shows that WS radial wavefunctions re-
duce the total NME M0ν for A = 10, 12, while Table 14 shows that they may either reduce
or enhance M0ν for A = 48, depending on the chosen parametrization.

In the end, the more realistic WS radial wavefunctions introduce a correction to the 0νββ
decay rate of up to ∼ 30% for light nuclei (like 10Be and 12Be) and ∼ 9% for the decay
of a heavier nuclei like 48Ca when compared to the decay rate obtained with HO radial
wavefunctions.

10Be→ 10C 12Be→ 12C

M0ν
GT M0ν

F M0ν
T M0ν M0ν

GT M0ν
F M0ν

T M0ν

psd : HO 4.90 -2.11 -0.038 6.16 1.03 -0.390 -0.042 1.22

psd : WS (S) 4.26 -1.90 -0.053 5.39 0.867 -0.315 -0.024 1.04

psd : WS (W) 4.11 -1.83 -0.059 5.18 0.951 -0.321 -0.024 1.13

Table 13: M0ν and its Gamow-Teller, Fermi and tensor components for the double-beta
decay 10Be → 10C (A = 10) and 12Be → 12C (A = 12), calculated in the psd-shell
configuration space and using different radial wavefunctions.

48Ca→ 48Ti

M0ν
GT M0ν

F M0ν
T M0ν

pf : HO 0.845 -0.228 -0.058 0.929

pf : WS (S) 0.882 -0.230 -0.054 0.970

pf : WS (W) 0.825 -0.217 -0.050 0.909

Table 14: M0ν and its Gamow-Teller, Fermi and tensor components for the double-beta
decays 48Ca → 48Ti (A = 48), calculated in the pf -shell configuration space and using
different radial wavefunctions.
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4 Summary and conclusions

The observation of a neutrinoless double-beta (0νββ) decay would imply that neutrinos
are Majorana fermions. 0νββ decay would violate the conservation of the lepton num-
ber and, potentially, of the baryon-lepton number too, opening a doorway to the Physics
beyond the Standard Model potentially shedding some light to the matter-antimatter
asymmetry in the universe.

The half-life of such a process depends on the nuclear matrix element M0ν and a combi-
nation of the neutrino masses, mββ. Thus, once it is detected, obtaining accurate values
of the NME would be vital to obtain information about the absolute scale of the neutrino
masses and its ordering.

In the first part of this work, we reviewed the contribution to the 0νββ decay amplitude
from low-momentum neutrinos (known as the ultrasoft regime [9]), which is usually ne-
glected. Using the nuclear shell model, we numerically calculated this contribution for the
first time and the correction it represents for the 0νββ decay rate of 48Ca (∼ 2.4%) and
136Xe (∼ 8.6%), which agrees with the order of magnitude estimated in reference [9]. We
analyzed the dependence of this contribution with using different effective interactions for
136Xe and obtained similar results, with corrections to the 0νββ decay rate ranging from
∼ 5.2% to ∼ 8.6%.

We discussed the case of computationally demanding calculations like the 0νββ decay of
128Te and 130Te by studying similar isotopes in order to get an approximated idea of its
results. Our findings suggest a impact comparable to that of the 0νββ decay of 136Xe.

Compared to the 2νββ amplitude, M2ν
GT is more sensitive to contributions from low energy

intermediate states (En − Ei < 5 MeV) while M0ν
usoft is more sensitive to contributions in

the 5 - 10 MeV region.

In the second part of this work, we studied the impact of realistic radial wavefunctions
(like the ones that arise from the phenomenological Woods-Saxon potential) on calcula-
tions of NMEs when compared to the typically used harmonic oscillator wavefunctions.

First, we compared nucleon densities calculated with the harmonic oscillator radial wave-
functions and compared it to results obtained through the more sophisticated variational
Monte Carlo (VMC) method [35]. The HO radial wavefunctions do not provide a good
asymptotic description, highlighting the need for a better, more realistic potential. Thus,
we implemented Woods-Saxon radial wavefunctions into the shell model framework de-
scribed in a HO basis. In contrast to the HO, the WS radial wavefunctions present the
correct asymptotic behaviour when compared to the VMC results.

Using the nuclear shell model, we built an option to calculate transition densities using
WS radial wavefunctions. We calculated these transition densities for the 0νββ decay of
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light nuclei (A = 10 and A = 12) with HO and WS radial wavefunctions and using two
different valence spaces (the p-shell and the extended psd-shell) and compared them to
the ones from reference [27], finding an overall similar structure with small discrepancies.
For the first time, we extended this study to the 0νββ decay of heavier nuclei (A = 48) in
the pf -shell valence space. Our results show smaller yet non-negligible differences between
calculations using HO and WS wavefunctions.

Lastly, we calculated the radial distribution of the Gamow-Teller, Fermi and tensor com-
ponents of the M0ν nuclear matrix element for light (A = 10, 12) and heavy (A = 48)
nuclei. As expected from the study of the transition densities, we obtained non-negligible
corrections to the NME when using different radial wavefunctions. In particular, we ob-
tained corrections to M0ν ranging between ∼ 10% and ∼ 16% for the 0νββ decay of 10Be
and 12Be. For the first time, we also carried out calculations for the more relevant decay
of the 48Ca nuclei (being the lightest experimentally observed nuclei to undergo 0νββ
decay), finding a correction to M0ν ranging between ∼ 2.2% and ∼ 4.5%.

Overall, our study suggest that usually neglected corrections to the 0νββ NME can rep-
resent a contribution of up to ∼ 5%. Combined, the two aspects that have been adressed
in this work can represent an enhancement to the NME of ∼ 10%, leading to a reduction
of ∼ 20% of the 0νββ decay half-life. Therefore, these contributions can be relevant in
order to extract information of interest from 0νββ decay experiments.
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A Appendix A: Correction to the electron energies

In section 2.3, we made the approximation E1 = E2 ' Qββ/2. The correction to this
approximation is

E1 =
Qββ

2
− δ , E2 =

Qββ

2
+ δ , (82)

where −Qββ/2 ≤ δ ≤ Qββ/2. Substituting these energies into the expression of M0ν
usoft

and performing a series expansion, we find

M0ν
usoft (n) =

R

2π

∑
n

〈f |στ+|n〉〈n|στ+|i〉 ×

[
2

(
Qββ

2
+ En − Ei

)

×

ln
mπ

2
(
Qββ

2
+ En − Ei

) + 1

+
δ2

Qββ

2
+ En − Ei

+O(δ4)

] (83)

where the first term of the sum is the one that we used in the calculations, while the
second term is the associated correction.

For a typical intermediate state with En − Ei ∼ O(5 − 10 MeV), and considering the
maximum possible deviation from the approximation (|δ| = Qββ/2), this correction can
amount up to ∼ 7% for the 0νββ decay of 48Ca and ∼ 3% for 136Xe. Thus, E1,2 ' Qββ/2
is a good approximation to calculate M0ν

usoft.
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B Appendix B: Convergence of S(nmax) and M 0ν
usoft

Figure 25: S(nmax) for the double-beta decay of 136Xe, using different Bonn interactions.

Figure 26: Matrix element M0ν
usoft with respect to the number 1+ of intermediate states

nmax for the double-beta decay of 136Xe, using different Bonn interactions.
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Figure 27: S(nmax) for the double-beta decay of 46Ca and 50Ca, using the KB3 interaction.

Figure 28: Matrix element M0ν
usoft with respect to the number 1+ of intermediate states

nmax for the double-beta decay of 46Ca and 50Ca, using the KB3 interaction.
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Figure 29: S(nmax) for the double-beta decay of 132Te and 134Te, using the GCN5082
interaction.

Figure 30: Matrix element M0ν
usoft with respect to the number 1+ of intermediate states

nmax for the double-beta decay of 132Te and 134Te, using the GCN5082 interaction.
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C Appendix C: Associated Laguerre polynomials

Back in Equation (61), we defined the harmonic oscillator radial wavefunction gnl(r) using

the associated Laguerre polynomials L
(l+ 1

2
)

n (x) [30].

The first three associated Laguerre polynomials are

L
(l+ 1

2
)

0 = 1 , (84)

L
(l+ 1

2
)

1 = l − x+
3

2
, (85)

L
(l+ 1

2
)

2 =
1

2

[(
l +

3

2

)(
l +

5

2

)
− 2

(
l +

5

2

)
x+ x2

]
, (86)

while further polynomials can be obtained through the recursion relation

L
(l+ 1

2
)

n = L
(l+ 3

2
)

n − L(l+ 3
2

)

n−1 . (87)

Instead of directly using these polynomials, numerical values for gnl(r) can be obtained
through the auxiliary functions vnl(r) [39], defined by

gnl(r) =

√
2−n+l+2(2n+ 2l + 1)!!

b3
√
πn![(2l + 1)!!]2

(r
b

)l
e−r

2/2b2vnl

(
r2

b2

)
, (88)

and then using the recursion relations

vn,l−1(x) = vn−1,l−1(x)− 2xvn−1,l(x)

2l + 1
, (89)

vnl(x) =
(2l + 1)vn,l−1(x) + 2nvn−1,l(x)

2n+ 2l + 1
. (90)
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D Appendix D: Oscillator amplitudes A
(nlj)
ν

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -17.661 0.997 -0.063 0.037 -0.022 0.004 -0.004

0p3/2 -5.682 0.980 -0.154 0.110 -0.062 0.026 -0.015

0p1/2 -0.806 0.940 -0.252 0.189 -0.110 0.061 -0.030

0d5/2 4.596 0.870 -0.336 0.279 -0.192 0.115 -0.059

1s1/2 3.985 0.075 0.771 -0.458 0.358 -0.228 0.106

0d3/2 8.151 0.616 -0.487 0.445 -0.346 0.231 -0.115

Table 15: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 10C, calculated using the WS parameters from Eqs. (66)-(68).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -19.868 0.997 -0.068 0.030 -0.021 0.003 -0.003

0p3/2 -8.229 0.983 -0.146 0.094 -0.055 0.021 -0.012

0p1/2 -3.977 0.960 -0.212 0.154 -0.086 0.044 -0.022

0d5/2 2.071 0.898 -0.309 0.244 -0.164 0.094 -0.048

1s1/2 1.775 0.076 0.799 -0.439 0.331 -0.208 0.095

0d3/2 5.818 0.687 -0.465 0.409 -0.307 0.200 -0.099

Table 16: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for neutron single-

particle states in 12Be, calculated using the WS parameters from Eqs. (66)-(68).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -24.512 0.999 -0.004 0.019 -0.015 -0.001 -0.003

0p3/2 -11.768 0.996 -0.046 0.062 -0.033 0.007 -0.008

0p1/2 -6.005 0.987 -0.104 0.111 -0.050 0.023 -0.014

0d5/2 0.186 0.965 -0.168 0.165 -0.096 0.049 -0.028

1s1/2 1.224 0.014 0.884 -0.340 0.270 -0.159 0.069

0d3/2 6.429 0.766 -0.410 0.370 -0.266 0.173 -0.086

Table 17: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 12C, calculated using the WS parameters from Eqs. (66)-(68).
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nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -13.934 0.988 -0.137 0.059 -0.034 0.011 -0.006

0p3/2 -3.307 0.942 -0.267 0.166 -0.103 0.052 -0.026

0p1/2 -0.055 0.810 -0.427 0.311 -0.212 0.128 -0.061

0d5/2 -0.064 0.953 -0.197 0.191 -0.110 0.061 -0.033

1s1/2 -0.064 -0.003 0.882 -0.340 0.278 -0.158 0.070

0d3/2 -0.053 0.964 -0.115 0.213 -0.082 0.064 -0.027

Table 18: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for neutron single-

particle states in 10Be, calculated using Wang’s parametrization (see subsection 3.2.1).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -16.159 0.995 -0.082 0.041 -0.024 0.005 -0.004

0p3/2 -4.551 0.972 -0.183 0.122 -0.071 0.032 -0.017

0p1/2 -0.045 0.925 -0.281 0.207 -0.125 0.070 -0.034

0d5/2 -0.085 0.971 -0.137 0.166 -0.087 0.046 -0.027

1s1/2 -0.066 -0.040 0.922 -0.265 0.244 -0.128 0.056

0d3/2 -0.044 0.474 -0.518 0.495 -0.406 0.278 -0.138

Table 19: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 10C, calculated using Wang’s parametrization (see subsection 3.2.1).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -12.429 0.982 -0.172 0.064 -0.039 0.013 -0.007

0p3/2 -2.733 0.929 -0.298 0.176 -0.112 0.058 -0.028

0p1/2 -0.056 0.877 -0.364 0.249 -0.163 0.093 -0.045

0d5/2 -0.052 0.948 -0.217 0.188 -0.115 0.061 -0.033

1s1/2 -0.051 0.022 0.877 -0.352 0.274 -0.161 0.070

0d3/2 -0.066 0.498 -0.522 0.487 -0.393 0.266 -0.131

Table 20: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for neutron single-

particle states in 12Be, calculated using Wang’s parametrization (see subsection 3.2.1).
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nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -20.843 0.999 -0.040 0.024 -0.019 0.001 -0.003

0p3/2 -8.776 0.991 -0.100 0.078 -0.045 0.014 -0.010

0p1/2 -3.715 0.973 -0.167 0.136 -0.071 0.035 -0.019

0d5/2 -0.043 0.968 -0.160 0.161 -0.093 0.047 -0.027

1s1/2 -0.065 0.049 0.834 -0.403 0.309 -0.191 0.086

0d3/2 -0.058 0.706 -0.448 0.402 -0.300 0.197 -0.098

Table 21: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 12C, calculated using Wang’s parametrization (see subsection 3.2.1).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -24.718 0.986 -0.165 -0.013 -0.010 0.006 0.002

0p3/2 -17.203 0.988 -0.150 -0.005 -0.025 0.006 0.002

0p1/2 -15.566 0.993 -0.117 0.004 -0.028 0.004 0.001

0d5/2 -9.180 0.988 -0.148 0.027 -0.046 0.010 -0.002

1s1/2 -6.641 0.157 0.952 -0.235 0.080 -0.076 0.022

0d3/2 -5.906 0.988 -0.130 0.064 -0.057 0.015 -0.009

0f7/2 -1.039 0.972 -0.190 0.099 -0.090 0.033 -0.017

1p3/2 -0.051 0.127 0.882 -0.360 0.215 -0.160 0.064

0f5/2 -0.044 0.982 -0.097 0.133 -0.085 0.033 -0.024

1p1/2 -0.053 0.069 0.904 -0.319 0.220 -0.155 0.058

Table 22: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for neutron single-

particle states in 48Ca, calculated using Wang’s parametrization (see subsection 3.2.1).
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nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -33.426 0.995 -0.095 -0.042 -0.012 0.003 0.004

0p3/2 -25.211 0.998 -0.038 -0.040 -0.025 -0.001 0.004

0p1/2 -22.864 0.999 0.009 -0.025 -0.026 -0.005 0.001

0d5/2 -16.228 0.999 0.013 -0.021 -0.035 -0.007 0.001

1s1/2 -12.060 0.094 0.994 -0.013 -0.001 -0.046 -0.006

0d3/2 -11.324 0.997 0.064 0.018 -0.031 -0.008 -0.005

0f7/2 -6.745 0.998 0.042 0.016 -0.044 -0.008 -0.005

1p3/2 -2.431 0.037 0.991 -0.073 0.072 -0.077 0.004

0f5/2 0.943 0.993 0.035 0.097 -0.050 0.010 -0.018

1p1/2 -0.018 -0.009 0.984 -0.094 0.120 -0.087 0.013

Table 23: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 48Ti, calculated using the WS parameters from Eqs. (66)-(68).

nlj εnlj ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 -24.595 0.989 -0.147 -0.028 -0.010 0.005 0.003

0p3/2 -16.980 0.993 -0.111 -0.025 -0.024 0.003 0.004

0p1/2 -14.929 0.997 -0.070 -0.013 -0.027 -0.001 0.001

0d5/2 -8.690 0.996 -0.084 -0.001 -0.040 0.002 0.001

1s1/2 -5.238 0.142 0.975 -0.154 0.038 -0.062 0.011

0d3/2 -4.510 0.997 -0.051 0.037 -0.045 0.004 -0.007

0f7/2 -0.054 0.992 -0.091 0.051 -0.066 0.012 -0.009

1p3/2 -0.060 0.063 0.975 -0.158 0.103 -0.098 0.019

0f5/2 -0.026 0.993 0.061 0.092 -0.043 0.006 -0.017

1p1/2 -0.044 -0.009 0.985 -0.093 0.120 -0.087 0.012

Table 24: Woods-Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν for proton single-

particle states in 48Ti, calculated using Wang’s parametrization (see subsection 3.2.1).
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E Appendix E: Talmi-Moshinsky transformation for

Woods-Saxon wavefunctions in HO basis

Defining the two-body WS wavefunction as we did in Equation (75), we can expand the
Talmi-Moshinsky transformation for double-beta decay as follows

WS〈n′1l′1j′1p, n′2l′2j′2p; J |Oα|n1l1j1n, n2l2j2n; J〉WS =

=
∑

ν1ν2ν′1ν
′
2

A′ν′1
(n′

1l
′
1j

′
1)A′ν′2

(n′
2l

′
2j

′
2)A(n1l1j1)

ν1
A(n2l2j2)
ν2 HO〈ν ′1l′1j′1p, ν ′2l′2j′2p; J |Oα|ν1l1j1n, ν2l2j2n; J〉HO =

=
∑

S,S′,λ,λ′

√
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2Ŝ
′λ̂′
√
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Since most of the times H̃α(R) = 1, in the last step of the development we have considered
〈N ′L′|H̃α(R)|NL〉 = δN,N ′δL,L′ .
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