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a b s t r a c t 

Alzheimer’s disease is a complex progressive neurodegenerative brain disorder, being its prevalence ex- 

pected to rise over the next decades. Unconventional strategies for elucidating the genetic mechanisms

are necessary due to its polygenic nature. In this work, the input information sources are five: a public

DNA microarray that measures expression levels of control and patient samples, repositories of known

genes associated to Alzheimer’s disease, additional data, Gene Ontology and finally, a literature review or

expert knowledge to validate the results. As methodology to identify genes highly related to this disease,

we present the integration of three machine learning techniques: particularly, we have used decision

trees, quantitative association rules and hierarchical cluster to analyze Alzheimer’s disease gene expres- 

sion profiles to identify genes highly linked to this neurodegenerative disease, through changes in their

expression levels between control and patient samples. We propose an ensemble of decision trees and

quantitative association rules to find the most suitable configurations of the multi-objective evolutionary

algorithm GarNet, in order to overcome the complex parametrization intrinsic to this type of algorithms.

To fulfill this goal, GarNet has been executed using multiple configuration settings and the well-known

C4.5 has been used to find the minimum accuracy to be satisfied. Then, GarNet is rerun to identify de- 

pendencies between genes and their expression levels, so we are able to distinguish between healthy

individuals and Alzheimer’s patients using the configurations that overcome the minimum threshold of

accuracy defined by C4.5 algorithm. Finally, a hierarchical cluster analysis has been used to validate the

obtained gene-Alzheimer’s Disease associations provided by GarNet. The results have shown that the ob- 

tained rules were able to successfully characterize the underlying information, grouping relevant genes

for Alzheimer Disease. The genes reported by our approach provided two well defined groups that per- 

fectly divided the samples between healthy and Alzheimer’s Disease patients. To prove the relevance of

the obtained results, a statistical test and gene expression fold-change were used. Furthermore, this rel- 

evance has been summarized in a volcano plot, showing two clearly separated and significant groups of

genes that are up or down-regulated in Alzheimer’s Disease patients. A biological knowledge integration

phase was performed based on the information fusion of systematic literature review, enrichment Gene

Ontology terms for the described genes found in the hippocampus of patients. Finally, a validation phase

with additional data and a permutation test is carried out, being the results consistent with previous

studies.
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1. Introduction

Neurodegenerative diseases are complex syndromes charac-

terized by a common feature: up to now, all of them progress
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nexorably. Although medical treatments can slow symptoms’

rogression, there is no cure for any of them. One of the most

ommon neurodegenerative diseases, constituting approximately

0% of all cases [1] , is Alzheimer’s Disease (AD). This multifactorial

nd heterogeneous disorder, characterized by a progressive loss of

emory and a decline in cognitive function, affects to around 10%

f people between 65–85 years, increasing its risk significantly

ith age, reaching percentages of up to 50–60% of people over

5 [2,3] . Although AD exhibits two markedly brain histological
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D  
haracteristics, plaques and tangles accumulation [4,5] , the pres-

nce of one or both symptoms are not a proof of AD development.

ndeed, around a 30% of normal aged people have similar levels

f plaques than AD patients of similar ages [6,7] . The main cause

f AD may be genetic. In fact, up to a 5% of AD cases are due to

enetic inheritance, being responsible of the appearing of an early

nset AD [8] . In these cases, mutations in three different genes

 APP, PSEN1 and PSEN2 ) have been connected to pathophysiology

f the disease [8–11] . 

Assuming its genetic background, due to changes in gene reg-

lation or mutations accumulated through lifetime, it is important

o know which genes are usually altered in AD patients, mainly

n its initial states, in order to design treatments that effectively

low down -or even stop- AD progression. In this context, Data

ining and statistical techniques have been applied to find useful

ata patterns in Bioinformatics and Biomedicine fields to discover,

or example, affected pathways in a specific syndrome or disease

12] . Specifically, several works have been published where such

echniques have been focused on AD using gene expression pro-

les. These profiles are characterized by a low number of samples

patients) but a very high number, up to thousands, of features

gene expression) [13] . Example of data mining technique focused

n AD are two types of non-supervised methods (principal compo-

ent analysis and independent component analysis) that have been

pplied to extract and characterize the most relevant features from

NA microarray gene expression data of AD [14] . 

However, most of techniques used in the literature to increase

D knowledge present a low-dimensional solution. Thus, they are

ot sufficiently descriptive or the information provided is limited.

ssociation Rules (AR) and particularly Quantitative Association

ules (QAR) [15] have emerged as a popular methodology to dis-

over significant and apparently hidden relationships among at-

ributes in a subspace of the dataset instance. The application of

AR in AD-related DNA microarray data analysis might provide a

eeper knowledge into biological functions with higher relevance,

ince they can be used to identify gene expression patterns, help-

ng to find which of them are associated with AD. In the context

f this work, QAR are used fixing the consequent of the rule to the

D state (healthy or not) with the aim of addressing the problem

s a rule-based classification. 

The purpose of this work is to present an ensemble of decision

rees, rules and hierarchical cluster to analyze microarray gene ex-

ression data related to AD. Usually, ensembles of classifiers are

sed to obtain better predictive performance. Here, we proposed

n ensemble of classifiers to obtain the best configuration settings

f the evolutionary algorithm GarNet [16] to identify genes highly

elated to AD, through changes in their expression levels between

ealthy and AD samples. This algorithm requires the parametriza-

ion of the objectives to be optimized and the minimum thresh-

ld of some quality measures as many other algorithms do. With

he aim of obtaining the most suitable parameters of GarNet, the

ell-known C4.5 algorithm has been applied to the gene expres-

ion data provided in [17] with the objective of setting the mini-

um accuracy threshold to be satisfied by the rules obtained by

arNet. These configurations have been used to rerun GarNet to

nd significant genes with potential prognosis role in AD. Further-

ore, a hierarchical cluster analysis has been also applied to group

ealthy and AD patients using the genes obtained by GarNet. It

an be noted that the use of prior knowledge can outperform our

pproach and increase the possibilities of correcting the spurious

nformation existing in high-throughput technology data as gene

xpression data. Then, a phase of biological knowledge was per-

ormed including other biological sources such as systematic re-

iew of the literature in PubMed, Gene Ontology processes and

rotein-protein interaction networks. Thus, the systematic search

n PubMed allowed us to detect altered functions specifically in
eurons of patients affected by AD. These functions include genes

hat encode proteins connected to metabolism, cell signaling or

rotein-nucleic acid interaction, suggesting an effect on overall cell

unctions. In addition, enrichment analysis in the context of Gene

ntology and a mapping process to network protein-protein in-

eractions allowed us to strengthen the relationship of the dis-

overed genes with AD. Using this ensemble learning and fusion

trategy, we have found more than 90 genes whose expression is

odified during AD progression, affecting processes as diverse as

ipid metabolism, transcriptional regulation or protein synthesis. In

ddition, some of the genes are connected to cardiovascular dis-

ases or diabetes, disorders previously related to AD. The identified

enes show the complexity of AD, and could be used to design pre-

entive treatments in healthy people before the appearance of the

rst AD symptoms. 

The remainder of the paper is structured as follows.

ection 2 presents a brief introduction about AD, summarizes the

ain concepts of AR and quality measures, overviews the most

elevant concepts in classification and briefly presents the C4.5

lgorithm. Section 3 thoroughly describes the six phases integrated

n our approach to identify genes highly related to AD including

he main features of GarNet algorithm. Section 4 presents and

iscusses the results obtained in each phase of the proposed

nalysis. Finally, Section 5 summarizes the conclusions drawn

rom the analysis conducted. 

. Preliminaries

This section provides a brief description of AD, followed by

ain concepts of AR, QAR and quality measures, in addition to

lassification, decision trees and the well-known C4.5 algorithm. 

.1. Alzheimer disease 

As it has been stated in the introduction, plaques and tangles

re common features in AD. The first are due to progressive ex-

racellular deposition of amyloid β(A β) peptides, due to an inad-

quate clearance that produces the formation of plaques. In fact,

laques accumulation can be detected in non-affected individuals

ven more than twenty years before the appearance of AD symp-

oms [18–20] . Neurofibrillary tangles are formed by the accumula-

ion of hyperphosphorylated tau protein inside neurons, being its

evels up 2-fold higher that in normal brain, affecting its normal

unction [21] . This post-translational alteration affects tau protein

ormal function. In normal conditions, tau protein interacts with

ubulin, promoting the microtubule assembly. However, under hy-

erphosphorylated state, tau protein cannot interact with tubulin,

eing capable to form tau helical filaments with no activity. 

Although some authors have considered that plaques and/or

angles may be considered the initiating event of AD [8,22] , it

s not clear if they are the cause or just symptoms of this neu-

odegenerative disorder, remaining its main cause elusive. It can

e considered as the junction of multiple imbalances, from mito-

hondrial dysfunction to oxidative stress, neuroinflammation and

hanges in gene regulation. The last one could be considered as

he hard core of the disease, due to its role in other effects. In this

ay, formation of A β plaques and tau tangles are caused by the

ysfunction of proteins associated to their normal processing. In

ddition, mitochondrial malfunction and oxidative damage can also

e connected to gene regulation, due to a decrease in the synthesis

f proteins from the oxidative stress pathway. This fact underlines

he importance of developing tools to find common patterns in AD.

.2. Association rule mining and quality measures 

The AR learning is a popular and well-known method in the

ata Mining field used to discover interesting relationships among
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variables in large databases [23] . AR aim at identifying patterns

that explain or summarize the data, instead of predicting the class

of new data [24] . 

When the domain is continuous, the AR is known as QAR. In

this context, let F = { F 1 , ..., F n } be a set of features or attributes,

with values in R . Let A and C be two disjoint subsets of F , that is,

A ⊂ F, C ⊂ F , and A ∩ C = ∅ . A QAR is a rule X ⇒ Y , in which fea-

tures in A belong to the antecedent X , and features in B belong

to the consequent Y , such that X and Y are formed by a conjunc-

tion of multiple boolean expressions of the form F i ∈ [ v 1 , v 2 ], (with

v 1 , v 2 ∈ R ). Thus, in a QAR, the features or attributes of the an-

tecedent are related with the features of the consequent, estab-

lishing a membership value interval for each attribute involved in

the rule. For example, a QAR could be numerically expressed as

EPHA 10 ∈ [2, 2.9] ∧ TOR 2 A ∈ [1.8, 2.6] 	⇒ STRN 4 ∈ [3, 3.5] where

EPHA 10 and TOR 2 A constitute the features appearing in the an-

tecedent and STRN 4 the one in the consequent. 

There are several probability-based measures proposed in the

literature to evaluate the generality and reliability of AR (and QAR)

obtained in the mining process [25,26] . In this work, we have used

the support, confidence, leverage, accuracy and gain measures to

optimize and evaluate the quality of the QAR obtained by GarNet.

The description and the mathematical definition can be found in

[27] .

Methods based on QAR have not been used to find gene

associations in AD, although the technique has been used to

analyze gene expression data [28] and other AD features [29] . In

the first work, QAR has been used to analyze 23 genes known to

be involved in arginine metabolism from yeast organism. In the

second work, the authors combined a computer aided diagnosis

with continuous attribute discretization and association rule min-

ing for the early diagnosis of AD based on emission computed

tomography images. Alternatively, Ponmary et al.used association

rule mining to find AD patterns of amino-acid residues in the

protein binding site of enzymes which has been described to have

a role in AD [30] . 

It is noteworthy that the AD state (healthy or AD patient) has

been fixed to appear in the consequent of the rules handled in

this work. Thus, a rule is composed of a set of genes belonging to

an interval (expression levels) in the antecedent and the AD state

in the consequent. An example of the rules found is as follows:

EPHA 10 ∈ [2.0, 2.9] and STRN 4 ∈ [3.0, 3.5] 	⇒ AD state is 1 (not

healthy). 

2.3. Classification and ensembles 

In Machine Learning and the statistics, the classification goal is

to identify to where a new observation belongs in a set of cate-

gories. It is important to consider a training set of data composed

of observations or instances whose category membership is known.

A wide range of classification algorithms can be found in the lit-

erature, for instance, Decision Trees, K-nearest Neighbor classifier,

Bayesian Network, Neural Networks, Fuzzy Logic, Support Vector

Machine, Boosting, etc. 

Decision Trees [31] are one of the most frequently used in the

literature. There are many specific decision-tree algorithms, the

most common are, among others, ID3 [32] , C4.5 [33] and CART

[31] . The C4.5 algorithm [33] (and its predecessor ID3) is one of

the most well-known and used decision trees.

The model overfitting in the training dataset is considered as

one of the main drawbacks of classification methods. Then, the

use of additional techniques such as cross-validation, regulariza-

tion or pruning, among others, is necessary. Specifically, we have

applied a commonly cross-validation method named k-fold cross-

validation. The k-fold cross-validation is a frequently used model
alidation usually used to evaluate the results obtained by a Data

ining technique, specifically predictive techniques, with the aim

t ensuring that the results can be generalized to an independent

ataset. 

A detailed explanation of this common accuracy estimation

ethod can be found in [34] . 

Ensembles of classifiers enhance the performance of simple

lassifiers combining the outputs of several others. In the litera-

ure, we can find many examples of ensemble systems such as

35,36] . The work presented in [37] proposes a supervised learning

pproach to the ensemble clustering of genes using known gene-

ene interaction data to improve the results for already commonly

sed clustering techniques. In the context of the AD problem, an

nsemble based in data fusion approach for early diagnosis of AD

as proposed [38] . A two stage sequential ensemble is described

n [39] to perform the classification of AD based on magnetic res-

nance imaging features. Most of existing ensembles of the litera-

ure are devoted to improve the predictive performance of a single

lassifier, whereas we use an ensemble of classifiers to obtain the

est configuration settings of other classifier. 

. Methodology

This section presents the main features of the techniques used

o identify genes highly related to AD. The process conducted to

etect genes with potential prognosis role in AD is mainly per-

ormed through the discovery of AR, in particular QAR, in six

hases as can be observed in Fig. 1 . 

In general terms, a public microarray dataset obtained by laser

apture microdissection from the entorhinal cortex was analyzed.

he C4.5 algorithm has been applied to consider as minimum

hreshold the accuracy obtained in the model (first phase). The

arNet algorithm was applied using multiple configuration settings

nd a set of QAR with AD state fixed as consequent part was ob-

ained for each experiment (second phase). The best experiments

ere selected in terms of accuracy measure in test sets using the

ccuracy obtained by C4.5 algorithm as a minimum threshold. Gar-

et algorithm was rerun using the selected configurations and the

et of genes with potential prognosis role in AD were detected.

hen, we obtained the top of frequent genes joining all gene-AD

tate pairs found in the rules (third phase). Gene groups were val-

dated by hierarchical cluster analysis, in addition to statistical and

iological significance validation techniques (fourth phase). A bio-

ogical knowledge integration phase was performed (fifth phase).

inally, the results obtained were validated using additional data

sixth phase). The main features of each phase are detailed in the

ollowing Sections 3.1 –3.6 , respectively. 

.1. First phase - decision trees 

A well-known Machine Learning technique based on decision

rees, frequently used to tackle the AD problem, was selected as a

enchmark to filter the results obtained by GarNet. Decision trees,

lso known as classification trees or regression trees, are com-

only used as predictive modelling approaches in statistics, Data

ining and Machine Learning. A wide range of decision-trees algo-

ithms can be found in the literature. Specifically, the well-known

4.5 algorithm [33] has been selected to classify between healthy

nd AD samples due to the high performance usually presented

40] .

The average percentage of instances correctly classified ob-

ained by this technique was used as a minimum threshold to se-

ect the best configurations of GarNet to perform the second phase

f the process. 



Fig. 1. Overview of general process.
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.2. Second phase - QAR mining process 

GarNet [16] is a multi-objective algorithm based on the NSGA-

I algorithm and it is able to find QAR in datasets with continuous

ttributes avoiding the discretization step. This algorithm aims at

olving the main drawbacks caused by a fitness function based on

 weighted objective scheme, trying to perform the best trade-off

mong all the measures optimized. GarNet was executed in this

ork to address the second phase of the analysis in order to obtain

 gene subset highly related with AD. A thorough description of

he algorithm can be found in the research work proposed in [16] .

dditionally, the main features of GarNet are summarized below. 

GarNet uses adaptive intervals instead of fixed ranges to group

amples whose features share certain sets of values in continuous
omain. The search for the most appropriate intervals has been

arried out by means of an evolutionary process. In this process,

he intervals are adjusted to find QAR with high interpretability,

enerality, quality and precision. 

In the population, each individual constitutes a rule, being sub-

ected to an evolutionary process, in which the genetic operators

re applied. Furthermore, the instances already covered by the

ules are penalized to emphasize the covering of instances not cov-

red yet. Then, those samples covered by a few rules have a higher

riority to be selected in order to generate the new population

41] . The evolutionary process ends when the number of genera-

ions is reached. The whole evolutionary process is repeated until

he desired number of rules is achieved. Finally, GarNet returns the

et of QAR found.

The GarNet algorithm was executed modifying the minimum

AR confidence threshold obtained and second, optimizing differ-

nt group of measures following the study proposed in [27,42] .

ach minimum confidence threshold combined with each group of

easures comprise an experiment. Support, confidence, leverage,

ain and accuracy were the selected measures optimized and dif-

erent groups of 3 measures were composed. 

Each experiment (each confidence minimum threshold in com-

ination with each group of optimized measures) is executed sev-

ral times using 5-fold cross-validation on the studied dataset to

nsure that the performance of GarNet is stable and accurate. For

ach experiment, we have mined a model with a defined number

f QAR in which the AD state has been fixed as consequent part of

he rules and the average global accuracy (validation measure) of

he model has been calculated to assess the percentage of correctly

lassified instances of the dataset [43] . 

Furthermore, we have computed the average percentage of in-

tances incorrectly classified and the average percentage of in-

tances not classified, that is, the instances not satisfied by any

AR of the model. 

.3. Third phase - selection process of genes with potential prognosis 

ole in AD 

After completing the first and second phase, we selected those

xperiments (configuration settings) in which GarNet obtains a

igher accuracy value than C4.5 algorithm in the test set using 5-

old cross validation. Then, GarNet was executed again using such

onfiguration settings in the original dataset (without using 5-fold-

ross-validation) in order to obtain a set of QAR that provide infor-

ation of the entire dataset. Subsequently, all the gene-AD state

ssociations were extracted for each corresponding set of rules. Fi-

ally, we selected the most frequent gene-AD state only consid-

ring the best rules-based models in order to find potential and

elevant genes highly related with AD. This process aims at discov-

ring the most frequent and strongest associations between genes

nd AD avoiding those relations that occur by chance. Furthermore,

he most frequent gene-gene associations among the selected AD-

elated genes have been extracted from the obtained rules. 

To conduct this process, the best rules set obtained for each

onfiguration setting selected were splitted into sets of attribute

airs as follows: 

• First, genes belonging to the antecedent for each resulting rule

were identified. Note that the AD was always fixed as a conse-

quent of the rules. AD state can be 0 or 1, that is, 0 is used to

define a healthy patient, while 1 denotes AD patients.
• Afterwards, combinations between the genes of the antecedent

and the consequent (AD stage) of each rule were performed ob-

taining gene-AD and gene-gene pairs.
• For instance, let the following QAR be:

EP HA 10 ∈ [2 , 2 . 9] and T OR 2 A ∈ [1 . 8 , 2 . 6] 	⇒ AD stage is 1
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Table 1

Example of how the gene expression levels are calculated.

Gene symbol Avg. expression level QAR intervals Regulation

Control AD Lower Upper

bound bound

EPHA10 3 .8 2 .3 2 .0 2 .9 Down-regulated

TOR2A 3 .5 2 .6 1 .8 2 .6 Down-regulated

FAM158A 4 .2 2 .8 2 .7 3 .0 Down-regulated

ALOX12B 3 .1 2 .3 2 .1 2 .4 Down-regulated

VILL 3 .1 2 .2 2 .1 2 .3 Down-regulated

PRPF40B 3 .0 2 .9 2 .7 3 .0 Down-regulated

DLGAP2 3 .1 2 .7 2 .6 2 .8 Down-regulated

TAOK2 3 .8 3 .1 2 .9 3 .3 Down-regulated

STRN4 5 .0 3 .4 3 .0 3 .5 Down-regulated

RPS8 9 .0 10 .6 9 .4 11 .6 up-regulated

PBX4 2 .5 2 .2 2 .0 2 .4 Down-regulated
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The resulting gene-AD pairs (associations) that can be extracted

from this rule are: 

EP HA 10 	⇒ AD stage is 1 

T OR 2 A 	⇒ AD stage is 1 

The gene-gene associations found in this rule are: 

EP HA 10 	⇒ T OR 2 A 

After completing the inference process of GarNet for each con-

figuration setting selected ( K number of configurations), the union

among all the gene-AD pairs found was performed to find the most

frequent gene-AD associations, hence, potential and relevant asso-

ciations and, finally, gene-gene associations between these genes.

Let K be the number of configuration settings used in the inference

process. Let � be the set of gene-AD pairs and gene-gene pairs ob-

tained from the k th-configuration. The inference process output is

defined as: 

� = �1 ∪ �2 ∪ ... �K (1)

where �k , k = 1.. K , is the set of gene-AD and gene-gene pairs ob-

tained from the k th-configuration. 

The final step involved the selection of the most frequent gene-

D associations from the union of the results obtained for the K

configuration settings selected. Afterward, the most frequent gene-

gene associations among these genes are found. Note that the con-

figuration settings to perform the gene-AD extraction were se-

lected taking into account a minimum threshold of accuracy using

a benchmark method. Specifically, the well-known C.45 algorithm

was applied. Finally, expression level changes between healthy and

AD patients of the selected gene sets were determined through the

intervals of the QAR in which the genes were involved. 

An example of how the decomposition process of a QAR set into

gene-AD and gene-gene pairs is defined as follows. Let the follow-

ing set of QAR obtained for 2 configuration settings be: 

1. Gene-AD associations extraction
• Configuration setting 1:

– EPHA 10 ∈ [2, 2.9] and TOR 2 A ∈ [1.8, 2.6] 	⇒ AD stage is

1

– FAM 158 A ∈ [2.7, 3.0] 	⇒ AD stage is 1

– ALOX 12 B ∈ [2.1, 2.4] and VILL ∈ [2.1, 2.3] 	⇒ AD stage is

1

– PRPF 40 b ∈ [2.7, 3.0] and DLGAP 2 ∈ [2.6, 2.8] and TAOK 2

∈ [2.9, 3.3] 	⇒ AD stage is 1

�1 = { EPHA 10 - AD, TOR 2 A - AD, FAM 158 A - AD, ALOX 12 B -

AD, VILL - AD, PRPF 40 B - AD, DLGAP 2 - AD, TAOK 2 -

AD, EPHA 10 - TOR 2 A, ALOX 12 B - VILL, PRPF 40 b - DLGAP 2,

PRPF 40 b - TAOK 2, DLGAP 2 - TAOK 2} 
• Configuration setting 2:

– EPHA 10 ∈ [2.0, 2.9] and STRN 4 ∈ [3.0, 3.5] 	⇒ AD stage

is 1

– FAM 158 A ∈ [2.7, 3.0] and RPS 8 ∈ [9.4, 11.6] 	⇒ AD stage

is 1

– ALOX 12 B ∈ [2.1, 2.4] and PBX 4 ∈ [2.0, 2.4] 	⇒ AD stage

is 1

�2 = { EPHA 10 - AD, STRN 4 - AD, FAM 158 A - AD, RPS 8 - AD,

ALOX 12 B - AD, PBX 4 - AD, EPHA 10 - STRN 4, FAM 158 A - RPS 8,

ALOX 12 B - PBX 4} 

� Output � = �1 ∪ �2 = { EPHA 10 - AD, TOR 2 A - AD,

FAM 158 A - AD, ALOX 12 B - AD, VILL - AD, PRPF 40 B -

AD, DLGAP 2 - AD, TAOK 2 - AD, STRN 4 - AD, RPS 8 - AD,

PBX 4 - AD EPHA 10 - TOR 2 A, ALOX 12 B - VILL, PRPF 40 b - DL-

GAP 2, PRPF 40 b - TAOK 2, DLGAP 2 - TAOK 2, EPHA 10 - STRN 4,

FAM 158 A - RPS 8, ALOX 12 B - PBX 4}

� Expression levels: Expression level changes of AD patient

genes were calculated considering the lower and upper
bounds of the QAR obtained by GarNet and the average

values of control patients. If the interval bounds of the

genes in the rules are below the average value of control

patients, the gene is down-regulated in AD patients. Oth-

erwise, the gene is up-regulated. The average values of

control and AD patients, in addition to the lower and up-

per bound of each gene in the QAR detailed in the afore-

mentioned example and the expression level obtained,

are presented in Table 1 . 

.4. Fourth phase: validation by hierarchical cluster analysis and 

tatistical tests 

The fourth phase is devoted to assess the quantitative signifi-

ance of the genes related to AD obtained by GarNet from differ-

nt a perspective. To fulfill this goal, hierarchical cluster analysis

nd statistical tests were used. 

.4.1. Hierarchical cluster analysis 

A hierarchical cluster analysis was conducted to cluster patients

nd genes using Spearman and Pearson correlation, respectively.

his method is used to assess the capability of the genes obtained

y GarNet to classify between healthy and AD patients according to

hanges in the expression levels (down-regulated or up-regulated).

lternatively, the hierarchical cluster analysis performed for the

enes reported in the third phase is used to validate expression

evels changes detected by the rules intervals obtained by GarNet. 

.4.2. Statistical and biological significance 

The Mann-Whitney U -test was applied to determine whether

here is a statistically significant difference between expression

evels of the reported genes in the previous phase in healthy sam-

les and AD affected samples. 

Furthermore, the bioinformatics open source software named

ioconductor , of the well-known R software environment was used

o calculate the volcano plot that visualizes the changes (fold-

hange) versus the statistical significance ( p -value) of the expres-

ion levels of the genes selected by GarNet. The volcano plot has

een plotted using the log-fold change and p -value of the top-

anked genes obtained from a linear model fit of the selected

enes. The linear model fit was obtained by the lmFit function, and

op-ranked genes were extracted by the topTable function, both in-

luded in the limma package of bioconductor (version 3.2). The

 -value probability of a differentially expressed gene was com-

uted through the Benjamin and Hochberg statistical tests [44] .

he higher the negative log10 for each gene, the higher the proba-

ility that the gene is differentially expressed and not a false pos-

tive. The x-axis indicates the log2 value of fold-change between

he two conditions. 
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.5. Fifth phase: biological knowledge integration 

The fifth phase consisted on the integration of the biologi-

al knowledge using different biological sources. First, the altered

unctions in neurons affected by AD were detected by a systematic

eview of the literature using the well-known PubMed, a free web

iterature search service developed and maintained by the National

enter for biotechnology Information (NCBI) [45] . 

Then, an enrichment analysis of the found genes was performed

n the context of Gene Ontology, a structured, controlled vocabu-

aries and classifications that cover several domains of molecular

nd cellular biology, using Fatigoo tool [46] which is integrated in

abelomics 5 analysis suite. 

The gene set reported by GarNet was also mapped onto the

argest network of protein interactions related to Alzheimer’s re-

erred to as AD PPI network . This network was reported by Soler

t al. in [47] where 12 well known AD associated genes were se-

ected from OMIM Database as seed. Through yeast two-hybrid

atrix screen and two-hybrid library screen, authors generated in-

eraction core set containing all the confirmed library and matrix

nteractions (200 interactions between 74 nodes including seed-

eed, seed-candidate and candidate-candidate interactions). This

etwork was merged with direct interactions of seed AD genes ex-

racted from several repositories (IntAct, DIP, MINT and HPRD). As

 result, Soler et al. reported an AD network with 1704 nodes and

881 interactions. In our analyses, the top genes were reported

n official gene symbols and were converted to Uniprot accession

umbers using DAVID tool [48] . 

Furthermore, we have analyzed which genes of those obtained

y GarNet are associated to cerebral diseases using the well-known

alaCards database, in particular GeneCards [49] . This is an inte-

rated database of all known predictable human genes, including

nformation about diseases connected with each gene. 

.6. Sixth phase: validation using additional data 

The last phase is devoted to validate the strength of the results

btained by GarNet in the previous phases. 

To fulfill this goal, several AD-related datasets were used to

heck the significance of the subset of genes provided by Gar-

et. In particular, the gene regulation levels were calculated for six

atasets collected from NCBI repository [45] . Then, the regulation

evel of each gene in the original dataset was compared with that

resented for the six datasets. 

Additionally, permutation tests have been applied running the

ame analysis performed by GarNet multiple times. Specifically,

wo versions of the original dataset have been generated shuffling

he class labels (AD and control patients) of the instances. The per-

entage distribution of instances of AD and control patients was

he same as the original dataset. 

Then, the second and the third phases of our methodology

 Sections 3.2 and 3.3 ) were applied in the two random versions

sing the best configuration settings (#8, #13 and #14) described

n Section 3.2 . 

Finally, the results obtained from the permutation tests were

ompared with those reported for the original dataset in order

o check if the accuracy level and the genes selected are the

ame. 

. Results and discussion

The dataset used to perform the analysis proposed is described

n Section 4.1 . Furthermore, the results obtained for the six phases

re presented and discussed in the following Sections 4.2 –4.7 , re-

pectively. 
f  
.1. Alzheimer dataset 

The dataset used as training data was retrieved from the gene

xpression data analysis described in [17] . The original dataset was

rovided by Dunckley et al. [50] in which 10 0 0 neurons were col-

ected from each of the 33 samples by laser capture microdissec-

ion from entorhinal cortex. This single-cell gene expression data

s formed by 33 samples and 35,722 probesets. The data were nor-

alized by gcRMA [51] and the resulting probesets were mapped

o genes by DAVID [52] . Specifically, the 13 normal controls cor-

espond to the Braak stages 0–II and the average age of patients

as 80.1 years. Regarding the AD affected samples, they belong to

raak stages III-IV considered as ‘incipient’ AD and the average age

f patients was 84.7. We run our approach on a subset of 1663

enes obtained from this dataset. These 1663 genes were the re-

ult of preprocessing the data set of [50] as described in [17] . 

.2. First phase results - decision trees 

This section details the results obtained by the selected bench-

ark method. The decision tree built by C4.5 using 5-fold-cross-

alidation over the studied dataset is shown below: 

DRG 2 < = 2 . 52 : Healthy 

DRG 2 < 2 . 52 : AD 

The first condition, NDRG 2 < = 2.52, corresponds to the control

r healthy samples and the second condition, NDRG 2 > 2.52 deter-

ines if the samples presents AD. The 87.87% of samples was cor-

ectly classified. In particular, the 92.3% and 85% of control and AD

amples, respectively, were correctly classified. Although the rate

f samples correctly classified is close to 90%, the obtained model

y C4.5 provides very poor information since that only one gene

ppears in the final model. 

The NDRG 2 gene was removed from the dataset, being the C4.5

lgorithm rerun to obtain a different decision tree. In this case, the

ecision tree built by C4.5 removing this gene was as follows: 

MARCD 2 < = 3 . 296 : Healthy 

MARCD 2 > 3 . 296 : AD 

It can be observed that if we desire to achieve a model includ-

ng a larger set of genes, it is necessary to remove the gene appear-

ng in the decision tree and rerun the C4.5 algorithm. In contrast,

R-based methods can obtain models comprising a high number

f genes that may provide useful and relevant knowledge for ex-

erts. In order to perform the second phase of the experimenta-

ion, the accuracy obtained by C4.5 algorithm was taken as mini-

um threshold to select the best configurations of GarNet. 

.3. Second phase results: QAR mining process 

Several experiments were carried out during the second phase

o assess the performance of GarNet using multiple configuration

ettings with the aim at achieving the most optimal solutions for

he problem at hand in this work. 

This section details the sensitivity study combining multi-

le confidence thresholds and measures of the results achieved

y GarNet. Each minimum confidence threshold in combination

ith each group of optimized measures comprises an experi-

ent. Each experiment was executed 100 times using 5-fold cross-

alidation. The minimum thresholds for the confidence measure to

e achieved by the rules were 0.8, 0.9 and 1, respectively. Alter-

atively, we selected the support, confidence, leverage, gain and

ccuracy measures and different groups of 3 measures have been

sed in the optimization of GarNet. These measures evaluate dif-

erent features of QAR. For instance, support and confidence are



Table 2

Configuration settings used by GarNet and results obtained applying 5-fold-cross validation.

ID Min. conf. Groups of measures optimized Instances (%)

Leverage Confidence Gain Support Accuracy Classified Misclassified

#1 0 .8 � � � 80 .88 18 .98

#2 0 .8 � � � 80 .45 19 .26

#3 0 .8 � � � 87 .13 11 .26

#4 0 .8 � � � 85 .15 14 .37

#5 0 .8 � � 77 .08 22 .62

#6 0 .9 � � � 82 .45 17 .34

#7 0 .9 � � � 85 .00 14 .24

#8 0 .9 � � � 87 .80 10 .40

#9 0 .9 � � � 86 .92 11 .83

#10 0 .9 � � 72 .82 20 .73

#11 1 � � � 85 .15 14 .18

#12 1 � � � 85 .01 12 .44

#13 1 � � � 88 .80 7 .80

#14 1 � � � 89 .03 8 .26

#15 1 � � 60 .21 10 .35
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devoted to assess the generality and the reliability of the rules, re-

spectively. Note that confidence measure was always included in

the group of measures optimized by GarNet. 

Table 2 shows the different configuration settings used to eval-

uate the performance of GarNet and the results obtained for each

one. The configuration number of each experiment is identified in

the first column. Second column details the different values for the

minimum confidence threshold. Third column provides the group

of quality measures optimized by GarNet in each experiment. For

each configuration, the objectives optimized by GarNet are marked.

Finally, the last column summarizes the results achieved by Gar-

Net according to the percentage of instances classified correctly

and percentage of instances not correctly classified, respectively,

after performing the 100 executions using 5-fold-cross validation.

The remaining percentage of instances until 100% were not classi-

fied instances. Note that only the average results obtained in the

test set are presented in this table. The best results in terms of in-

stances correctly classified are highlighted in bold. Specifically, we

have selected those configuration settings of GarNet that achieve

a percentage of correctly classified instances higher or equal than

87.8% according to the results obtained by C4.5. 

As can be observed, the group of measures composed of con-

fidence, gain and accuracy optimized by GarNet is the best one,

regardless the minimum confidence threshold used (configuration

settings #3, #8 and #13). However, the best results in terms of

instances correctly classified are those obtained by the group of

measures leverage, confidence and accuracy when the minimum

confidence threshold used is set to 1 (configuration setting #14).

In contrast, the worst results werw obtained by the support and

accuracy measures when the minimum confidence threshold used

is also set to 1 (configuration setting #15). 

4.4. Third phase results: genes with potential prognosis role in AD 

The results obtained by GarNet using the configuration settings

#8, #13 and #14 ( Table 2 ), were selected to perform the third

phase of the experimentation regarding the accuracy achieved by

C4.5. 

Table 3 shows the top 100 frequent genes sorted by frequency

and their expression levels appearing in the rules obtained by Gar-

Net using the aforementioned configuration settings. 

The regulation of each gene was obtained according to the

intervals of the rules discovered by GarNet. Green and purple

colors are used to represent if the gene is downregulated or

upregulated in AD, respectively. Gene Sym. column shows the

Gene Symbol notation of each gene. Freq. column displays the

normalized frequency of the presented top frequent genes. The
alue 1 represents the most frequent gene. Note that duplications

ere removed since some genes are frequent for both AD and

ontrol patient, thus, the final list is composed of 95 genes. 

Remarkably, 19 genes are up-regulated and 84 are down-

egulated. Furthermore, the group of genes obtained by C4.5,

DRG 2 (ID 21) and SMARCD 2 (ID 82) also appear in the set of

enes obtained by GarNet, demonstrating, the robustness of the al-

orithm. 

The resulting network from the most frequent gene-gene in-

eractions extracted using the selected set of AD-related genes is

hown in Fig. 2 . Note that green and purple colors are used to

dentify the downregulated and upregulated genes, respectively, in

D. 

.5. Fourth phase results: validation by hierarchical cluster analysis 

nd statistical tests 

This section presents and discusses the results obtained in the

ierarchical cluster analysis and the statistical and biological vali-

ation. 

.5.1. Hierarchical cluster analysis 

Fig. 3 displays the heatmap of control and AD patients accord-

ng to the top genes under study after applying the hierarchical

luster analysis. Note that data have been scaled and centered. The

esults are plotted as dendrograms. Spearman correlation and Pear-

on correlation have been used to cluster the columns (patients)

nd rows (genes), respectively. The resulting tree has been cut at

pecific height (1.5) with its corresponding clusters highlighted in

he heatmap color bar. 

Four groups can be observed according to the patient type and

ene expression levels. It is noteworthy that set of genes obtained

y GarNet provided two well defined groups that perfectly divide

he samples between control and AD patients, as can be observed

n the abscissa axis. Note that the labels of patients were clus-

ered by using Pearson correlation. The down-regulated genes are

rouped at the top of the heatmap. The up-regulated genes are

oncentrated at the bottom of the heatmap. Note that the gene

egulation levels determined by the rules found by GarNet (defined

n Table 3 ) are also consistent with those provided in the heatmap

sing Pearson correlation. 

Additionally, the clusters obtained are displayed in Fig. 4

hrough the representation technique named clusplot [53] available

n R software environment. It represents the principal component

nalysis of the two clusters of genes obtained in the heatmap using

earson correlation. Red and blue ellipses indicate class boundaries



Table 3

Top frequent genes extracted from the rules discovered by GarNet using the best configuration 
settings sorted by frequency.
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f the genes, that is, up-regulated and down-regulated, respec-

ively. It can be observed that the two principal components ob-

ained explain more than 95% of the point variability and all genes,

xcept one, are divided into two independent groups or clusters. 

Thus, GarNet was able to discover a set of genes that success-

ully classified the samples between control and AD patients re-

arding their expression levels. Next section details the validation

echniques applied to assess the statistical and biological relevance

f the set of genes obtained by GarNet. 

.5.2. Statistical and biological significance 

The Mann-Whitney U -test was used to determine whether

here is a statistically significant difference between expression

evels in healthy samples and AD affected samples in the result-

ng subset of genes obtained by GarNet. This non-parametric hy-

othesis test assess if a particular population (AD samples) tends

o have larger values than the other (healthy samples). The results

f Mann-Whitney U -test are summarized in Table 4 . 

Control and AD columns shows the average of the expression

evels obtained for each group of patients (healthy and Alzheimer’s

atients respectively). 

Diff. column shows whether the distributions of control and AD

amples differed significantly ( � ). It can be noted that only 6 of

he 95 genes do not significantly differed according to the Mann-

hitney U -test and 3 of them take the last positions in the rank-

ng. Hence, GarNet is able to find rules containing genes highly re-

ated with AD. 

Alternatively, Fig. 5 shows the volcano plot that pictures the

og-fold changes in base 2 on the x-axis versus the negative log
f the p-value in base 10 on the y-axis. The most significantly dif-

erentially expressed genes, i.e., those that have a p -value lower

han 0.05, are represented by a red dot. It can be observed that all

he 95 genes presented a p -value lower than 0.05, therefore, all of

hem are statistically significant. 

A fold-change of 1.5 cut-off (log2 threshold of 0.58) was ap-

lied to identify significant genes due to the good performance

resented in previous studies [54] . 

Genes significantly up-regulated in AD patients are located at

ight in the graph, and highlighted by a purple box (16 genes).

hese genes have a fold-change higher than 1.5, that is, a posi-

ive log2-fold change greater than 0.58. Genes significantly down-

egulated in AD patients are located at left in the graph and high-

ighted in a green box (61 genes). These genes have a fold-change

ower than 0.66, that is, a negative log2-fold change lower than

0.58. Both significantly up-regulated and down-regulated genes

re labelled with the corresponding Gene Symbol Identification. It

an be noted that 77 genes (more than 80%) are biologically sig-

ificant when taking into account an absolute fold-change higher

han 1.5 and 100% of genes are statistically significant according to

he minimum p-value considered. Again, we can state that GarNet

as able to discover a set of genes highly significant both at sta-

istical and biological level. 

.6. Fifth phase results: biological knowledge integration 

This phase details the achieved results after performing the

iological knowledge integration process. Specifically, the altered

unctions in neurons affected by AD found in the literature, the



Fig. 2. Network of gene-gene interactions among AD-related genes. Green color and purple color are used to identify the downregulated and upregulated genes in AD,

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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enrichment analysis, the mapping to known gene-disease associa-

tions related to AD, validation with additional datasets and permu-

tation tests are presented in the following subsections. 

4.6.1. Altered functions in neurons affected by AD 

As a result of applying rule-based strategy over a dataset of AD

patients, we found more than 90 genes that were significantly al-

tered when compared to healthy people. The identified genes cov-

ered a high range of functions, both neuron specific as pleiotropic

functions. These results highlight the role of AD as a multifactorial

syndrome, as it has extensively stated in the literature [5,55,56] . 

Some of the genes ( CDS1, KLF8, SPTBN1, DDX19A, TSC22D4, GPHN,

NDRG2 ) found using GarNet had been previously linked to AD

[17,57–62] . These genes cover different roles in neurons, includ-

ing cell signaling ( CDS1, GPHN, NDRG2 ), cytoskeleton structure

( SPTBN1 ) or gene transcription ( KLF8, TSC22D4 ) [58,63] . Although

some of the found genes have been identified in other AD gene

array analysis ( CDS1, SPTBN1, DDX19A ) [17,59,60] , no functional in-

formation has been described yet. In addition, another additional

gene, PIAS3 , encodes a protein that acts as an inhibitor of STAT3 ,

which has been connected to AD [64,65] . We also found a high

number of proteins associated to neuronal processes. Amongst
hem, GFR α2 expression has been connected with the develop-

ent or maintenance of cognitive abilities in mice [66] . In that

ay, GFR α2 altered expression in AD patients may be connected

ith the progressive loss of memory, one of the hallmarks of the

isease. 

During AD, neurons experiment a loss of its metal homeosta-

is [67,68] . Regarding this, we found that some genes associated

o zing finger proteins are down-regulated in neurons of AD pa-

ients (i.e., ZC3H3, ZNF202, ZNF583, Zc3h3 ). Interestingly, zinc levels

re lower in the brain of AD patients [69] . However, two different

etallothioneins related with zinc homeostasis (MT-1E and MT-1F)

ere also up-regulated. These proteins are related with heavy met-

ls detoxification and are up-regulated in order to avoid zinc neu-

otoxicity [68] . This apparent contradiction may be due to differ-

nces in Braak staging of neurons used for gene analysis, show-

ng the complexity of this neurodegenerative disease. In that way,

here is also ample evidence of an increment of zinc levels in AD

atients, as it has been reviewed by Watt et al. [70] . The apparent

pposite results obtained by González-Domínguez et al. [69] may

e due to a different progression stage of the disease. 

Also connected with zinc dyshomeostasis, diabetes and cardiac

isease have been connected with AD [71–75] . Concerning this, we



Fig. 3. Heatmap of top genes and hierarchical cluster analysis. The significant clusters bins after cutting the tree are showed in the color bar. The columns (patients) are

clustered by Spearman correlation and rows (genes) are clustered by Pearson correlation. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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ound genes related to diabetes (i.e. Lin28b ) or cardiac disease (i.e.

LIP ) [76,77] . The altered expression of these genes in neurons

ay indicate a global deregulation of these genes in the organism.

Gene transcription and protein synthesis/degradation, are also

ighly affected by AD [78–80] . In that way, we found 13 transcrip-

ion regulators, 7 ribosomal proteins genes and 6 genes related

o protein ubiquitination ( Table 5 ). In addition, we found other 7

enes related to RNA metabolism, like NOC4l , which has been con-

ected to ribosome biogenesis. The majority of these proteins ap-

eared to be down-regulated in AD neurons, with some exceptions.

nterestingly, one of these exceptions is NDRG2, which has been

etected experimentally up-regulated in AD [62] . We found up to

0 enzymes, constituting a highly diverse group with a common

roperty: all of them were down-regulated in AD neurons. Some of
hem are connected to lipid or carbohydrate metabolism ( ALOX12B,

DS1, PIGW, KHK, ST3GAL2, ST6GAL2 ), which suggests that affected

eurons may have a lower metabolism. Altogether, we can hypoth-

size that, during AD progression, neurons try to compensate the

eneral gene down-regulation with an up-regulation of ribosomal

rotein transcription. 

.6.2. Enrichment analysis 

The top frequent genes discovered by GarNet were analyzed in

he context of Gene Ontology using Fatigoo tool [46] . Detection of

tatistically overrepresented GO terms was done with the Fisher’s

xact test and multiple-testing adjustments were done with the

estfall and Young method. In Table 6 , the GO biological process

nriched, together with the p-value and the adjusted p-value are



Table 4

Results obtained by Mann-Whitney U -test

ID Gene symbol Control AD p-value Diff. ID Gene symbol Control AD p-value Diff.

1 EPHA10 3 .83 2 .32 0 .0 0 01 � 49 F5 6 .25 4 .84 0 .0 0 08 �
2 FAM158A 4 .20 2 .82 0 .0 0 0 0 � 50 MT1F 7 .26 9 .57 0 .0 0 0 0 �
3 PIAS3 4 .61 2 .62 0 .0 0 0 0 � 51 SERF2 7 .97 9 .28 0 .0 0 0 0 �
4 TNFSF13B 4 .31 2 .52 0 .0 0 0 0 � 52 KLF8 6 .56 5 .89 0 .0030 �
5 SMYD5 4 .86 3 .26 0 .0 0 0 0 � 53 LYZL4 2 .50 2 .17 0 .0 0 08 �
6 ZNF202 3 .64 3 .06 0 .0 0 0 0 � 54 SPTBN1 3 .57 4 .32 0 .0 0 0 0 �
7 LIN28B 2 .87 2 .40 0 .0 0 05 � 55 KCNG1 7 .56 5 .13 0 .0 0 0 0 �
8 CCDC43 6 .95 6 .26 0 .0 0 01 � 56 ZC3H3 4 .28 2 .64 0 .0 0 04 �
9 SLC26A8 4 .61 3 .37 0 .0 0 0 0 � 57 DDX19A 3 .37 2 .93 0 .0 0 04 �

10 PBX4 2 .49 2 .16 0 .0220 � 58 C16ORF58 3 .80 2 .59 0 .0 0 05 �
11 TUBGCP6 3 .97 2 .40 0 .0 0 0 0 � 59 TSC22D4 5 .23 7 .01 0 .0 0 0 0 �
12 GFR α2 4 .66 3 .70 0 .0 0 0 0 � 60 CCBL2 8 .90 7 .04 0 .0 0 0 0 �
13 RPS8 8 .99 10 .58 0 .0 0 0 0 � 61 MT1E 6 .59 8 .22 0 .0 0 0 0 �
14 ALOX12B 3 .14 2 .30 0 .0020 � 62 CYP2C8 6 .48 4 .84 0 .0 0 0 0 �
15 IGLON5 3 .72 2 .52 0 .0 0 03 � 63 CAND2 10 .73 9 .34 0 .0 0 0 0 �
16 NOC4L 4 .72 2 .24 0 .0 0 01 � 64 RPS3 9 .54 11 .58 0 .0 0 0 0 �
17 LRFN3 5 .17 3 .34 0 .0 0 01 � 65 SOX11 3 .45 2 .98 0 .0360 �
18 GTF2E1 3 .25 2 .63 0 .0 0 0 0 � 66 FGF12 3 .16 2 .81 0 .0010 �
19 SOX4 2 .70 2 .54 0 .0130 � 67 RPS6 9 .74 11 .63 0 .0 0 0 0 �
20 KHK 3 .11 2 .93 0 .0 0 03 � 68 SORT1 6 .23 6 .41 0 .0 0 0 0 �
21 NDRG2 2 .81 3 .74 0 .0 0 0 0 � 69 FAM213B 10 .81 9 .41 0 .0 0 0 0 �
22 ST6GAL2 5 .52 2 .79 0 .0 0 03 � 70 TMED4 7 .89 9 .36 0 .0 0 0 0 �
23 KCTD13 9 .21 6 .89 0 .0 0 0 0 � 71 GRIA1 6 .28 4 .55 0 .0 0 0 0 �
24 PSIP1 9 .85 8 .58 0 .0 0 0 0 � 72 TRAF7 2 .63 2 .45 0 .0080 �
25 VILL 3 .13 2 .25 0 .0 0 03 � 73 UBAP2 9 .19 7 .57 0 .0 0 0 0 �
26 SLC26A11 7 .88 6 .22 0 .0 0 0 0 � 74 STRN4 4 .99 3 .49 0 .0 0 0 0 �
27 MLIP 7 .21 3 .68 0 .0 0 0 0 � 75 CNPPD1 3 .36 3 .76 0 .0 0 0 0 �
28 TAOK2 3 .84 3 .11 0 .0110 � 76 RPL18A 3 .81 7 .11 0 .0 0 01 �
29 HSD11B2 2 .81 2 .36 0 .0620 77 INPP5J 3 .90 2 .70 0 .0060 �
30 GNB5 2 .87 2 .47 0 .0 0 0 0 � 78 ST3GAL2 3 .11 2 .57 0 .0 0 05 �
31 PYCRL 3 .44 2 .48 0 .0240 � 79 TAF1D 10 .53 9 .64 0 .0 0 0 0 �
32 WDR60 7 .68 6 .44 0 .0 0 0 0 � 80 IQGAP1 4 .39 5 .06 0 .0 0 01 �
33 DLGAP2 3 .09 2 .78 0 .0 0 0 0 � 81 GPHN 4 .49 3 .50 0 .0 0 0 0 �
34 LRRK1 3 .97 3 .16 0 .0070 � 82 SMARCD2 2 .43 2 .77 0 .0 0 0 0 �
35 TRIM59 2 .89 3 .57 0 .0 0 0 0 � 83 STOX2 9 .90 8 .74 0 .0 0 0 0 �
36 TTC39A 3 .86 3 .06 0 .0 0 0 0 � 84 USP9X 9 .52 9 .00 0 .0 0 0 0 �
37 CCDC23 6 .42 5 .76 0 .0040 � 85 LIN37 8 .28 5 .78 0 .0 0 0 0 �
38 CDS1 9 .44 8 .43 0 .0 0 0 0 � 86 TOR2A 3 .52 2 .59 0 .0 0 04 �
39 MNT 10 .77 9 .57 0 .0 0 0 0 � 87 ITM2C 9 .07 10 .80 0 .0 0 0 0 �
40 PTPN1 2 .79 2 .68 0 .0800 88 AQP11 2 .36 2 .13 0 .3340

41 DNASE1L2 2 .94 2 .30 0 .0800 89 PRPF40B 3 .03 2 .92 0 .0020 �
42 RPL13A 8 .90 10 .97 0 .0 0 0 0 � 90 PPWD1 3 .95 3 .11 0 .0 0 01 �
43 DPY19L2 5 .04 2 .67 0 .0 0 0 0 � 91 PUS1 5 .56 4 .38 0 .0 0 0 0 �
44 IFI6 7 .90 7 .28 0 .0 0 04 � 92 DDA1 3 .03 2 .84 0 .5700

45 PIGW 4 .90 4 .34 0 .0060 � 93 RPS6KL1 8 .87 7 .20 0 .0 0 03 �
46 ZNF212 3 .88 3 .65 0 .0020 � 94 RPL18 10 .85 12 .03 0 .0 0 0 0 �
47 CENPT 2 .78 2 .17 0 .0030 � 95 ZNF583 2 .62 2 .51 0 .7400

48 TIGD3 2 .57 2 .30 0 .0400 �

Table 5

Altered functions in neurons affected by AD.

General functions Genes found by GarNet

Protein metabolism: (a) Gene transcription CAND2, GTF2E1, Klf8, LIN37, MNT, NDRG2 ∗ , PIAS3 , PSIP1 , 

SMYD5, SOX4, SOX11, TSC22D4 ∗ , ZNF202, ZNF212, SMARCD2 ∗

(b) Ribosomal proteins RPS3, RPS6, RPS6Kl1 ∗ , RPS8, RPl13A, RPl18, RPl18A 

(c) Protein ubiquitination KCTD13, PIAS3 , TRAF7, TRIM59, UBAP2, USP9X

Enzymes ALOX12B, CCBL2, CDS1, CYP2C8, DPY19l2, F5, FAM213B, GNB5

INPP5J, KHK, LRRK1, LYZl4, PIGW, PPWD1, PYCRl

TAOK2, TOR2A, ST3AL2, ST6GAL2, ZC3H3

Cell signaling/receptors DLGAP2, EPHA10, FGF12, GFR α2, GRIA1, IFI6, IQGAP1 ∗ , ITM2C ∗

LRFN3 , SORT1 ∗ , STRN4, TNFSF13B 

Channels, transporters KCNG1, SORT1 ∗ , SlC26A8, SlC26A11, TMED4 

Cytoskeletal related proteins GPHN, SPTBN1, TUBGCP6, VILL, WDR60

DNA binding proteins CENPT, PBX4, SMARCD2 ∗ , TAF1D , TIGD3 

RNA binding proteins DDX19A, LIN28B, NOC4l, PRPF40B, PUS1, TAF1D, ZC3H3

Genes in bold appears in two different groups. Symbol ( ∗) is used to represent up-regulated genes 



Fig. 4. Clusplot of up-regulated and down-regulated genes. Clusplot that visual- 

izes the principal component analysis associated to the clusters of up-regulated and

down-regulated genes appearing in the rules obtained by GarNet. These two com- 

ponents explain 95.83% of the point varibility.

Fig. 5. Volcano plot of the expression levels of the genes selected by GarNet. The

log-fold change is plotted on the x-axis and the negative log10 p -value is plotted on

the y-axis. The most significantly differentially expressed genes are represented by a

red dot. False discovery rate was used as a cut-off (adjusted p -value < 0.05). Genes

significantly up-regulated in AD patients are located at right in the graph, repre- 

sented by a purple box (fold-change > 1.5 or log2-fold threshold > 0.58). Genes

significantly down-regulated in the AD patients are located at left in the graph,

represented by a green circle (fold-change < 0.66 or log2-fold threshold < −0.58). 

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 6

Enriched GO terms by the top frequent genes discovered by GarNet.

GO Term P value Adj.

P value

Positive regulation of protein sumoylation(GO:0033235) 2.2e −5 0 .04

Arachidonic acid metabolic process(GO:0019369) 3e −5 0 .04

Neuron projection extension(GO:1990138) 4.3e −6 0 .025

Cellular response to cadmium ion(GO:0071276) 3.1e −5 0 .04

Cellular response to zinc ion(GO:0071294) 3.5e −5 0 .04

Table 7

Genes from top frequent genes discovered by GarNet mapped onto the AD PPI net- 

work.

Gene Uniprot Gene description

symbol

GRIA1 P42261 Glutamate receptor, ionotropic, AMPA 1

CYP2C8 P10632 Cytochrome P450, family 2, subfamily C, polypeptide 8

PTPN1 P18031 Protein tyrosine phosphatase, non-receptor type 1

MT1F P04733 Metallothionein 1F

PSIP1 O75475 PC4 and SFRS1 interacting protein 1

IQGAP1 P46940 IQ motif containing GTPase activating protein 1

F5 P12259 Coagulation factor V (proaccelerin, labile factor)

SPTBN1 Q01082 Spectrin, beta, non-erythrocytic 1

SORT1 Q99523 Sortilin 1

ZNF212 Q9UDV6 Zinc finger protein 212

STRN4 Q9NRL3 Striatin, calmodulin binding protein 4

TSC22D4 Q9Y3Q8 TSC22 domain family, member 4

IFI6 P09912 Interferon, alpha-inducible protein 6

ITM2C Q9NQX7 Integral membrane protein 2C
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hown. It is worth mention that GO:0071294 and GO:0071276 be-

ong to the Gene Ontology terms of HDACi-responsive gene sets

81] , being increased levels of HDAC2 described in the hippocam-

us of patients suffering from AD.

.6.3. Validation on known gene-disease associations 

First, the gene set obtained by GarNet was mapped onto the

etwork reported by Soller et al. where 12 well known AD as-

ociated genes were selected from OMIM Database as seed [47] .

rotein-protein interactions network is referred as “AD PPI net-

ork”. This network is reported using UNIPROT identifiers and

e have used DAVID tool to convert the top frequent genes to

NIPROT identifiers. The top frequent genes discovered by GarNet

sing the best configuration settings were mapped onto the AD PPI

etwork for the creation of a module with the first neighbors of

apped genes. In this module, we found 14 genes from the top

requent genes (see Table 7 ), containing this module 90 genes and

78 interactions as can be observed in Fig. 6 . 

Furthermore, the gene set reported by GarNet was also

apped into the well-known database MalaCards and in partic-

lar, GeneCards [49] . Table 8 shows the subset of genes found

y GarNet that are associated to cerebral, diabetes and heart dis-

ases in GeneCards. These genes have been related to syndromes

ike Parkinson’s disease, ataxia, dementia and Alzheimer’s disease,

mong others. Since these syndromes present a numerous and

verlapping effects, the genes affected by them may be common. 

After the study performed, we have seen that many of the

enes found by our methodology are related to brain diseases as

emonstrated some existing repositories. 

.7. Sixth phase results: validation in additional data 

This section details the validation of the results obtained by

arNet checking the significance of the gene subset in other

D-related datasets. Additionally, random versions of the original

ataset were generated to quantify the strength of the provided

esults. 



Fig. 6. Alzheimer’s disease PPI network. The top frequent genes discovered by GarNet using the best configuration setting were mapped onto the AD PPI Network to create

a module with the first neighbors of mapped genes highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Table 8

Genes found in MalaCards associated to cerebral diseases.

Gene symbol Decription in Malacards

TUBGCP6 Microcephaly, Mental retardation

IGLON5 Dementia, Ataxia

SOX4 Ataxia, Neuronitis, Cerebritis

KHK Mental Depression

ST6GAL2 Neuronitis, Cerebritis

TAOK2 Autism Spectrum Disorder,

LRRK1 Parkinson Disease, Nervous system cancer

CDS1 Nervous system cancer, Werner Syndrome

MNT Miller-Dieker Syndrome, Diabetes Mellitus

PTPN1 Diabetes Mellitus, Werner Syndrome

PIGW Hyperphosphatasia with Mental Retardation, West syndrome

ZC3H3 Werner Syndrome

CYP2C8 Myocardial infaction

SOX11 Mental retardation, neuronitis, cerebritis

GRIA1 Alzheimer Disease, Schizophrenia, Neuronitis

INPP5J Lowe Syndrome

TAF1D Huntington Disease

IQGAP1 Werner Syndrome

GPHN Autism Spectrum Disorder, neuronitis

USP9X Mental retardation, neuronitis

PRPF40B Rett syndrome

PUS1 Myopathy, Werner syndrome
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4.7.1. Significance in other AD-related data 

The set of genes obtained by GarNet was checked with other

AD-related datasets with the aim of evaluating the relevance of

them. 

In particular, the following datasets collected from NCBI reposi-

tory [45] have been analyzed: 

• D1 - GSE39420 : Control patients against AD patients with the

Psen gene mutated.
• D2 - GSE39420 : Control patients against an early onset AD.
• D3 - GSE4757 : Healthy neurons against diseased neurons in AD

patients.
• D4 - GSE5281 : Entorhinal cortex of healthy patients against AD

patients.
• D5 - GSE28146 : Control patients against moderate AD patients.
• D6 - GSE28146 : Control patients against severe AD patients.

Table 9 reports the validation performed in the six described

atasets. Column gene indicates the name of gene in Gene Sym-

ol format. Column Ref. refers to the regulation level of the genes

btained by GarNet in the dataset used in this paper. Columns

1 to D6 show the regulation level of each selected gene, respec-

ively, in the external datasets previously described. The regulation

evel of each gene in each dataset was calculated taking into ac-

ount the average of AD patients regarding the average of con-

rol patients using the fold change measure previously described.

t can be noted that green color denotes that the gene is down-

egulated, purple color refers to up-regulated gene, N.D. stands for

enes without significant differences between healthy and AD pa-

ients. White color indicates that the gene has not been found in

he analyzed dataset. 

As it can be observed, a 65% of the genes presents the same

ehavior if we consider 4 of the 6 datasets as success. This fact

ndicates that most of the analyzed genes appear commonly in

he same way that in the analyzed dataset by GarNet. This result

hows that this gene subset could be used as a general biomarker

f AD. 

.7.2. Permutation tests 

To quantify the result strengths obtained by GarNet, we com-

ared the predictive capability of our approach using the original

ataset and other two versions of the dataset where the class la-

els of the instances are shuffled, henceforth named dataset ran-

om 1 and dataset random 2, respectively. Note that the propor-

ion of control and AD patients has been maintained in the random

atasets. 



Table 9

Validation of the found genes using other AD-related datasets.

∗green color: down-regulated, purple color: up-regulated, N.D.: no significant differences, white color: not found

Table 10

Results obtained by GarNet using different versions of the dataset where the class

labels of the instances are shuffled.

ID. configuration Control classified (%) AD classified (%) Not covered (%)

Original dataset

#8 39 .39 60 .61 0

#13 39 .39 60 .61 0

#14 39 .39 60 .61 0

Dataset random 1

#8 30 .39 0 .55 69 .06

#13 33 .94 5 .88 60 .18

#14 31 .88 4 .76 63 .36

Dataset random 2

#8 25 .70 0 74 .3

#13 32 .39 1 .85 65 .76

#14 29 .48 1 .70 68 .82

∗39.39% of instances are control patients and 60.61% of instances are AD patients in

all datasets. The percentage of control and AD patients matches with the distribu- 

tion of both type of patients in the dataset.
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To fulfill this goal, we applied the methodology proposed in

oth random datasets using the best configuration settings of Gar-

et (#8, #13 and #14) described in Section 4.3 . 

Table 10 summarizes the percentage of control and AD in-

tances correctly classified in addition to the uncovered instances

y the rules obtained by GarNet for each dataset (original, random

, random 2) and each configuration setting. 

Note that the 39.30% of instances are control patients and the

0.61% are AD patients. 
As can be observed, the rules obtained by GarNet correctly clas-

ify the 100% of instances when is applied in the original dataset.

egarding the random datasets, although all the control patients

re correctly classified, the percentage of AD patients correctly

lassified is very low with values close to 0. The percentage of un-

overed instances is very high, achieving values greater than the

0%. 

It can be noted that GarNet algorithm is not able to detect sig-

ificant rules for AD patients when the class labels of instances are

huffled. 

Additionally, the top of 100 frequent genes that appear in the

ules found by GarNet in the random datasets were selected. It is

oteworthy that the top of 100 frequent genes indicated for ran-

om datasets are associated with control patients instead of AD

atients. As described Table 10 , GarNet is not able to mine rules

ssociated for AD patients from the random datasets. Only 5 genes

btained in the original dataset have been also found in the ran-

om dataset 1, and only 2 in the random dataset 2. This demon-

trates that the genes found by GarNet do not have the same level

f accuracy and the same variables when the permutation datasets

re used. 

. Conclusions

In this work, we have presented the integration of three ma-

hine learning methods: decision trees, quantitative rules and hier-

rchical cluster analysis in AD gene expression profiles. We aim at

roviding gene expression patterns and a deeper knowledge into

iological functions with higher relevance. To fulfil this purpose,

e used different external sources of information such as PubMed,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GO and PPI network. From the best of our knowledge, QAR-based

methods have emerged as a popular methodology to discover hid-

den relationships among variables in a subspace of a dataset, but

it has not been used in AD-related dataset. 

The evolutionary GarNet algorithm has been applied to select

a set of genes highly related with the AD according to their ex-

pression level in a preprocessed dataset composed initially by 33

samples and 35,722 probesets collected by laser capture microdis-

section from entorhinal cortex. To fulfill this goal, six phases were

performed. Both first and second phases constitute an ensemble of

classifiers to establish the best configurations settings of another

classifier. The first one applies the well-known C4.5 algorithm that

was used to define the minimum threshold to select the best con-

figurations of GarNet in terms of instances correctly classified. The

second one was devoted to apply the GarNet algorithm using mul-

tiple configuration settings with the aim of obtaining QAR from the

studied dataset. The third phase is applied to rerun GarNet with

the configurations that overcome the accuracy obtained by C4.5 al-

gorithm. Then, we identify the set of genes with potential progno-

sis role in AD. The fourth phase tackled both the validation by hier-

archical cluster analysis, fold change and statistical tests. Biological

knowledge integration based on the information fusion of prior bi-

ological knowledge, Gene Ontology enrichment analysis and map-

ping of the genes obtained to AD PPI network was performed in

the fifth phase. Finally, the sixth phase performed the results val-

idation obtained using additional datasets and permutation tests.

The results provided by GarNet could be used to perfectly divide

the expression profiles between control and AD as the heatmap

and clusplot shown. The absolute fold-change of most of the genes

was higher than 1.5 as displayed the volcano plot presented. The

Mann-Whitney U -test was used to prove that GarNet has been

able to discover a set of genes highly significant at statistical

level. 

The results have shown that the obtained rules successfully

characterize the underlying information, grouping relevant genes

for the problem under study and agreeing with prior biological

knowledge. We found 90 genes that were significantly altered in

AD patients. Some of them were previously linked to AD and

neuronal process as GFR α2, which has been connected with the

development or maintenance of cognitive abilities in mice. Our

method provided genes associated to diabetes and cardiac dis-

ease, e.g. LIN28B and MLIP , supporting the hypothesis that there

may be an association between these two diseases and AD. Fi-

nally, GO enrichment analysis found two enriched terms previ-

ously connected to AD, being an additional result that validates

our QAR strategy. Altogether, QAR can be used to find significant

altered genes not only in AD, but in other diseases, using similar

approaches. 
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