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In this paper we propose an evolutionary method of association rules discovery (EQAR, Evolutionary Quan-
titative Association Rules) that extends a recently published algorithm by the authors and we describe its ap-
plication to a problem of Total Ozone Content (TOC) modeling in the Iberian Peninsula. We use TOC data from
the Total Ozone Mapping Spectrometer (TOMS) on board the NASA Nimbus-7 satellite measured at three lo-

cations (Lisbon, Madrid and Murcia) of the Iberian Peninsula. As prediction variables for the association rules
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we consider several meteorological variables, such as Outgoing Long-wave Radiation (OLR), Temperature at
50 hPa level, Tropopause height, and wind vertical velocity component at 200 hPa. We show that the best as-
sociation rules obtained by EQAR are able to accurate modeling the TOC data in the three locations consid-
ered, providing results which agree to previous works in the literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Modeling ozone series from satellite observations, past data and
its relationship with meteorological variables is an important topic
quite often tackled in the literature [1-11]. The interest in modeling
ozone series started on the early 70's, when changes into the strato-
spheric ozone were claimed to be caused by catalytic reactions in
the stratosphere that originated losses in the total amount of ozone
[12,13]. More specifically, other studies on this topic focused on the
role of chlorine [14] and the CFCs [15] in ozone losses at the strato-
sphere. Those theories were confirmed by the observation of a
sharp decrease in the stratospheric ozone levels over Antarctica at
the start of the southern spring season in the middle 80's over several
polar bases of this continent [16]. A wide review on concepts and
history of ozone depletion can be found in [17,18].

In recent years, ozone variation has been related to climate
change, so ozone modeling has become an important indicator of
deep changes in the atmosphere. That is why very different ap-
proaches can be found in the modeling of ozone series in recent bib-
liography. Specifically, a large amount of works dealing with Total
Ozone Content (TOC) of the atmosphere have been published in the
last few years, since it seems that variations in these TOC series are
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a more complete indicator of climate change than only stratospheric
ozone series. Thus, there are important works devoted to comparison
of different satellite and terrestrial measurements of TOC over differ-
ent sites [19-21]. The influence of aerosols in total ozone measures is
analyzed in [22], where ground and satellite measures are considered.
Studies on rare events related to ozone content are studied as well in
the literature [23], this includes cases located at the Iberian Peninsula
[24]. Also, the modeling of TOC variability has been previously stud-
ied, treating different aspects such as its relationship with atmospher-
ic circulation and dynamics or with greenhouse gasses [1,8,25,26]

In this paper, we present an analysis of TOC series modeling in the
Iberian Peninsula using Association Rules (ARs) obtained by an evolu-
tionary algorithm. The discovery of ARs is a non-supervised learning
and descriptive tool, which explains or summarizes the data, i.e.,
ARs are used to explore the properties of the data, instead of predict-
ing the class of new data [27]. The aim of ARs mining is discover the
presence of pairs (attribute-value), which appear in a dataset with
certain frequency, in order to obtain rules that show the existing
relationships among the attributes. There exist many algorithms for
obtaining ARs from a dataset, such as AIS [28], Apriori [29], and
SETM [30]. However, many of these tools that work in continuous
domains just discretize the attributes by using a specific strategy
and deal with these attributes as if they were discrete, which may
lead to poor results in real continuous datasets. Another important
class of techniques for ARs discovery is based on evolutionary algo-
rithms (EAs), which have been extensively used for the optimization
and adjustment of models in data mining tasks. EAs are search algo-
rithms which generate solutions for optimization problems using
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techniques inspired by natural evolution [31]. They are implemented
as a computer simulation in which a population of abstract represen-
tations (chromosomes) of candidate solutions (individuals) for an op-
timization problem evolves toward better solutions. EAs can be used
to discover ARs, since they offer a set of advantages for knowledge ex-
traction and specifically for rule induction processes. In this work, the
evolutionary algorithm proposed in [32] has been extended and
called EQAR (Evolutionary Quantitative Association Rules). EQAR is
applied to the ARs extraction to explain TOC data. The new features
added improve the AR mining task and result in the TOC modeling
in the Iberian Peninsula. We show that the best rules obtained by
the EQAR approach are able to accurately model the TOC data in the
three locations considered, providing results which agree to previous
works in the literature.

The structure of the rest of the paper is as follows: next section
presents the available TOC data and input meteorological variables
collected for this study, the description of measurement location
and their characteristics. In this section we also detail the prediction
variables used in the paper. Section 3 describes the main characteris-
tics of the evolutionary algorithm used to obtain the associated rules.
Section 4 presents the main results obtained using the associative
rules obtained in the explanation of the TOC series in the three loca-
tions considered within the Iberian Peninsula. Section 6 closes the
paper giving some final conclusions.

2. TOC data over the Iberian Peninsula and prediction variables

Monthly mean satellite measurements of TOMS (Total Ozone
Mapping Spectrometer, on board the NASA Nimbus-7 satellite
[33,34]) data for the period 1979-1993 have been used in this
study. In addition, a group of several meteorological variables has
been selected as input (prediction) variables. Specifically: tropopause
height (hPa), TP, outgoing longwave radiation (Wm™?2), OLR, temper-
ature at 50 hPa (K), tso and air vertical velocity at 200 hPa (hPa/s),
00 All these variables have been obtained with a spatial resolution
of 2.5 degree latitude x 2.5 degree longitude from NCEP/NCAR reana-
lysis [35,36]. These four meteorological variables have been selected
because all of them have a close relation to TOC concentration:

1. Temperature at 50 hPa (tso): Many studies have shown that maps
of total ozone and 50 hPa temperature look very similar, reflecting
a very close coupling between them [8,37]. These studies highlight
the fact that, as a rule of the thumb, a 10 Dobson Units (DU)
change in total ozone corresponds to a 1 K change of 50 hPa tem-
perature. Consequently, this meteorological variable should be
correlated with TOC values.

2. Tropopause height (TP): The tropopause is a transition layer be-
tween the troposphere and the stratosphere. It is not uniformly
thick, and it is not continuous from the equator to the poles. As
well, tropopause separates the well-mixed ozone poor tropo-
sphere and the stratified ozone rich and well mixed stratosphere.
This fact gives the key to use the tropopause as a proxy to analyze
TOC values. According to [8], in a tropospheric high pressure sys-
tem, sinking air in the troposphere leads to an adiabatic warming,
causing tropopause and low stratosphere air to rise. As a conse-
quence of these vertical movements, the lower stratosphere cools
adiabatically and ozone-poor air moves up, decreasing total
ozone. The opposite occurs in tropospheric low pressure systems.
Thus, it can be said that high tropopause values are correlated
with low total ozone and a low tropopause values with high total
ozone [7].

As has been shown in [38], the selected definition of the tropo-
pause, thermal or dynamical, is not critical. Therefore we have de-
cided to use the thermal one, following the standard criterion of
the World Meteorological Organization (WMO) to define thermal
tropopause: the lowest level at which the lapse rate decreases to

2K km~"! or less, provided also the average lapse rate between
this level and all higher levels within 2 km does not exceed
2K-km~! [39]. To determine each thermal tropopause from
NCAR reanalysis data, we have used the methodology proposed
by [40] using European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis (ERA) data.

3. Vertical wind velocity (m»q0): As stated before, vertical move-
ments through the tropopause bring ozone-poor air into the
stratosphere, attenuating ozone-layer. Conversely, descending air
from the upper layers of the stratosphere bring ozone-rich air
into the ozone-layer, increasing the density of this layer. In
[41,42] the authors have proposed a phenomenological model to
explain this idea (another discussion about this model can be
found in [43]). Thus, in order to deepen in the correlation between
vertical movements and variations in total ozone, o (total time de-
rivative of the pressure -isobaric coordinate system-) can be used
for this purpose. @ negative values will indicate ascending move-
ments, whereas positive omega values will indicate descending
movements.

4. Outgoing longwave radiation (OLR): Among other gasses, ozone is
one of the most important absorbers in the atmosphere. The ozone
molecule has a relatively strong rotation spectrum. The three
fundamental ozone vibrational bands occur at wavelengths of
9.066, 14.27, and 9.597 um, respectively. The very strong
9.597 um and moderately strong 9.066 um fundamentals combine
to make the well-known 9.6 um band of ozone [44]. Because this
9.6 um band is a portion of the infrared region of the electromag-
netic spectrum, a direct relationship exists between ozone and
the OLR [45] and can be used to characterize TOC.

Our study is focused in three locations of the Iberian Peninsula:
Lisbon (38.70N, 9.10 W), Madrid (40.40N, 3.70 W) and Murcia
(38.00 N, 1.10 W). The four meteorological variables have been calcu-
lated using a spatial grid covering the three locations. In addition,
having into account the strong correlation between tropopause
height and TOC, we have decided to calculate this meteorological var-
iable with a customized grid for each of the three locations, i.e., TP
variable is divided into four different variables depending on each lo-
cation (the global TP for the Iberian Peninsula (TP;) and the TP vari-
able calculated with a grid centered at each location (TPy, TP¢ and
TP for Lisbon, Madrid and Murcia, respectively)). Table 1 summarizes
the grids used in this study.

3. Methods

In this section we introduce the main AR concepts necessary to
follow the rest of the paper, and also the evolutionary algorithm pro-
posed in this work in order to look for ARs.

3.1. Association rules

The massive use of computational processing techniques has rev-
olutionized the scientific research due to the high volume of data

Table 1
Meteorological input variables and associated grid size. “IP” stands for Iberian
Peninsula.

Area Met. variable Variable name Grid coordinates

IP 50 hPa temperature tso 35-42.5N, 12.5 W-5E
P Outgoing Longwave Radiation OLR 35-42.5N, 12.5 W-5E
1P Omega at 200 hPa 700 35-42.5N, 12.5 W-0E
P Tropopause height TPg 35-42.5N, 12.5 W-5E
Lisbon Tropopause height TPy 35-425N, 125 W-5W
Madrid Tropopause height TPc 35-42.5N, 7.5 W-0 W
Murcia Tropopause height TPg 35-42.5N, 2.5 W-5E
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which can be obtained. Data mining is one of the most used instru-
mental tool for discovering knowledge from transactions. In the
field of data mining, the learning of ARs is a popular and well-
known research method for discovering interesting relations among
variables in large databases [29,46].

Formally, ARs were first defined by Agrawal et al. in [28] as
follows. Let I={iy,i,...,in} be a set of n items and D={ty,t3,...,tn} Q
set of N transactions, where each t; contains a subset of items. Thus,
a rule can be defined as X=Y, where X,Y I and XNY= . Finally, X
and Y are called antecedent (or left side of the rule) and consequent
(or right side of the rule), respectively.

When the domain is continuous, the ARs are known as Quantita-
tive Association Rules (QAR). In this context, let F={Fy,...,F,} be a
set of features, with values in R. Let A and C be two disjunct subsets
of F, that is, ACF, CCF, and ANC=®. A QAR is a rule X=Y, in
which features in A belong to the antecedent X, and features in C be-
long to the consequent Y, such that X and Y are formed by a conjunc-
tion of multiple boolean expressions of the form F;E[vy,v,]. The
consequent Y is usually a single expression. In this proposal, QAR is
used, since the domain variable (TOC) is a continuous one.

3.2. Quality measures for association rules

The following paragraphs detail the most popular quality mea-
sures used to evaluate an AR. Note that it is very important to have
a measure of the quality of a given rule in order to select the best
set of rules. In the ARs mining process, probability-based measures
that evaluate the generality and reliability of ARs have been selected.
In particular, the support measure is used to represent the generality
of the rule and the confidence, the lift and the leverage are normally
used to represent the reliability of the rule [47,48]. The formal defini-
tions of these variables are the following:

* Support(X) [48]: The support of an itemset X is defined as the ratio
of instances in the dataset that satisfy X. Usually, the support of X is
named as the probability of X.

sup(X) = P(X) = % (1)

where n(X) is the number of occurrences of the itemset X in the
dataset, and N is the number of instances forming such dataset.

Support(X =) [48]: The support of the rule X= Y is the percentage
of instances in the dataset that satisfy X and Y simultaneously.

sup(X=Y) = P(YNX) = n()z\(rY) . 2)

where n(XY) is the number of instances that satisfy the conditions
for the antecedent X and consequent Y simultaneously.
Confidence(X=Y) [48]: The confidence is the probability that in-
stances satisfying X, also satisfy Y. In other words, it is the support
of the rule divided by the support of the antecedent.

conf(X=Y) = P(X|Y) = Siufu(;((;')y) 3)

Lift(X='Y) [49]: Lift or interest is defined as how many times more
often X and Y are together in the dataset than expected, assuming
that the presence of X and Y in instances is statistically indepen-
dent. Lifts greater than one involve statistical dependence in simul-
taneous occurrence of X and Y, in other words, the rule provides
successful information about X and Y occurring together in the
dataset.

sup(X=Y) _ conf(X=Y)

lift(X=Y) = sup(X)sup(Y)  sup(Y)

(4)

» Leverage(X=Y) [50]: Leverage measures the proportion of addi-
tional cases covered by both X and Y above those expected if X
and Y were independent of each other. Leverage takes values inside
[—1, 1]. Values equal or under value 0, indicate a strong indepen-
dence between antecedent and consequent. On the other hand
values near 1 are expected for an important association rule. Values
above 0 are desirable. In addition, leverage is a lower bound for sup-
port, and therefore, optimizing only the leverage guarantees a cer-
tain minimum support (contrary to optimizing only the
confidence or only the lift).

lev(X=Y) = sup(X=Y)—sup(X)sup(Y) (5)

Accuracy(X='Y) [48]: Accuracy measures the degree of veracity
thus, the degree of fit (matching) between the obtained values
and the actual data. An accuracy of 100% means that the measured
values are exactly the same as the given values. In the field of min-
ing association rules, accuracy measures the sum of the percentage
of instances in the dataset that satisfy the antecedent and the con-
sequent and the percentage of instances in the dataset that do not
satisfy neither the antecedent nor the consequent. Accuracy takes
values inside [0, 1] and values near 1 are expected for a rule with
high quality and veracity.

Acc(X=Y) =sup(X=Y) + sup @(éﬂ) (6)

where - means negation, therefore sup(-X= -Y) is the percentage
of instances in the dataset that do not satisfy X and Y
simultaneously.

In most cases, it is enough to focus on a combination of support,
confidence, and either lift or leverage to obtain a good measure of
the rule “quality”. However, how good a rule is for modeling a dataset
in terms of usefulness and actionability is a subjective concept, and
depends on the particular domain and the business objectives.

For a better understanding of these quality measures, we give a
small example, by using a dataset comprising eight instances and
three features are shown in Table 2. Consider then two example
rules, henceforth called Rule (7) and Rule (8), respectively:

F,€[32,35|AF,€[179, 188] = F,=[84, 94| (7)
F,€[32,35|AF,€[179, 188]=F;=[46, 94| (8)

In Rule (7), the support of the antecedent is 12.5%, since one
instance, t;, simultaneously satisfy that F; and F, belong to the inter-
vals [32,35] and [179,188], respectively (one instance out of eight, sup
(X)=0.125). As for the support of the consequent, sup(Y) =0.375 be-
cause instances ty, t3 and t; satisfy that F3&[84,94]. Regarding the
confidence, only one instance t; satisfies all the three features (F;
and F; in the antecedent, and F; in the consequent) appearing in the
rule; in other words, sup(X=Y)=0.125. Therefore, conf(X=Y)=
0.125/0.125=1, that is, the rule has a confidence of 100%. The lift

Table 2

Illustrative dataset.
Instance Fy F, F3
t 35 183 88
5} 42 154 47
t3 37 186 93
ty 30 199 112
ts 33 173 83
te 24 178 75
t; 63 177 91
ts 22 167 60
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is lift(X=Y)=0.125/(0.125- 0.375) = 2.66, the leverage is lev(X=Y)
=0.125—(0.125°0.375)=0.078 and the accuracy is acc(X=Y)=
0.125+0.625=0.75, since sup(X=Y)=0.125, sup(-X=-Y)
=0.625, sup(X) =0.125 and sup(Y) =0.375, as discussed before.

In Rule (8), the support of the antecedent is the same as in Rule
(7), i.e. 12.5%, since one instance, t;, simultaneously satisfy that F;
and F, belong to the intervals [32,35] and [179,188]. However, the
support of the consequent is sup(Y) =0.875 because all instances ex-
cept t4 satisfy that F3 €[46,94]. The confidence in this rule is the same
that in Rule (7), only one instance satisfies all the three features
appearing in the rule, i.e., sup(X=Y)=0.125. Therefore, the confi-
dence value of this rule is also 100%. Regarding the lift or interest, lift
(X=Y)=0.125/(0.125"0.875)=1.14, the leverage is lev(X=Y)=
0.125—(0.125-0.875)=0.016 and the accuracy is acc(X=Y)=
0.125+0.125=0.25, since sup(X=Y)=0.125, sup(-X=-Y)=
0.125, sup(X) =0.125 and sup(Y) =0.875, as discussed before.

Note that confidence does not take into account the support of the
rule consequent, because the confidence is the same in the two Rules
(7) and (8). The lift of the rule should be considered to solve this
drawback. Lift or interest measures the degree of dependence be-
tween the antecedent and the consequent. The lift of Rule (7) and
Rule (8) is 2.66 and 1.14 respectively. Here, lift of Rule (7) is larger
than the lift of Rule (8), which corresponds to our intuition that the
first rule is more interesting than the second one. Regarding the
values of accuracy and leverage are also higher for the Rule (7).
Therefore, we can conclude that first rule has better quality, accuracy,
interest and strong dependency between the antecedent and conse-
quent than the second one even if they have the same confidence.

3.3. EQAR: an effective evolutionary algorithm for AR searching

As has been previously mentioned, EAs have been quite used to
discover ARs, since they offer several advantages for knowledge ex-
traction and specifically for rule induction processes. In [51] the au-
thors proposed an EA to obtain numeric ARs, dividing the process in
two phases. Another EA was used in [52] to obtain QAR where the
confidence was optimized in the fitness function. In [53] a multi-
objective pareto-based EA was presented in which the fitness func-
tion was composed by four different objectives. A study of three evo-
lutionary ARs extraction methods was presented in [54] to show their
effectiveness for mining ARs in quantitative datasets. Other EAs that
use a weighted scheme for the fitness function which involved sever-
al evaluation measures of rules were presented in [55] and [32]. The
main motivation of these works was to develop an algorithm able to
find QAR over datasets with continuous attributes without a previous
discretization in the process. In fact, in this paper, we use the basic
scheme algorithm proposed in [32] and we extend this approach,
henceforth called EQAR (Evolutionary Quantitative Association
Rules), with new features in order to improve the ARs mining task.
The results were obtained by EQAR in our problem of TOC modeling
in the Iberian Peninsula.

EQAR follows the general scheme of the CHC binary-coded evolu-
tionary algorithm proposed by Eshelman in 1991 [56]. The original
CHC presents an elitist strategy for selecting the population that will
make up the next generation and includes strong diversity in the evo-
lutionary process through mechanisms of incest prevention and a
specific operator of crossover called Half Uniform (HUX). Further-
more, the population is re-initialized when its diversity is poor.
However EQAR adopts a more conservative re-initialization strategy
and a less disruptive crossover operator than the HUX crossover
procedure.

The search of the most appropriate intervals is carried out by
means of EQAR and the intervals are adjusted to find ARs with high
quality. Each individual constitutes a rule in the population. Each
gene of an individual represents the limits of the intervals and the
type of each attribute to indicate whether it belongs to the

Fig. 1. Representation of an individual of the evolutionary algorithm's population.

antecedent, consequent or not belonging to the rule. Thus, the repre-
sentation of an individual consists in two data structures as shown in
Fig. 1. The upper structure includes all the attributes of the database,
where [; is the lower limit of the range and u; is the upper limit. The
bottom structure indicates the membership of an attribute to the
rule represented by an individual. The type of each attribute t;, can
have three values: 0 when the attribute does not belong to the rule,
1 if it belongs to the antecedent of the rule and 2 when it belongs to
the consequent part.

An illustrative example of Rule (7) is depicted in Fig. 2. In particu-
lar, the rule F;€[32,35]AF,€[179,188]=F;([84,94] is repre-
sented. Note that attributes F; and F, appear in the antecedent and
F3 in the consequent. Therefore t; =t =1 and t3 =2.

The individuals of the population are subjected to an evolutionary
process in which both crossover operator with incest prevention and
re-initialization of the population are applied. At the end of this pro-
cess, the fittest individual is designated as the best rule. Moreover, the
fitness function has been provided with a set of parameters so that
the user can drive the search process depending on the desired
rules. The proposed algorithm is based on the Iterative Rule Learning
(IRL) [57]. The punishment of the covered instances allows the subse-
quent rules found by EQAR to try to cover those instances that were
still not covered. General scheme of the IRL is shown in Fig. 4.

In addition to the features of the algorithm described above, new
ones have been added in order to improve the performance and the
quality of the rules obtained in this specific problem of TOC analysis.
The generation of the initial population for each evolutionary process
has been modified to help the examples that are covered by a few
rules, and also the fitness function has been expanded. These new
functionalities of EQAR are detailed in the following subsections.

3.3.1. Generation of the initial population

The generation of the initial population is carried out at the begin-
ning of each evolutionary process. It must be noted that the genera-
tion of the rules in EQAR is different to the algorithm proposed in
[32], in which the process for generating the initial population was
carried out in such a way that at least one randomly chosen sample
or instance of the dataset was covered. However, in EQAR the samples
of the dataset are not randomly selected but they are selected based
on their level of hierarchy. The hierarchy is organized according to
the number of rules which cover a sample. Thus, the records are

32 35 (179 188 | 84 94

Fig. 2. Representation of Rule (6) example.
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31.35 34.65]169.54 176.46|76.36 89.64

Fig. 3. Representation of an individual example of generation of initial population.

sorted by the number of rules that are covered and the samples cov-
ered by few rules have a higher priority.

A sample is selected according to the inverse of the number of
rules which cover such sample. Intuitively, the process is similar to
roulette selection method where the parents are selected depending
on their fitness. In the roulette selection method, a sample is repre-
sented by a portion of roulette inversely proportional to the number
of rules that cover such sample. Thus, the samples covered by a few
rules have a greater portion of the roulette and, therefore, they will
be more likely selected. In the first evolutionary process, all samples
have the same probability to be selected.

This process for generating the initial population can be described
by means of a pseudo-code, as follows.

(1) For all instances of the database the cumulative sum, totalSum,
of the inverse of the number of rules that cover every instance
is calculated.

(2) A random number R between 0 and totalSum is generated.

(3) For each instance of database, if the totalSum is greater or equal
than R, then the current example is selected.

Constraints to generate individuals are given by the following
settings:

e number of attributes that belong to rule represented by an
individual.
« number of attributes in the antecedents and consequents.

« structure of the rule (attributes fixed or not fixed in consequent).

For a better understanding of the generation of initial population,
we describe one example of generation of an individual following the
Table 2. For each iteration one instance is selected based on their level
of hierarchy. In this case, we have assumed that the algorithm is
starting, that is, the first evolutionary iteration of the process, and
all instances have the same probability to be selected.

Assuming that the instance ts of Table 2 is randomly selected, the
values of each attribute are: F; =33, F, =173 and F; =83. In order to
generate an individual (one rule), we have to randomly select the
number of attributes appearing in the rule and the type and interval
of each attribute. We have supposed that the number of attributes
chosen is 2 and the type for each attribute is 1 for Fy, 0 for F> and 2
for F3. Then, we have to select a random number between 0 and a
maximum amplitude (10%) for generating the intervals for each
attribute. The value obtained is added and subtracted to the value
corresponding for each attribute to the instance selected (ts) in
Table 2. For example: 5% for F;, 2% for F, and 8% for Fs. Therefore,
the intervals of each attribute are [334(0.05°33)] for Fy, [173 &
(0.02-173)] for F, and [83m(0.08 - 83)].

The individual generated is shown in Fig. 3 and the rule obtained
is represented as follows:

F,€[31.35,34.65| = F,=[76.36,89.64] 9)

3.3.2. Fitness functions proposed

The fitness of each individual in the evolutionary algorithm allows
determining which are the best candidates to remain in subsequent
generations. In order to make this decision, its calculation involves
several measures that provide information about the rules. In this
work, two fitness functions have been designed to maximize different
objectives depending on the desired rules. Both are formed by the
combination of different measures of association rules but their
goals are different.

» Data set

A 4

Evolutionary | Individual
punishment Algorithm

The best

> Rule

END

Fig. 4. Scheme of the Iterative Rule Learning algorithm.
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Table 3

Ozone quartiles (DU) for each location.
Quartile Lisbon Madrid Murcia
1° [255.7, 291.2] [253.9, 291.1] [259.92, 293.03]
2° [291.2, 326.7] [291.1, 328.35] [293.03, 326.15]
3° [326.7, 362.2] [328.35, 365.6] [326.15, 359.26]
4° [362.2, 397.7] [365.6, 402.8] [359.26, 392.38]

As first fitness function of guide the evolutionary search, we pro-
pose the following:

f(i) = wy sup + w," conf —w,‘recov—w,,-ampl (10)

where sup is the support of the rule, conf s the confidence of the rule,
recov is the number of recovered instances (it is used to indicate
when a sample has already been covered by a previous rule, thus,
rules covering different regions of search of space are preferred),
ampl is the average size of intervals of the attributes belong to the
rule and ws, w., w; and w, are weights in order to drive the process
of rules searching. Note that this function takes into consideration
the support and the confidence of the rule. This function is used
when QAR with high support and confidence is desired. High values
of ws imply that more samples from the database are covered and
high values of w, imply rules with greater reliability, that is, rules
with fewer errors.

Nevertheless, only the support is usually not enough to calculate
the fitness, because the algorithm would try to enlarge the amplitude
of the intervals until the whole domain of each attribute would be
completed to get a great support. For this reason, this fitness function
includes a measure to limit the growth of the intervals during the

Table 4

evolutionary process. In addition, this function is able to find rules
that cover different regions of the search space because it also in-
cludes a measure to negatively affect an instance that has already
been covered by a previous rule.

However, this function is not entirely appropriate in some situa-
tions because the confidence has some drawbacks. Specifically, confi-
dence does not take into account the support of the rule consequent
hence it is not able to detect negative dependencies between items.

For this reason, a new fitness function has been proposed as alter-
native to the support and confidence measures. The second fitness
function to be maximized used by EQAR is given by the following
expression:

f(i) = w;-lift + w,-lev—w,-recov (11)

where lift is the lift or interest of the rule and lev is the leverage of the
rule and w;, w; and w, are weights in order to drive the process of
search of rules.

This function considers lift and leverage measures instead of sup-
port and confidence measures. This function is used when QARs with
a high lift and high leverage are desired. High values of w; ensure a
degree of dependence between antecedent and consequent. The
higher this value, the more likely that the existence of antecedent
and consequent together in an instance is not just a random occur-
rence, but because there is some relationship or dependency between
them. High values of w; guarantee a certain minimum support. Thus,
for leverage, values above 0 are desirable, whereas for lift, we want
to see values greater than 1. Note that leverage and lift measure sim-
ilar things, except that leverage measures the proportion of additional
cases covered by both antecedent and consequent above those
expected if antecedent and consequent were independent of each

Association rules for TOC concentration at Lisbon. The “Code” of the rules describes the location and TOC concentration, i.e., L,; stands for Lisbon, medium TOC rule 1, L,,;» stands for

Lisbon, medium TOC rule 2, and Ly, stands for Lisbon, high TOC rule 1, and so on.

Code Rules TOC (DU) Scores Fitness
Sup(%) Conf(%) Ampl(%) Lift Lev Acc(%)
Lm TP[12.5,12.1] & t50[215.9,216.9] [332.4350.5] 52 100 10.0 6.0 0.04 88.5 Eq. (11)
L TPw[11.5,11.2] & t50[214.6,215.7] & OLR[237.5,256.6] [353.2367.4] 35 100 9.2 14.4 0.03 96.6 Eq. (11)
L TP5[11.4,10.6] & t50[212.7,216.8] & OLR[224.4,239.8] [349.0387.8] 104 81.8 213 43 0.08 89.1 Eq. (10)
Ly ts0[215.1,217.3] & OLR[231.5,257.1] & w300 —5,8] [349.6,387.8] 104 62.1 22.0 34 0.07 85.8 Eq. (10)
Ly ts0[215.6,217.7] & OLR[231.5,245.4] [369.5,397.7] 4.0 87.5 14.8 12.6 0.04 96.5 Eq. (11)
Table 5

Association rules for TOC concentration at Madrid. The “Code” of the rules describes the location and TOC concentration, i.e., M,,; stands for Madrid, medium TOC rule 1, M, stands

for Madrid, medium TOC rule 2, My, stands for Madrid, high TOC rule 1, and so on.

Code Rules TOC (DU) Scores Fitness
Sup(%) Conf(%) Ampl(%) Lift Lev Acc(%)
M TP5[14.1,12.5] [285.6,327.8] 231 97.6 371 1.9 0.11 71.1 Eq. (10)
M2 TP;[12.4,11.9] & OLR[262.9,270.3] & t50[215.4,217.2] [329,347.5] 5.8 100 11.2 5.8 0.05 88.4 Eq. (11)
M, TP{12.0,11.3] & t50[215.1,216.4] [334.1, 361] 5.8 100 16.1 46 0.05 83.8 Eq. (11)
Mz TP11.5,10.8] & t50[214.4,216.1] [356.3,392.5] 6.9 100 20.6 6.2 0.06 90.8 Eq. (11)
My TP;[11.2,10.6] & OLR[224.4,245.4] & t50[214.5,216.8] [368.1,402.8] 6.4 91.7 16.9 113 0.06 97.7 Eq. (11)
Table 6

Association rules for TOC concentration at Murcia. The “Code” of the rules describes the location and TOC concentration, i.e., U, stands for Murcia, medium TOC rule 1, Uy, stands

for Murcia, medium TOC rule 2, Uy, stands for Murcia, high TOC rule 1, and so on.

Code Rules TOC (DU) Scores Fitness
Sup(%) Conf(%) Ampl(%) Lift Lev Acc(%)

U TPg[11.5,10.7] and ts[212.5,213.4] and OLR[211.5,243.6] [341.9,359.7] 4.6 100 15.7 6.9 0.04 90.1 Eq. (11)

Uz TP5[11.8,11.4] and TPg[12.1,10.6] and OLR[250.6,256.6] [343.0,354.5] 3.5 100 11.0 9.6 0.03 93.1 Eq. (11)

Upy TPG[11.2,10.6] and ts50[214.6,216.5] and OLR[214.9,217.7] [343.7,387.5] 8.7 100 22.6 4.7 0.07 87.4 Eq. (11)

Uy TPg[11.2,10.8] and t50[214.5,217.7] [359.3,392.4] 8.1 100 19.7 7.2 0.07 94.2 Eq. (11)
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Table 7
TOC variation obtained with different association rules for different meteorological
variables at Lisbon.

Met. variable Ratio Rule code
Lim Linz Li Liz Ly
With TP¢ DU/km 22.5 5.9 19.6 13 17.1
With TPy DU/km 153 139 14.2 8.5 18
With t5 DU/K 6.4 6.6 6.2 6.4 43
Table 8

TOC variation obtained with different association rules for different meteorological
variables at Madrid.

Met. variable Ratio Rule code
Mm M Mp: Mpz My
With TP¢ DU/km 13.7 13.8 23.0 214 10.8
With TP DU/km 134 9.3 222 214 11.1
With t5o DU/K 9.0 9.1 57 6.6 6.0
Table 9

TOC variation obtained with different association rules for different meteorological
variables at Murcia.

Met. variable Ratio Rule code

Um Uz Uni Uyt
With TP¢ DU/km 9.6 8.7 14 14.7
With TP DU/km 93 25.1 13.7 18.7
With tsg DU/K 9.4 6.6 6.9 6.3

other. Leverage is also included because lift is susceptible to noise in
small databases. Rare itemsets with low probability that per chance
occur a few times (or only once) together can produce enormous
lift values. In this function, the amplitude of intervals is not included

because leverage is inversely proportional to the size of the intervals.
If leverage is maximized, we ensure that the intervals of attributes do
not extend to the whole domain. This function also includes a mea-
sure to negatively affect an instance that has already been covered
by a previous rule in order to find rules that cover different regions
of the search space.

In conclusion, the first fitness function corresponding to Eq. (10)
should be used when rules covering many examples with a high de-
gree of reliability are desired without interesting the degree of depen-
dence between antecedent and consequent of the rule. High
confidence and high support could imply interdependence between
antecedent and consequent. While the second fitness function corre-
sponding to Eq. (11) should be used when a rule with a high degree of
dependence between antecedent and consequent is desired regard-
less of the number of instances covered by the rule. High lift and
high leverage could imply low support.

4. Experimental results

In order to apply the methodology describe above, we have divid-
ed TOC values of each location (Lisbon, Madrid and Murcia) into four
equal groups or quartiles, each representing a fourth of each TOC data
set, i.e., first quartile [0%, 25%], second [26%,50%], third [51%, 75%] and
fourth [76%, 100%]. Following this idea, ozone quartiles for each loca-
tion can be calculated for the period of study considered in this work
(1979-1993), as shown in Table 3. Once TOC values have been divid-
ed into the four quartiles, the following criteria to set different Ozone
concentrations have been used:

* Medium ozone concentration: Rules which ozone values belong to
third quartile or a lower quartile.

» High ozone concentration: Rules which ozone values belong to
third and fourth quartiles.

 Very high ozone concentration: Rules which ozone values belong
only to fourth quartile.

Fig. 5. Location of the different O; observing stations considered in the validation process of the results: 1. Madrid, 2. Arenosillo, 3. Lisbon, 4. Montlouis and 5. Murcia.
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Table 10
Accuracy of association rules for TOC concentration trained in Lisbon data and tested in
Lisbon, Murcia, Madrid, Arenosillo and Montlouis data separately.
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Table 11
Accuracy of association rules for TOC concentration trained in Murcia and tested in Lis-
bon, Murcia, Madrid, Arenosillo and Montlouis data separately.

Rule code Accuracy (%)

Lisbon Lisbon Murcia Madrid Arenosillo Montlouis
Lm 88.4 86.7 87.9 87.3 83.8

L 96.5 90.2 90.8 91.3 90.2

Ly 89.0 88.4 86.1 88.4 80.9

Lna 82.1 81.5 78.0 81.5 76.3

Ly 95.4 96.5 94.8 95.4 89.0

Thus it is possible to calculate association rules for each location
and TOC range (medium, high and very high) and the considered
input meteorological variables (given in Table 1).

Applying the EQAR described in Section 3.3, association rules for
the TOC' and the considered input meteorological variables have
been calculated. EQAR has been executed five times for the two fit-
ness function represented by the Eqs. (10) and (11) considering dif-
ferent TOC concentration (medium, high and very high) in each
dataset. The best QAR obtained, thus, the rules with support greater
than 3% and accuracy greater than 70% have been examined by the
group of expert authors in meteorological data. Tables 4 to 6 show
the results obtained for the three locations, where we have displayed
the rules selected by the expert authors from the best ones according
to their meteorological relevance. The column Scores describes the
values obtained for the different interestingness measures used to
qualify the QAR (support, confidence, amplitude, lift, leverage and ac-
curacy). The column Fitness indicates the number of equation used as
fitness function that has been optimized to obtain each QAR
respectively.

It can be shown that most of the QARs provide in these tables were
obtained by the second fitness function (Eq. (11)) which shows that
the enhancement carried out in EQAR adding a new fitness function
to evaluate the individuals in the population provides better and
more relevant rules in terms of TOC concentration. Therefore the re-
sults obtained by the second fitness function improve the results
obtained by the first fitness function (Eq. (10)). This enhancement
is due to the first fitness function that only optimizes confidence
and support, while the second fitness function optimizes the interest
of the rules and the degree of dependence among the attributes be-
longing to the antecedent and the consequent (TOC concentration
in this paper).

It can be appreciated that the scores of the quality measures of the
QARs are very good in terms of the confidence and accuracy. Most of

Rule Accuracy (%)
code R . . . :
. Lisbon Murcia Madrid Arenosillo Montlouis
Murcia
U1 85.5 90.2 86.7 87.3 83.2
U2 88.4 93.1 91.9 91.3 89.0
Uny 83.8 87.3 83.2 89.6 73.4
Uy 89.0 94.2 89.6 92.5 85.0

them reaches values very close to 100% also the lift and leverage
values are greater than 1 and 0 respectively, therefore, the rules
obtained present have high accuracy, reliability, and strong depen-
dence among the attributes belonging to the antecedent and the
consequent.

It is interesting to observe that all the considered variables form
part of the association rules obtained, with some interesting peculiar-
ities: variable w,qg is used to explain high and very high TOC concen-
tration in Lisbon, but it does not appear in Murcia nor Madrid. Also in
the Murcia case the confidence score is always 100. Note also that, in
general, the confidence score is better for Madrid and Murcia than for
Lisbon.

In order to discuss the physical correctness of the obtained associ-
ation rules, we will do a comparison of these rules with results in pre-
vious studies. Several previous works have shown the quasi-linear
relation that exists between TOC and the meteorological variables
tropopause height and temperature at 50 hPa [8,37]. Note that this
quasi-linear relationship cannot be found for OLR and ®200. Thus,
in order to analyze how good association rules obtained are, ratios
DU/km and DU/K have been calculated to be compared against the
results obtained by other authors using similar data sources. In
Tables 7-9, ratios (in absolute value) for the different tropopause
heights (DU/km) and the temperature at 50 hPa (tso) (DU/K) are
showed. In each table we show values of TOC variation for two TP
variables (the global (TP;) and the TP variable calculated with a grid
centered in the point (TPy, TPc and TPg) for Lisbon, Madrid and
Murcia, respectively).

In general, values for the four tropopause heights considered and
temperature at 50 hPa (tso) agree with results in different previous
studies. In the case of the tropopause height in [7,37] it is shown
that TOC values change approximately between 8 and 25 DU per
1 km increase in tropopause height. Note that the results obtained
with the proposed association rules also follow these range of TOC

Rules obtained in Lisbon
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Rule Code

Fig. 6. Accuracy of association rules for TOC concentration trained in Lisbon data and tested in Lisbon, Murcia, Madrid, Arenosillo and Montlouis data separately.
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Rules obtained in Murcia
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Fig. 7. Accuracy of association rules for TOC concentration trained in Murcia data and tested in Lisbon, Murcia, Madrid, Arenosillo and Montlouis data separately.

Table 12
Accuracy of association rules for TOC concentration trained in Madrid data and tested
in Lisbon, Murcia, Madrid, Arenosillo and Montlouis data separately.

Rule code Accuracy (%)
Madrid © K . - R
Lisbon Murcia Madrid Arenosillo Montlouis

Mim 65.9 67.6 711 64.2 72.3

M2 80.9 81.5 83.8 85.0 81.5

Mp1 86.7 85.0 88.4 86.7 86.7

Mp; 90.2 91.9 90.8 90.2 87.9

My 94.2 96.0 97.1 95.4 93.6

variation against all the TP variables considered at each location, and
for all the rules (medium, high and very high TOC) considered. The
only result out of this range in our rules is for Lisbon, medium TOC
concentration (rule L), in which a value of 5.9 DU/km is found for
TOC variation against variable TP;. For the case of TOC variation
with variable ts5q the variation ratio obtained in other works such as
[8,37] is that 10 DU change in TOC corresponds to a roughly 1K
change of tso. However, in other studies it is shown that these values
can be quite affected by atmospheric variability, El Nifio Southern Os-
cillation (ENSO), Quasi-Bienial Oscillation (QBO) [58], and values of
TOC variation with t5y of 6, 12 or even 16 DU/K can be found at mid
latitudes. Our results show that these thumb rule of 10 DU/K is very
well fulfilled in the TOC variation against tso in Madrid (medium
TOC concentration) and in Murcia, mainly in the rule Up,;. The rest
of the cases are not far away from these rule, showing a TOC variation

with tso between 6 and 7 DU/K which also agrees with values
obtained in other works.

5. Validation of the obtained results

This section describes the tests carried out to validate the results
obtained by EQAR in the previous section. In order to confirm that
our model has no risk of over-fitting, the rules obtained by EQAR
have been tested with six different datasets evaluating the accuracy
of the rules. First, the rules obtained for each considered location
(Lisbon, Madrid and Murcia) have been tested in the datasets
corresponding to five locations (Lisbon, Madrid, Murcia, Arenosillo
and Montlouis) separately (Fig. 5 shows these locations, the 3 previ-
ously considered and Montlouis and Arenosillo, newly added for
this validation study). In addition, the rules have been tested in a
dataset containing the TOC values of Arenosillo and Montlouis
which consist of 346 instances in total.

Table 10 and Fig. 6 describe the accuracy values corresponding to
the rules obtained in the dataset of Lisbon as training data for each
level of TOC concentration (medium, high and very high) in the five
locations as test data separately. Similarly, Table 11 and Fig. 7 show
the accuracy values obtained for the rules belonging to the dataset
of Murcia. Finally, Table 12 and Fig. 8 indicate the accuracy values
obtained for the rules corresponding to the dataset of Madrid. It can
be observed that the accuracy obtained for each rule discovered
with the training datasets (Lisbon, Murcia and Madrid) are quite
similar when they are applied to other dataset used as test data
(Lisbon, Murcia, Madrid, Arenosillo and Montlouis). As can be seen,
even in some cases there is greater value of accuracy on the test

Rules obtained in Madrid
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Fig. 8. Accuracy of association rules for TOC concentration trained in Madrid and tested in Lisbon, Murcia, Madrid, Arenosillo and Montlouis data separately.
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Table 13

Accuracy of association rules trained in Lisbon, Murcia and Madrid and tested in a data-

set containing all TOC concentration of Arenosillo and Montlouis.

Rule code Accuracy Rule code Accuracy Rule code Accuracy
Medium (%) High (%) Very high (%)

Lm 85.5 Lm 84.7 Ln 92.2

LmZ 90.8 Lhz 78.9

Ui 85.3 Un 81.5 Uy 88.7

Ui 90.2

M 68.2 M1 83.2 M 94.5
M2 86.7 Mz 89

data with respect to training data. Therefore the accuracy obtained is
stable, since there are no distinct differences among the datasets,
which indicates that there is not over-fitting among the rules learned
and datasets used as training data.

Accuracy values of QAR tested in a dataset containing the TOC
concentration of Arenosillo and Montlouis have been displayed in
Table 13. Rules for each location used as training data have been
separated by level of TOC concentration and accuracy values are
shown graphically in Figs. 9 to 11. Fig. 9 represents the rules
discovered in Lisbon, Murcia and Madrid for medium TOC concentra-
tion and their accuracy values obtained in the test dataset. Similarly,
Fig. 10 describes the rules discovered in Lisbon, Murcia and Madrid
for high TOC concentration and their accuracy values obtained in
the test dataset. Finally, Fig. 11 shows the rules discovered in Lisbon,
Murcia and Madrid for very high TOC concentration and their accura-
cy values obtained in the test dataset. These tests prove that the rules
obtained separately for a particular location are valid for locations an-
alyzed together. The results show accuracy rates above 80% except in
one case (Mp,1), and over 90% in many cases.

After this validation study, we can conclude that there is no over-
fitting among rules obtained and the dataset used as training data and
we can confirm that the EQAR approach has been really good in terms
of the quality of the QAR found because the accuracy values are very
high (exceeding 80%) and are very similar in all datasets used as test
data.

6. Conclusions

In this paper we have described the application of the EQAR algo-
rithm (Evolutionary Quantitative Association Rules) to a problem
Total Ozone Content (TOC) modeling in the Iberian Peninsula. Different
improvements in the initial population generation and fitness function
have been incorporated to EQAR in order to improve its performance in
this problem of TOC modeling. Experimental results have been carried
out in TOC data from the Total Ozone Mapping Spectrometer (TOMS)

High Ozone Concentration

W LH1 i LH2 W UH1

Rule Code

W MH1 L MH2

Fig. 10. Accuracy of association rules for high TOC concentration trained in Lisbon,
Murcia and Madrid and tested in a dataset containing all location (Lisbon, Murcia.
Madrid, Arenosillo and Montlouis).

Very High Ozone Concentration
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Fig. 11. Accuracy of association rules for very high TOC concentration trained in Lisbon,
Murcia and Madrid and tested in a dataset containing all location (Lisbon, Murcia. Madrid,
Arenosillo and Montlouis).

measuring at three locations (Lisbon, Madrid and Murcia) of the Iberian
Peninsula. As prediction variables for the association rules we have con-
sidered several meteorological variables, such as Outgoing Long-wave
Radiation (OLR), Temperature at 50 hPa level, Tropopause height, and
wind vertical velocity component at 200 hPa. The results obtained
with the EQAR approach have been really good in terms of the quality
of the association rules found. Also, the analysis of these rules agrees
with the results obtained in other works dealing with TOC modeling,
so we can conclude that the use of association rules in TOC modeling
could be an interesting analysis method for the future in this and similar
problems.

Medium Ozone Concentration
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Fig. 9. Accuracy of association rules for medium TOC concentration trained in Lisbon, Murcia and Madrid and tested in a dataset containing all location (Lisbon, Murcia. Madrid,

Arenosillo and Montlouis).
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