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Abstract. Light Detection and Ranging (LiDAR) is a remote sensor
able to extract three-dimensional information about forest structure. Bio-
physical models have taken advantage of the use of LiDAR-derived infor-
mation to improve their accuracy. Multiple Linear Regression (MLR) is
the most common method in the literature regarding biomass estima-
tion to define the relation between the set of field measurements and
the statistics extracted from a LiDAR flight. Unfortunately, there exist
open issues regarding the generalization of models from one area to
another due to the lack of knowledge about noise distribution, relation-
ship between statistical features and risk of overfitting. Autoencoders (a
type of deep neural network) has been applied to improve the results
of machine learning techniques in recent times by undoing possible data
corruption process and improving feature selection. This paper presents
a preliminary comparison between the use of MLR with and without
preprocessing by autoencoders on real LiDAR data from two areas in
the province of Lugo (Galizia, Spain). The results show that autoen-
coders statistically increased the quality of MLR estimations by around
15–30%.
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1 Introduction

Light Detection and Ranging (LiDAR) is a remote laser-based technology able
to measure the distance from the source to an object or surface in addition
to x-y position. LiDAR sensors have transformed the work previously done with



expensive or not always-feasible fieldwork. One of the most important disciplines
where LiDAR has become an important tool is forestry, specially for estimating
forest biomass [1]. Biomass estimation is a key process in forestry management
and also, is closely related to climate change since forests are important carbon
deposits on Earth [2].

Regarding LiDAR and biomass estimation, researchers have focused on deriv-
ing variables related to the LiDAR’s ability to extract vertical information and
then, worked on establishing relations with field measurements [3]. Multiple lin-
ear regression (MLR) has usually been the selected technique to find those rela-
tions [4]. The main advantage of using MLR has been the simplicity and clarity
of the resulting model, although other techniques have already proven to be more
suitable for regression [5].

Regardless the technique selected, main concerns about LiDAR-derived mod-
els are related to their suitability to be applied from one area to another (over-
fitting) [6]. Scale-dependence is well-known in the literature [7] which makes
researchers try to work at regional levels [8] in order to facilitate the car-
bon stocks calculation but with lower accuracy in the models. Regardless the
selected scale, models have also problems related to noise in the LiDAR signal
[9] which makes researchers avoid intensity (an important component in LiDAR
data related to reflectance of the objects) because of the difficulties to well cali-
brate and sensitivity to multiple returns (which are often found in forested areas)
[10]. All these problems are translated to the classical framework where MLR is
applied to develop biomass estimation models. In this context, there is a need
to explore new ways to reduce noise in LiDAR data whilst at the same time,
clarify the relation between LiDAR-derived statistical features.

In recent times, deep learning has emerged as an important tool in machine
learning. Deep learning is defined as a branch of machine learning that exploit
layers of non-linear information (in the fashion of neural networks), supervised
or unsupervised feature extraction and transformation, and for pattern analysis
and classification [11]. Autoencoders are a special type of deep neural network,
whose output vectors are a (a presumably better) representation of the original
input. They are often used for learning an effective or encoding representation
of the original data as input vectors in the hidden layers. Vincent et al. [12,13]
showed that the use of autoencoders to denoise training data could lead to an
improvement of the performance of classification/regression tasks.

Our aim in this work is to compare the results of the classical MLR for bio-
mass estimation with and without a preprocessing based on the use of autoen-
coders. Experiments carried out in two different areas of the province of Lugo
(Galizia, Spain) are statistically validated and discussed.

The rest of the paper is organized as follows. Section 2 provides a description
of the LiDAR data used in this work and the methodology followed to carry
out the experimentation in Sect. 2. The results achieved, their statistical vali-
dation and the main findings are shown in Sect. 3. Finally, Sect. 4 is devoted to
summarize the conclusions and to discuss future lines of work.



2 Materials and Method

2.1 Experimental Datasets

Aerial LiDAR data used for this study was flown in two forest areas in the
northwest of the Iberian Peninsula (Fig. 1, more details about both areas can be
found in Gonzalez-Ferreiro et al. [14]).

Field data from the two study sites were collected to obtain the dependent
variables. 39 and 54 instances (one per training plot in a study site) were located
and measured on site A and B, respectively. From every study site, two different
datasets were generated. One with the maximum resolution provided for the
flight and another with a lower level of 0.5 pulses × m−1.

Biomass fractions of each tree were estimated according to the field mea-
surements (heights and diameters) and the equations for Eucalyptus globulus
(site A) and Pinus radiata (site B) reported by [15]. For every plot, biomass frac-
tionswereused tocalculate the following standvariables inperhectareabasis: stand

Fig. 1. Study sites located in NW of Spain. Bottom: study site of Trabada (site A).
Top: study site of Guitiriz (site B).



crown biomass (Wcr), stand stem biomass (Wst) and stand aboveground biomass
(Wabg)for both sites A and B. Additionally, stand basal area (G), dominant height
(Hd), mean height (Hm) and stand volume (V ) were computed for site B.

FUSION software [16] also provided the variables related to the height and
return intensity distributions within the limits of the field plots. Table 1 shows
the complete set of metrics and the corresponding abbreviations used in this
paper.

From field data and the statistics obtained from LiDAR we built the exper-
imental datasets. Each dataset was compose of the 48 independent variables
(coverFP and returns in Table 1 plus the rest calculated for LiDAR intensity
and heights distributions) extracted from LiDAR data and a dependent variable

Table 1. Statistics extracted from the LiDAR flights’ heights and intensities used as
independent variables for the regression.

Description Abbreviation

Percentage of first returns over 2 m coverFP

Number of returns above 2 m returns

Minimum min

Maximum max

Mean mean

Mode mode

Standard deviation SD

Variance V

Interquartile distance ID

Skewness Skw

Kurtosis Kurt

Average absolute deviation AAD

25th percentile P25

50th percentile P50

75th percentile P75

5th percentile P05

10th percentile P10

20th percentile P20

30th percentile P30

40th percentile P40

60th percentile P60

70th percentile P70

80th percentile P80

90th percentile P90

95th percentile P95



(fieldwork-derived forest variable). This procedure gave a total of 20 datasets
(obtained for the ten biophysical variables and the two different resolutions of
LiDAR-derived feature extraction).

2.2 Autoencoders

We used a traditional autoencoder model [17] to improve MLR performance. An
autoencoder is a type of neural network which tries to learn an identity function
defining a code/decode transformation. Thus, it firstly takes an input vector x and
maps it to a hidden representation y through a deterministic mapping y = f(x) =
s(Wx+ b), parametrized by W, b. W is a weight matrix and b is a bias vector. The
resulting latent representation y is then mapped back to a reconstructed vector z
in input space z = g(y) = s(W ′y + b′). Every instance x(i) is thus mapped to a
corresponding y(i) and a reconstruction z(i) (see Fig. 2). The parameters of both
transformations are calculated to minimize an error function between input and
output usually based on the traditional squared error function.

In this work, the selected implementation of the autoencoder was obtained
from Weka [18] source repository. The autoencoder was implemented as an unsu-
pervised filter with two optional extra steps (normalization and standardization).
We worked with just one hidden layer (since single-hidden-layer neural networks
are universal approximators [19]) and the number of units in the hidden layer was
set up to the number of features plus one (non-linear autoencoders with more hid-
den units than inputs have experimentally yielded useful representations [20]).

Fig. 2. Autoencoder structure.



2.3 Experimental Framework

In this work, we tested MLR with and without autoencoder preprocessing,
applied to the 20 datasets with the 48 independent variables.

Coefficient of correlation (R) was selected to establish the comparison as was
done in recent bibliography [21] although we also included root mean square
error (RMSE) in the results section for information purpose. The coefficients
were obtained in a process of 5-fold cross-validation on each dataset repeated five
times. The mean value of the five repetitions was recorded for each technique
and dataset in order to obtain robust results (independent from the random
selection of folds).

Feature selection based on the well-known M5’ filter from Weka was applied
to avoid the Hughes phenomenon [22] in all the cases. Optionally, normalization
and standardization were applied. Thus, experiments were repeated for every
dataset and each compared technique (simple MLR and MLR with autoencoder)
with no extra filtering, normalization, and standardization. Then, we selected
the best R obtained by each technique and every dataset regardless the optimal
filtering setup.

Finally, a T-student or Wilcoxon test (depending on whether or not para-
metric conditions are met) was applied to statistically validate the results [23].

3 Results

The results obtained by each option can be found in Table 2. If R is used as the
reference measure of quality, we can observe that in 14 out of 20 cases, the use of
an autoencoder improved the results obtained by MLR. If RMSE is the quality
measure, the results are even better (18 out of 20).

After the generation of the quality results for the models, a statistical analy-
sis was applied by using the open-source platform StatService [24] to check the
significance in the differences in terms of R. T-student test is usually used for
pairwise comparison of results if parametric conditions (homoscedasticity, inde-
pendence, normality) are met [25]. However, Shapiro-Wilk test rejected the nor-
mality hypothesis of the results with a p-value under 0.026 for an α = 0.05, and
therefore, a non-parametric test such as Wilcoxon’s was selected.

Wilcoxon test firstly obtains the average ranks taking into account the posi-
tion of the compared results with respect to each other. Thus, a value of 1 for a
rank would mean a model was the best for a test case, while a rank of 2 would
mean it was the worst. Later, the test statistically validates the differences in the
mean ranks. In our case, MLR without autoencoding obtained a mean ranking
of 1.7 and with the use of an autoencoder reached a mean ranking of 1.1. Tak-
ing into account that the Wilcoxon statistic was 164.5 with 1 and 18 degrees of
freedom and its corresponding p-value was 0.024, so we could state that the use
of an autoencoder significantly improved MLR performance under an α = 0.05.

Regarding the results obtained, we can observe that when an autoencoder is
applied the improvement of RMSE is around 15 % in average whilst it is 30 %



Table 2. Results obtained by MLR with (column ‘Auto’) and without (column
‘Simple’) autoencoding. The best in bold.

Site Resolution Biophysical variable R RMSE

Simple Auto Simple Auto

Trabada 0.5 Wcr 0.41 0.64 7663.42 5570.10

Wst 0.4 0.74 50424.57 36029.75

Wabg 0.44 0.69 61899.45 47395.80

4 Wcr 0.36 0.69 6200.81 4553.23

Wst 0.30 0.81 51109.90 31582.79

Wabg 0.27 0.77 56869.20 36324.06

Guitiriz 0.5 Wcr 0.65 0.55 10236.60 9675.70

Wst 0.61 0.72 65573.57 46515.49

Wabg 0.61 0.69 62827.15 59505.88

G 0.50 0.52 12.58 11.63

Hd 0.71 0.79 2.93 2.84

Hm 0.76 0.78 2.48 2.41

V 0.68 0.67 133.71 125.00

8 Wcr 0.76 0.53 9127.03 9709.39

Wst 0.71 0.69 58881.87 45201.21

Wabg 0.69 0.72 63302.99 54142.08

G 0.60 0.64 11.07 10.63

Hd 0.76 0.81 3.44 2.79

Hm 0.78 0.71 2.51 2.18

V 0.74 0.70 112.57 121.22

if we compare averaged R. Similar results have reported [12] that demonstrated
that the use of autoencoders bring benefits for other machine learning techniques
such as Support Vector Machines. Our results show that parametric techniques
can also be boosted by this type of preprocessing.

Among the possible reasons for such a good performance of autoencoders, we
should outline that LiDAR-derived data is generated in several steps which may
involve noise generation. Vincent et al. [13] showed how to develop denoising
autoencoders which focus in noise reduction. Although the one applied in this
work cannot be seen as a complete denoising autoencoder, the benefit could still
be present due to the own nature of autoencoders which establish a mechanism
to code/decode data avoiding spurious influence.

Also, notice that LiDAR-derived statistical features are usually limited and
hand-crafted. These features might not have to completely describe the complex-
ity in a forest area. In that case, relations between statistics could be explored
by an autoencoder in order to find a better data representation by features com-
bination. Taking into account that autoencoders take almost-negligible training



time for small datasets (a common situation in forestry due to fieldwork high
costs), their use is strongly advised.

Finally but not less important, autoencoders could have also decreased the
risk of overfitting introducing some degree of distortion in training data although
this possibility needs a deeper study to be confirmed.

4 Conclusions

This paper presented a preliminary study of the use of autoencoders to improve
LiDAR-derived biomass estimation by MLR. The experimentation was carried
out on real data from two areas in the province of Lugo (Galizia, Spain). The
results showed that autoencoders statistically improved the use of classical MLR
for biomass estimation. Nevertheless, results confirmed that autoencoders are a
valuable tool to preprocess LiDAR-derived features by getting noise reduction
and feature discovering.

Future work should address gaps not covered in this work. Thus, we must
complete the framework with a deeper comparison with other types of autoen-
coders (denoising encoders, sparse encoders, etc.) and regression techniques
(regression trees, Gaussian processes, etc.). We should also study the influence
of the number of hidden units. Finally, we must assess autoencoders to avoid
overfitting and thus overcome the problems to apply models from one area to
another.
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Barrio-Anta, M., Crecente-Campo, F., González-González, J., Pérez-Cruzado, C.,
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