
Quality in use evaluation of a GraphQL
implementation

Antonio Quiña-Mera1,2, Pablo Fernández-Montes2, José Maŕıa Garćıa2, Edwin
Bastidas1, and Antonio Ruiz-Cortés2

1 Faculty of Engineering in Application Science, eCIER Research Group, Universidad
Técnica del Norte, Ibarra 100105, Ecuador,

aquina@utn.edu.ec
2 SCORE Lab., I3US Institute, Universidad de Sevilla, Sevilla 41012, Spain

Abstract. The software development trend uses service-oriented soft-
ware architecture (SOA), which provides efficiency, agility, and ease of
growth. The architectural design most commonly used in SOA applica-
tion development is REST (Representational State Transfer); however,
some data management problems have been identified in its Application
Programming Interface called API-REST. Several technological options
have emerged to appease these problems, such as SPARQL, Cypher,
Gremlin, and the most popular GraphQL. GraphQL was developed by
Facebook in 2012 and released in 2015 to the community as an open-
source project, used by companies such as GitHub, Airbnb, Amazon,
Apollo, IBM, and Facebook. The goal of this research is to demonstrate
whether GraphQL implementations work. Therefore, we based the re-
search design on Design Science Research (DSR) to evaluate the quality-
in-use of a GraphQL implementation that automated the systematic
mapping studies (SMS) process for technology researchers at Univer-
sidad Técnica del Norte - Ecuador. We used the ISO/IEC 25000 series
of standards to evaluate the quality in use; the results showed that the
implementation met 84.11% of the established quality model’s expected
value. The detailed evaluation by quality characteristics was: Effective-
ness 96.62%, Efficiency 78.90%, and Satisfaction 70.26%.

Keywords: GraphQL, SOA, Quality in use, ISO/IEC 25000

1 Introduction

A technological trend is the consumption of services through the Internet; this
practice is called Cloud Computing; its benefits are cost savings, efficiency,
agility, growth opportunities, and innovation [1]. Cloud Computing offers three
areas of services: software, platform, and infrastructure [2]. We focus on the soft-
ware as a service (SaaS) model, which distributes computer applications hosted
by cloud service providers and made available to users through a network without
the need to download or install them [3]. The most popular software architectures
for the development of applications that support SaaS are the Service-Oriented
Architectures (SOA) and Microservice Oriented Architectures (MSA), the latter

2 Antonio Quiña-Mera et al.

being a modification of SOA [4]. REST (REpresentational State Transfer) is the
most widely used SOA and MSA architectural design to develop Application
Programming Interfaces called API-REST or API-RESTFUL [5]. Despite the
acceptance of REST in the scientific and technological community, it has pre-
sented some problems in data handling, such as over-fetching (occurs when the
data provider delivers more information than the client requires in a request).
And under-fetching (occurs when the data provider does not offer in a query all
the information that the client needs, therefore it must make more requests to ob-
tain the complete information) [6]. Several technological options have emerged
to improve the REST problems, such as SPARQL, Cypher, Gremlin, and the
most popular of these GraphQL [7]. GraphQL is a query language and execu-
tion engine for data in client-server applications that has been accepted in the
technology community because it was developed and used in the products of the
company Facebook [8]. Created in 2012 and released in 2015 to the community
as an open-source project and used by technology and application development
companies such as 8base, Airbnb, Amazon Web Service, Apollo, Dgraph Labs,
Elementl, Facebook, Fauna, Gatsby, Hasura, HomeAway, IBM, Intuit, Neo4j,
PayPal, Prisma, Salsify, Shopify, Solo.io, Twitter [9].

Accordingly, we base this study on the Design Science Research (DSR) ap-
proach and pose the research question Does the GraphQL implementation work?.
The research aims to answer the research question by evaluating the quality-in-
use of a GraphQL component’s implementation. We evaluated the quality-in-use
using the ISO/IEC 25000 series of quality standards known as SQuaRE (System
and Software Quality Requirements and Evaluation). The GraphQL implemen-
tation consisted of automating Systematic Mapping Studies (SMS) management
proposed by technology researchers. We evaluated the quality in use using the
ISO/IEC 25000 series of quality standards known as SQuaRE (System and Soft-
ware Quality Requirements and Evaluation) at the Software Department of the
Universidad Técnica del Norte - Ecuador. The rest of paper is structured as
follows: Section 2) Research Design: we establish the research activities based
on DSR, theoretical foundation, and artifact design and build (software imple-
mentation). Section 3) Results: results of the evaluation of the artifact quality
in use. Section 4) Discussion: discussion of the research. Section 5) Conclusions.

2 Research design

We designed the research based on the guidelines of the Design Science Research
approach [10,11], see Table 1.

2.1 Population and sample

The population of professors of the Software Department of the Universidad
Técnica del Norte is twenty-two. The sample calculation with a margin of error
of 5%, a heterogeneity of 99%, and a confidence level of 99% is thirteen subjects.

Does GraphQL implementation work? 3

Table 1. Research design

Activity Components Paper Section

Problem Diagnosis
Problem; Objective. Introduction
Population and sample; Accep-
tance survey.

Research design

Theoretical foundation

Software Architecture; SCRUM
Framework; GraphQL; Systematic
Mapping Study; ISO/IEC 25000
Standards: Quality in Use.

Research design

Artefact Design: GraphQL
implementation

Requirements; Design (Process
and Architecture); Development
and Deployment.

Research design

Artifact evaluation Quality in use evaluation of a
GraphQL implementation Results

However, in the quality-in-use model’s measurement instruments (practical
workshop and satisfaction survey), the non-probabilistic convenience sampling
technique was applied. The sample consisted of 40 subjects (15 professors and
25 students) who had adequate knowledge to perform the practical workshop.

Acceptance survey. To establish the automation topic’s acceptance (SMS
Management) for GraphQL implementation, we surveyed the study population.
The survey consisted of 6 questions validated by three expert researchers in
Software Engineering before the survey. The survey results indicated that 45.45%
of the respondents knew about literature review methods (SLR3/SMS), but no
one knew a tool to carry them out; furthermore, 100% indicated that they would
like training about SMS management.

2.2 Theoretical foundation

Software architecture. Software architecture has evolved in different architec-
tural approaches over the years. In the ’80s, structures were vertical and isolated;
in the ’90s, horizontal models focused on business processes appeared, and nowa-
days, software architecture is focused on continuous delivery of different services.
This evolution leads companies to migrate their monolithic architectures (com-
bining user interface, business logic, and data in the same application towards
Service Oriented Architecture (SOA) and Microservices (small services that op-
erate independently) [13] [4]. SOA and microservices present an approach to
building distributed systems that deliver web services (self-describing, modular
business applications that export business logic as a service via the Internet [14];

3 A systematic literature review (SLR) is a means of identifying, analyzing, and inter-
preting reported evidence related to a set of specific research questions [12].

4 Antonio Quiña-Mera et al.

its implementation has also had an evolution ranging from building web services
based on WSDL and SOAP protocol to building REST and GraphQL Web
APIs [13].

GraphQL. Created in 2012 by Facebook as an internal project and then re-
leased in 2015 to the community as an open-source project [15]. GraphQL is a
runtime and API data query language [8]. It arises with the need to reduce the
overhead of transferred data and the number of API query requests; reduce the
number of invalid client query errors; support the evolution of the data model
without an API version [16]. GraphQL service is composed of a type system,
executable operations, or by extensions of external type systems. The type sys-
tem defines the schema of the data capability of the GraphQL API service. The
schema is defined in terms of types (objects, scalars, Enums, input, interfaces,
and unions), types of operations (queries, mutations, and subscriptions), and
directives (describes alternate runtime execution) [8].

SCRUM Framework. Establishes processes to manage product development
with an interactive and incremental life cycle that promotes adaptive planning,
development, and evolutionary delivery of the software product that drives rapid
response to change. Scrum provides a usage guide comprised of phases, roles,
events, artifacts, and best practices [17].

Systematic Mapping Study (SMS). Provides an overview of a research
topic through a classification [18]. The SMS focuses on conducting a literature
search that answers research questions usually are what, when, and where have
been published about a research topic [19]. The main phases of SMS are review
planning, study identification, and data extraction and classification [20].

ISO/IEC 25000 Standards. Called SQuaRE (System and Software Qual-
ity Requirements and Evaluation), focuses on the specification, measurement,
and evaluation of software product quality requirements. SQuaRE establishes a
model for measuring the internal, external, and in-use quality of software. The
quality-in-use requirements specify the required level of quality from the end
user’s point of view; it is a validation of the software product from the needs of a
context of use [21]. For quality-in-use evaluation, we define a quality model, mea-
sure the model, and evaluate it according to its measurement. We determined
the quality-in-use model based on the ISO/IEC 25010 standard, establishing the
quality characteristics and sub-characteristics. In the measure of the model, we
use the metrics defined in ISO/IEC 25022. For model evaluation, we use the
recommendations of ISO/IEC 25040.

2.3 Software implementation (Artefact Design)

Requirements. The requirements backlog for the Systematic Mapping Study
(SMS) management automation we established in 15 user stories.

Does GraphQL implementation work? 5

Design (Process and Architecture). We used the Petersen et al. guide to
establish the three-phase process for conducting SMS: Phase 1: Review planning,
Phase 2: Study identification, Phase 3: Data extraction and classification. We
designed a client-server application based on SOA service-oriented architecture
using the provider, an API-GraphQL. The client, a web application integrated
with the API-Mendeley for bibliographic reference management, see Figure 1.

 API-GraphQL (Provider) Web Application (Client)

Apollo

V 2.4.8

GraphQL

V 14.3.1

Node.js

V 12.0.0

Neo4j

V 4.0.0

Apollo

boost

V 0.4.0

GraphQL

V 14.3.1

React

Bootstrap

V 4.0.0

Mendeley

API-REST V 1.0

V 16.8.6

Fig. 1. Software product architecture design.

Development and Deployment. The application development was performed
from 03/06/2019 to 06/12/2019 (220 hours) using the SCRUM framework. The
application (named ”SMS-Online”) automates the Systematic Mapping Study
process. The work team consisted of two stakeholders, one product owner, one
scrum master, and one developer. Below is a summary of the phases and artifacts
used in the software product implementation, see Table 2.

Table 2. Development and implementation summary

Phase Sprint (duration) Deliverables

Pre-Game Sprint 0 (20 hours)

Requirements:
- 15 user stories
- Product Backlog
Design (Architecture):
- Process Diagram
- Software Architecture
- Initial Database Diagram

Game

Sprint 1 (42 hours) - Spring Backlog
Sprint 2 (42 hours) - Software Product Increment
Sprint 3 (42 hours)
Sprint 4 (42 hours)

Post-Game Sprint 5 (32 hours)
- 15 Acceptance Tests
- Deployment of the software product
- Delivery-Receipt Act

6 Antonio Quiña-Mera et al.

In the development, we verified the GraphQL components implemented in
SMS-Online. Besides, we noticed that using the neo4j-graphql.js package (A
JavaScript package to make it easier to use GraphQL and Neo4j together) trans-
lates GraphQL queries to a single Cypher4 query, eliminating the need to write
queries in GraphQL resolvers and to perform batch queries [23]. Table 3 shows
the components implemented manually and generated by neo4j-graphql.js.

Table 3. GraphQL components implemented

Component Component Implemented Provider Client
clasification Generated Developed Components

Executable
Definition

Query X 12 0 27
Mutation X 62 1 40
Subscription X 0 0 0

Type System
Definition

Schema X 0 1 0
Scalars X 0 132 132
Objects X 0 12 12
Interfaces X 0 1 1
Unions X 0 1 1
Enums X 0 2 2
Input Object X 63 0 0
Directives X 0 14 0

Access to the SMS-Online application: https://appsms.utn.edu.ec:3000

3 Results (Artifact evaluation)

As a result, we show the quality in use evaluation of the GraphQL implementa-
tion developed in the previous section. Next, we offer the evaluation process.

3.1 Definition of the quality in use model

The Product Owner and the Scrum Master of the project defined the quality in
use model according to the ISO/IEC 25010 guidelines and the implementation
context’s quality needs. The model was structured with the expected valuation
(percentage of the total) of the quality characteristics and sub-characteristics
established in the model, up to complete 10% [24], see Table 4.

4 Cypher is Neo4j’s graph query language [22].

https://appsms.utn.edu.ec:3000

Does GraphQL implementation work? 7

Table 4. Quality in use model

Characteristics
Sub Percentage Percentage

characteristics Sub-characteristic Characteristic

Effectiveness
Tasks completed 16%

42%Objectives achieved 16%
Errors in a task 16%

Efficiency
Task time 16%

32%
Time efficiency 16%

Satisfaction
Usefulness 8%

26%Trust 8%
User experience 8%

3.2 Measurement of the model

We identified a set of metrics described in ISO/IEC 25022 [25] associated with
measuring the sub-characteristics of the quality-in-use model defined in the pre-
vious section. The metrics describe the measurement functions and their ele-
ments, see Table 5.

Table 5. Quality in use measures

Characteristic
Sub Measurement Measurement
characteristic function elements

Effectiveness

Tasks
completed

X=A/B

A=Number of unique tasks com-
pleted. B=Total number of unique
tasks attempted.

Objectives
achieved

X = 1−
∑

Ai
|X ≥ 0

Ai = Proportional value of each miss-
ing or incorrect objective in the task
output (maximum value = 1).

Errors in a task X = A
A = Number of errors made by the
user during a task.

Efficiency

Task time X = T T = Task time.

Time efficiency X = A/T
A = Number of objectives achieved.
T = Time.

Satisfaction

Usefulness X = N/T
N=Number of satisfied users.
T=Number of users surveyed.

User trust
C = A / T,

X=1-C

X=% complaints. C=% Trust.
A=Number of complaints filed.
T=Total number of survey respon-
dents.

User experience X=A
A = Psychometric scale value from a
pleasure questionnaire (Likert Scale)

8 Antonio Quiña-Mera et al.

We used two instruments to obtain the measurement elements shown in Table
5: (i) Practical workshop on the use of the SMS-Online application, for data on
effectiveness and efficiency of quality in use; and (ii) A satisfaction survey (based
on SUS5 [26]) on the use of the SMS-Online application after the practical work-
shop. We applied the measurement instruments to the sample of subjects (40
subjects) established in Section 2.1. After applying the instruments, we assessed
reliability using statistical methods.

Statistical evaluation of the measurement instruments. We evaluated
the instruments’ reliability according to their types of variables and the results
obtained in the measurement applied to the study subjects, using the RStudio6

tool for the calculations.

Practical workshop. we used the statistical method Cronbach’s Alpha coefficient;
the analysis matrix structure contains the following measurement elements: tasks
attempted, tasks completed, objectives completed, errors in a task, time tasks,
objectives achieved, number of complaints, and confidence. The result obtained
is 0.89, indicating that the workshop’s reliability is acceptable according [28] [29],
see Figure 2.

Fig. 2. Cronbach’s alpha of the practical workshop.

Satisfaction Survey. we used the Confirmatory Factor Analysis (CFA) technique;
the factor structure contains the factors: usefulness (ML1) and comfort (ML2).
We analyzed the correlation between the initial survey design and the CFA
calculation of the survey execution results (see Figure 3). The initial design
of ML1 contains the questions: Q1, Q6, and Q9, of which we discarded Q6 for
correlating less than 0.3 (low level to maintain a viable survey). The initial design
of ML2 contains the questions: P2, P3, P4, P5, P7, P8, and P9, of which we
discarded questions: P3, P5, P7, P9 for having a low correlation. After analyzing
and choosing the correlated questions, we calculated the CFI (Comparative Fit
Index) and the TLI (Tucker and Lewis) index with the same AFC algorithm.
We obtained CFI=0.94 and TLI=0.90, considered acceptable [30], and confirm
that the survey is valid and reliable.

5 The System Usability Scale (SUS) provides a “quick and dirty”, reliable tool for
measuring the usability [26].

6 RStudio is an integrated development environment (IDE) for R, a programming
language for statistical computing and graphics [27].

Does GraphQL implementation work? 9

Fig. 3. Correlation between survey questions (CFA calculation).

3.3 Evaluation of the quality in use model

We evaluated based on the expected values established in the quality model and
the model’s measurement results, see Table 6.

Table 6. Evaluation of the quality in use model

Characteristics Sub characteristics Measurement Expected Achieved Completed

Effectiveness

Tasks completed 0.97 16% 15.50%

96.62%Objectives achieved 0.97 16% 15.50%
Errors in a task 0.96 16% 9.58%

Efficiency
Task time 0.78 16% 12.51%

78.90%Time efficiency 0.80 16% 12.74%

Satisfaction

Usefulness 0.71 8% 7.05%

70.26%Trust 0.70 8% 5.60%
User experience 0.70 8% 5.62%

Total 84.11%

The result obtained from evaluating the quality model in use is 84.11% ,
which is considered an ”opportunity” to improve economic, health, or envi-
ronmental outcomes, according to the risks and opportunities associated with
the quality level established in ISO/IEC 25022 [25].

4 Discussion

Before proposing the automation of the Systematic Mapping Study (SMS) pro-
cess as an implementation of GraphQL called SMS-Online, we checked in the
bibliographic databases Scopus, DBLP, and Springer for similar proposals. We
found the studies of Knutas et al. [31] and Kohl et al. [32] that expose system-
atic literature review (SLR) and SMS automation tools. Knutas proposes the
application called NAILS, which connects to the bibliographic database ”web
of science” to choose a data collection of studies and export in files imported

10 Antonio Quiña-Mera et al.

into web-based analysis server HAMMER to display a statistical analysis of the
entered data. They also offer an option to download an R language-based appli-
cation for the study of the data collection. The difference with SMS-Online is the
systematization of specific data in the SMS data extraction, the documentation
of the entire SMS process, and the integration of studies from various biblio-
graphic databases; this helps researchers organize and document their studies in
a maintainable way and other researchers to reproduce.

Kohl reviews Online tools supporting the conduct and reporting of system-
atic reviews and systematic maps, showing 22 applications, of which two appli-
cations (Colandr and CADIMA) support SMS systematization. We reviewed the
functioning of Colandr (free access), where we were able to perform Planning,
Citation Screening, Full-text Screening, Data Extraction, and import of data col-
lections through flat files. The similarities between Conlandr and SMS-Online
are that they can conduct the primary SMS phases; the differences, SMS-Online
offers help documentation at each step of the process, import primary-studies
API-Mendeley and connects them directly to Mendeley Web. We also reviewed
the CADIMA tool (free access), which presented detailed documentation at each
step of the process; however, it was difficult to use it, which suggested having
previous knowledge of the application to use it correctly. The advantage over
SMS-Online is the option of collaborative work of several users in the same SMS
study. The functionality of finding duplicate studies in SMS-Online is managed
with the functionalities of Mendeley.

SMS-Online complements its functionalities with Mendeley’s SMS tool func-
tionalities; it displays and exports SMS results for use in documents such as
scientific articles, scientific posters, or papers. The limitations found in SMS-
Online are that it doesn’t collaborate with several users in the same SMS and
can not perform a check for duplicates in selecting studies. We propose these
limitations as future work in updating the implementation of the SMS-Online
application.

5 Conclusions

In this paper, we use the DSR approach to formulate the research question, Does
the GraphQL implementation work?. We answer by evaluating the quality-in-
use of implementation of GraphQL components. The implementation consisted
of automating the management of Systematic Mapping Studies (SMS) named
SMS-Online, directed to technology researchers of the Software Department of
the Universidad Técnica del Norte - Ecuador in the academic period 2019, those
who accepted (survey) with 100% the proposal of the automation topic.

GraphQL implementation was performed in a client-server web application
using SOA (Service Oriented Architecture) and integrated with the Mendeley
API-REST to complement the bibliographic management functionality. We de-
veloped using the SCRUM framework and the following technologies: Provider
API-GraphQL (Apollo Express, GraphQL, JavaScript, Node.js, Database: Neo4J),
Client Web Application (Apollo Scient, GraphQL, React, Bootstrap, and Mende-

Does GraphQL implementation work? 11

ley API-REST). We implemented 301 GraphQL components in the SMS-Online
application: 12 queries, 63 mutations, 1 schema, 12 object, 132 scalars, 1 enums,
63 input objects, 1 interface, 1 union, and 14 directives. We evaluated the imple-
mentation using the quality-in-use model based on the ISO/IEC 25000 series of
standards. The evaluation had three phases: 1) Definition of the quality-in-use
model based on ISO/IEC 25010; 2) Measurement of the quality model based
on ISO/IEC 25022; and 3) Evaluation of the quality model based on ISO/IEC
25040. The evaluation result showed that the application’s implementation com-
plied with 84.11%, which is considered an ”opportunity” to improve economic,
health, or environmental outcomes; where, the evaluation by characteristics was:
Effectiveness 96.62%, Efficiency 78.90%, and Satisfaction 70.26%. According to
these results, on the one hand, we proved that the implementation of GraphQL
components is acceptable and work in SOA applications, thus answering the re-
search question. On the other hand, we note that it is useful and convenient to
use ISO/IEC standards to evaluate the software product’s quality and identify
improvement features in the applications.

As future work, we note the need to evaluate the implementation of all
GraphQL components; improve the limitations found in the SMS-Online appli-
cation; evaluate the internal and external quality and replicate the quality-in-use
of GraphQL components.

References

1. Wei Tek Tsai, Xiao Ying Bai, and Yu Huang. Software-as-a-service (SaaS): Per-
spectives and challenges. Science China Information Sciences, 57(5):1–15, 2014.

2. Peter M Mell and Timothy Grance. The NIST Definition of Cloud Computing.
Technical report, National Institute of Standards and Technology, Gaithersburg,
2011.

3. Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand
Ghalsasi. Cloud computing - The business perspective. Decision Support Sys-
tems, 51(1):176–189, 2011.

4. Justus Bogner and Alfred Zimmermann. Towards Integrating Microservices with
Adaptable Enterprise Architecture. In Proceedings - IEEE International Enterprise
Distributed Object Computing Workshop, EDOCW, volume 2016-Septe, pages 158–
163, Toronto, 2016. Springer.

5. Hyuck Han, Shingyu Kim, Hyungsoo Jung, Heon Y. Yeom, Changho Yoon, Jong-
won Park, and Yongwoo Lee. A RESTful approach to the management of cloud
infrastructure. In CLOUD 2009 - 2009 IEEE International Conference on Cloud
Computing, pages 139–142, 2009.

6. Maximilian Vogel, Sebastian Weber, and Christian Zirpins. Experiences on mi-
grating RESTful Web Services to GraphQL. In ICSOC Workshops 2017, page
283–295, Malaga, 2018. Springer Verlag.

7. Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, and Steffen
Staab. Empirical study on the usage of graph query languages in open source
Java projects. In SLE 2019 - Proceedings of the 12th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, co-located with SPLASH
2019, pages 152–166, Athens, 10 2019. Association for Computing Machinery, Inc.

12 Antonio Quiña-Mera et al.

8. The GraphQL Foundation. GraphQL, 2018.
9. GraphQL Foundation. GraphQL Foundation, 2019.

10. Alexander Maedche, Alan Hevner Eds, May June, and David Hutchison. Design-
ing the Digital Transformation. In International Conference on Design Science
Research in Information System and Technology, volume 10243, pages 231–246,
Kristiansand, 2017. Springer Link.

11. Alan Hevner and Samir Chatterjee. Design Science Research in Information Sys-
tems. In Integrated Series in Information Systems, chapter 2, pages 9–22. Springer,
Boston, 39 edition, 2010.

12. Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review
process research in software engineering. Information and Software Technology,
55(12):2049–2075, 2013.

13. Pavel Seda, Pavel Masek, Jindriska Sedova, Milos Seda, Jan Krejci, and Jiri Hosek.
Efficient Architecture Design for Software as a Service in Cloud Environments. In
10th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops, ICUMT 2018, pages 317–322, Moscow, 11 2018. IEEE
Computer Society.

14. Uri Klein and Kedar S. Namjoshi. Formalization and automated verification of
RESTful behavior. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6806
LNCS:541–556, 2011.

15. Lee Byron. GraphQL: A data query language - Facebook Code, 2015.
16. Mike Bryant. GraphQL for archival metadata: An overview of the EHRI GraphQL

API. In Proceedings - 2017 IEEE International Conference on Big Data, Big Data
2017, volume 2018-Janua, pages 2225–2230, Boston, 12 2017. Institute of Electrical
and Electronics Engineers Inc.

17. Ken Schwaber and Jeff Sutherland. The Definitive Guide to Scrum: The Rules of
the Game. Scrum.org, 2020.

18. Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting
systematic mapping studies in software engineering: An update. Information and
Software Technology, 64:1–18, 2015.

19. Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic
mapping studies in software engineering. In 12th International Conference on
Evaluation and Assessment in Software Engineering, EASE 2008, page 11, Bari,
2008. BCS Learning and Development Ltd.

20. José A. Galindo, David Benavides, Pablo Trinidad, Antonio Manuel Gutiérrez-
Fernández, and Antonio Ruiz-Cortés. Automated analysis of feature models: Quo
vadis? Computing, 101(5):387–433, 2019.

21. ISO/IEC. NTE INEN-ISO/IEC 25000 ISO/IEC 25000:2014 Systems and soft-
ware engineering — Systems and software Quality Requirements and Evaluation
(SQuaRE) — Guide to SQuaRE. International Organization for Standardization,
2 edition, 2014.

22. Neo4j. Cypher Query Language - Developer Guides, 2020.
23. GRANDstack. neo4j-graphql.js User Guide — GRANDstack, 2021.
24. ISO/IEC. NTE INEN-ISO/IEC 25010. International Organization for Standard-

ization, 1 edition, 2015.
25. ISO/IEC. Systems and software engineering — Systems and software quality re-

quirements and evaluation (SQuaRE) — Measurement of quality in use, volume 1.
International Organization for Standardization, Geneva,, 1 edition, 2016.

26. John Brooke. SUS: A Retrospective. Journal of Usability Studies, 8(2):29–40, 2013.

Does GraphQL implementation work? 13

27. Mhairi McNeill. About RStudio - RStudio, 2020.
28. Klaas Sijtsma. On the use, the misuse, and the very limited usefulness of cronbach’s

alpha. Psychometrika, 74(1):107–120, 2009.
29. Juan Mendoza. RPubs - Alfa de Cronbach - Psicometŕıa con R, 2018.
30. István Tóth-Király, Gábor Orosz, Edina Dombi, Balázs Jagodics, Dávid Farkas,

and Camille Amoura. Cross-cultural comparative examination of the Academic
Motivation Scale using exploratory structural equation modeling. Personality and
Individual Differences, 106:130–135, 2017.

31. Antti Knutas, Arash Hajikhani, Juho Salminen, Jouni Ikonen, and Jari Porras.
Cloud-based bibliometric analysis service for systematic mapping studies. ACM
International Conference Proceeding Series, 1008:184–191, 2015.

32. Christian Kohl, Emma J. McIntosh, Stefan Unger, Neal R. Haddaway, Steffen
Kecke, Joachim Schiemann, and Ralf Wilhelm. Online tools supporting the con-
duct and reporting of systematic reviews and systematic maps: A case study on
CADIMA and review of existing tools. Environmental Evidence, 7(1):1–17, 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/352800033

	Quality in use evaluation of a GraphQL implementation

