
WS-Governance
A language for SOA Governance Policies

definition

Josè Antonio Parejo Maestre, Pablo Fernandez and Antonio Ruiz Cortés
Computer Science and Engineering School

Department of Computing Languages and Systems
University of Seville

{japarejo,pablofm,aruiz}@us.es

Applied Software Engineering Research Group
http://www.isa.us.es

University of Sevilla
http://www.us.es

This work is partially supported by:

Ministerio de Ciencia e Innovación Consejería Innovación, Ciencia y
Empresa, Junta de Andalucía

January 28, 2011

http://www.isa.us.es
http://www.us.es

Contents 2

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Compatibility amongst policies . 5

3 A motivating use case 6
3.1 WS-Policy drawbacks . 8

4 From WS-Policy to Ws-Governance 9
4.1 DSLs in WS-Governance . 10
4.2 SOA Modeling with SAML . 11
4.3 Specifying Governance properties, and policy assertions with GAL . . . 12

5 Property checking through CSPs 15
5.1 CSPs in a nutshell . 15
5.2 Semantics of GDs* based on CSPs . 15
5.3 Checking for Consistency . 17
5.4 Prototype implementation . 19

6 Related Work 19

7 Conclusions and Future Work 20

8 Acnowledgements* 21

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

1 Introduction 3

1 Introduction
SOA adoption brings an increase on the number of elements of the IT architecture,
where proper management and control become capital issues. In this context, SOA Gov-
ernance is defined as the management process aimed at delivering the SOA promise of
reuse, business goals support and responsiveness [11, 15]. Both industry and academia
have identified SOA Governance as a promising area [15, 7].

According to [21] SOA Governance Lifecycle can be divided into six stages, from
more abstract business levels to more concrete operational levels: Create a SOA strat-
egy, Align Organization, Manage Service Portfolio, Control Service Lifecycle, Policy
Definition and Enforcement and Service Level Management. In this paper we focus on
the policy definition as the key stage that requires a deeper analysis in order to support
an agile governance.

Effective governance requires a formalization of the governance policy management,
including : (i) the definition of policies that encode governance rules and (ii) the estab-
lishment of appropriate conformance testing and enforcement mechanisms for defined
policies. Moreover, we have identified the need to incorporate the structure of the orga-
nization as an essential information to take into account when the governance policies
are designed. Our case study shows an important number of elements where governance
policies can be specified (such as services, applications or departments) This high vari-
ability represents an important drawback in terms of management since it boosts the
possibility of specifying inconsistent policies; specifically, in our case study, the struc-
ture, size and departmental autonomy of the organization implies that multiple admin-
istrators could specify policies in a distributed and independent way. In this context, the
scenario represents a Cooperative Information Systems reality with highly distributed
inter-organizational interaction that should be coordinated. Therefore, the capability of
automatic consistency checking of policies is highly valuable.

The current governance tools market is vendor-driven and turbulent, where tools are
based on proprietary technology and its features are guided by the specific aspects where
its vendors have expertise [7, 8]. Furthermore, most current governance platforms as-
sume that policy definitions are error-free, but policies can be inconsistent [10].

The contribution of this paper is twofold: (i) First, a language for governance policies
definition is presented. This language defines governance documents; which make poli-
cies unambiguous by providing a rich context for governance policies and their meta-
data, while maintaining their definition independently of the SOA elements to govern,
their internal organization and the underlying infrastructure. (ii) Secondly, a formal def-
inition of governance document is proposed, describing the elements to govern, their
properties and the policies that govern them. This formal definition allows the automa-
tion of policies consistency checking.

To the best of our knowledge, this proposal provides a novel approach, paving the
way for building more powerful and automated governance tools. This proposal has
been developed and tested on a proof of concept prototype.

The rest of the paper is structured as follows: In the next section preliminary con-
cepts are provided. In section 3, the case study that motivates the research presented
on this paper is described, drawbacks of WS-Policy for governance policy specification
are depicted and the need of a governance document is motivated. Section 4 presents

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

2 Preliminaries 4

Figure 1: UML metamodel of WS-Policy

WS-Governance, our proposal of XML-based language for governance policies speci-
fication, and its plain text equivalent WS-Gov4People. Section 5, presents a mapping
of governance documents to Constraint Satisfaction Problems that allow the automated
checking of properties. Finally, in sections 6 and 7 related work is described and con-
clusions are drawn.

2 Preliminaries
A Governance Policy represents a capability, requirement or behavior that allows the
SOA to achieve its goals, and whose meeting is quantifiable and monitorable through
time [2, 11, 4, 16]. Governance policies are as heterogeneous as the said governed el-
ements, addressing the distributed, flexible, and heterogeneous nature of current SOAs.
Moreover, governance policies originate from disparate sources, from legal regulations
and their derived compliance issues to strictly technical details.

WS-Policy is a W3C recommendation that provides a framework for defining poli-
cies [25] which takes into account this very complex situation. As can be seen in Fig. 2
where the UML metamodel of WS-Policy is shown1, the building blocks of policies are
assertions (PolicyAssertion) that are composed using operators: All equivalent
to logical AND, ExactlyOne equivalent to logical XOR, and the top level compos-
itor PoliciAlternative equivalent to logical OR. Policy nesting is supported by
meaning a logical AND operation of the global policy and the nested one.

Assertions represent domain-specific capabilities, constraints or requirements, where
their grammar is left open by WS-Policy, thus allowing the use of XML-based Do-
main Specific Languages (DSLs) for that purpose (see “VariationPoint” stereotyped
PolicyExpression in figure 2) . This is a common strategy also followed by rec-
ommendations such as WS–Agreement to meet the open–closed design principle: rec-
ommendation should be open for extension but closed for modification. WS-Policy has
been mainly focused on the definition of policies related to specific service capabilities
such as security, reliability, etc. In fact, there are a number of DSLs for those purposes.

1The UML class diagram in 2 represents our interpretation of the metamodel described by the XML
schema specified in [25] and [24].

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

2 Preliminaries 5

Unfortunately, describing assertions for SOA governance policies is a bit more compli-
cated (see later) and as far as we know there is currently no single DSL to describe this
kind of policies.

Two mechanisms are available in WS–Policy to associate policies with the elements
to which they apply, i.e., their scope. The first mechanism aims to associate one or
more policy definitions as a part of the element definition. For example, if we want to
apply a policy to a single web service described in WSDL, the policy specified in WS-
Policy has to be inserted into the WSDL code. We called this mechanism endogenous
attachment, since the definition of the policy is internal to the element one. Left column
in table 1 shows an example of this kind of attachment. In this case, two polices on the
web service “StockQuote” are defined: one to ensure a reliable message and another
to specify security mechanisms on web service binding. Notice that with endogenous
attachment: i) attaching a set of policies to a set of elements at the same time is not
possible (one–element specification) and ii) changing a policy requires modifying the
definition of an element, in other words, it is an intrusive mechanism.

The second mechanism aims to associate one or more policy definitions to one or
more elements, and more specifically to the references of these elements. To this end,
WS-PolicyAttachment recommendation [24] proposes the use of PolicyAttachemt
and AppliesTo (shaded classes in figure 2). In this case, the WS-Policy is not en-
coded in the same file that the specification of the element. We call this mechanism
exogenous attachment. Right column in table 1 shows an example of this kind of at-
tachment. In this case, secure binding mechanisms are asserted on the “StockQuote”
and “MortgageRisk” services using its endpoint reference address. As it can be seen
in figure 2, WS-PolicyAttachment also leaves open the language to specify the scope,
in fact, it is the domain expression variation point, domain expression to specify policy
subjects. Domain expressions grammar is left open by WS-Policy, thus allowing the use
of XML-based DSLs, but WS-Policy provides a basic language to specify it based on
URIs.

Note that with exogenous attachment: i) it is possible to attach a policy to a set
of elements at the same time (multi–element specification) and ii) changing the policy
attachment does not require modifying the definition of an element, in other words, it is
a non–intrusive mechanism.

2.1 Compatibility amongst policies
WS-Policy defines a mechanism to test the compatibility of two policies, called pol-
icy intersection. According to the WS-Policy specification [25] “policy intersection is
optional but a useful tool when two or more parties express policies and want to limit
the policy alternatives to those that are mutually compatible”. The intersection consists
of two parts: a domain-independent policy intersection and domain-specific process-
ing. The former takes into account the assertion type equality, i.e. the XML element
type equality and its nested elements, but not its parameters. The latter is not defined
in WS-Policy, thus assertions authors have to define specific mechanism for incorpo-
rating the intended semantics of the assertions (and the specification does not provide
a standard mechanism to integrate it). For instance, the first policy specified in the left
column and the policy in the right column are incompatible, since their element types

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

3 A motivating use case 6

WS-Policy 1 WS-Policy 2
<wsdl:definitions name=’StockQuote’ Element <wsp:PolicyAttachment>

xmlns:wsp=’...’ ...> attached <wsp:AppliesTo> \
<wsp:Policy wsu:Id=’RmPolicy’ > \ <wsa:EndpointReference> | Policy
<rmp:RMAssertion> | <wsa:Address>.../MortageRisk.wsdl</...> | Scope
<wsp:Policy/> | <wsa:Address>.../StockQuote.wsld</...> | Scope

</rmp:RMAssertion> | </wsa:EndpointReference> | def.
</wsp:Policy> | </wsp:AppliesTo> /
<wsp:Policy wsu:Id=’X509Policy’ | Policy <wsp:Policy wsu:Id=’X509Policy’ \
<sp:AsymmetricBinding> | assertions <sp:AsymmetricBinding> |

... | ... | Policy
</sp:AsymmetricBinding> | </sp:AsymmetricBinding> |assertions

</wsp:Policy> / </wsp:Policy> /
... </wsp:PolicyAttachment>
</wsdl:definitions>

Table 1: Endogeous vs Exogeous Attachment

Figure 2: Case study architecture

< rmp : RMAssertion > and < sp : AsymmetricBinding > are different. The
second policy in the left column could be compatible depending on the nested sub-
elements, where each policy should contain a matching nested subelement, and those
elements should be of the same type. The notion of policy intersection is thus basically
syntactical and structural, and it is not valid for complex domain-specific processing or
semantic reasoning about policies, as shown in [6] and [1].

3 A motivating use case
The motivation of our approach is derived from a case-study based on a real scenario
involving a regional-wide governmental organization. This organization has a complex
structure divided into 16 governmental departments with around 5,000 end users using
a shared IT infrastructure. thousands of end users (civil servants using the IT infras-
tructure). This infrastructure is distributed in the different departments both logically
and physically and is usually managed autonomously in each location. In recent years
there has been a shift toward SOA and currently there is an important number of core
services replicated in the infrastructure with different QoS capabilities.

From an architectural point of view, the infrastructure is designed as a federated bus
of services; in this context, each department represents a node with two main elements:
an Enterprise Service Bus and a Management System that provide different horizontal
functionalities (such as monitoring, transactions or security). All the different nodes are
integrated conforming the global infrastructure.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

3 A motivating use case 7

Figure 3: Governance Documents, from top to down: (i) Policies for Critical Services enacted
by root authority A; (ii) Policies on service usage between Dept. 1 and Dept. 2; (iii) Policies on
service provision internal to Dept. 1

The different services are deployed in the bus and the consumer applications ask the
bus for the appropriate provider. In figure 2 an architectural conceptualization is shown:
each of the nodes correspond with a department; the nodes are composed of applications
for end-users with the bus providing core common services. As depicted, the bus can
provide access to external services from other nodes.

Due to the structure of the organization, each department has developed a high auton-
omy in its IT infrastructure management. Consequently, the integration of applications
and services amongst different departments has raised an important issue: the need to
specify a consistent normative framework on the whole organization for meeting busi-
ness needs without breaching autonomy.

In this motivating scenario, a SLA Management Infrastructure (SLAMI) in charge
of creating, storing, locating and enforcing SLAs for transactions has been deployed in
each node. Based on the analysis of the common organization operations and the usage
of the current SLAMI component, we have identified some examples in this scenario
where SOA governance is applied. In the following cases, the infrastructure should cual?
adapt to provide an appropriate behavior depending on different parameters:

• Depending on the application. Some applications have a higher priority than oth-
ers or require different security restrictions and QoS levels.

• Depending on the application’s department (i.e. node). Since applications can
access services of external departments, the nodes could establish different rights
for external (from other nodes) or local (the same node) applications.

Figure 3 shows three excerpts of different real governance documents found in our
case study -conveniently modified in order to preserve privacy and meet confidentiality

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

3 A motivating use case 8

clauses-. Currently, these fragments correspond to human-oriented policies that should
be enforced by administrators by means of configurations of the IT-infrastructure. Each
document is enacted by a different organization: the first document by the main author-
ity so it should be enforced by all sub-organizations (departments); the second document
represents an integration agreement amongst two departments (1 and 2) and finally, the
last document is an internal governance document of department 1.

There is a real and urgent need of a language to define governance policies unam-
biguously with precise semantics; as a first step toward governance policy definition,
enforcement and automatic consistency checking.

3.1 WS-Policy drawbacks
In working for a Public Administration, we were concerned with developing mainstream
policies that would avoid ad-hoc solutions. We therefore tried to use WS-Policy; how-
ever, when applying it to the previously described documents we encountered the fol-
lowing limitations:

Lack of Context and meta-data (LCD) Governance policies need a rich context
to ensure their validity, specifying who enacts the policies and providing additional
metadata in order to ensure authorization for policy enactment and the integrity of the
policies as enacted, thus avoiding tampering. In using WS-Policy , there is not a single
point where we can insert the required information that assures the validity of the pol-
icy, such as official seals, a declaration of validity by the enacting authority or a GD’s
preamble. We call this problem Lack of Context Data (LCD)

Scope Definition Limitations (SDL) Defining a policy P1 as simple as ”All services
provide an Availability greater than 99%” may become a nightmare for SOA practioners
since WS–Policy has not been designed keeping in mind that the scope of a policy could
be defined by intension. For example, if an endogenous attachment is used then all the
services descriptions will need to be changed to incorporate the policy. This intrusive
action used to be forbiden in large organizations since it is time–consuming and error
prone. In turn, if an exogenous attachment is used, then all the services references will
need to be computed and inserted in the AppliesTo section of the policy.

It may seem that this kind of policy is well supported by exogenous attachment, but it
is not true in our case study. For example, if there was a change in a political decision All
services except S23, S45, . . .) this would entail a re-working of over a hundred services
as well as modifying the content of the scope section. This is not an adequate solution
when dealing with a SOA comprising of hundreds of applications and services; where
policies are often, even if slightly, changed.

Summarizing, these circumstances make it very appealing to have the possibility to
define the policies’ scope by intension and not only by extension; which was the only
used mechanism to date, without the creation of a DSL language to support this.

The expression of these scope predicates require a rich predicate DSL and the speci-
fication of the elements and data sources needed to feed the predicate, in order to effec-
tively evaluate policy scope. This problem is particularly acute for governance policies,
since governance relevant information is stored in disparate sources, such as UDDI reg-
istries, LDAP directories, ad hoc databases, etc. For instance, in our sample GDs there

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

4 From WS-Policy to Ws-Governance 9

are properties such as “critical services” and “local/external apps & services” whose
values must be obtained from different information sources.

Isolation of Policies (IoP): WS-Policy only defines Policy, and PolicyAttachment
as top level elements, were no logical grouping of cohesive interrelated policies is pro-
vided except for the logical compositors. A GD should, however, contain a set of cohe-
sive policies that govern concrete aspects of the architecture; following specific manage-
ment or business goals in order to perform a proper management of the own governance
policies set. For instance, in our sample Gov. Doc. (i), the set of policies that manage
critical services are grouped in a unique cohesive document.

WS-Governance Documents address drawbacks described above by incorporating an
extensible context to the contained policies (addresing LCD), thus defining a global
document structure that contains a set of policies under an umbrella governance scope
(addressing IoP). It also describes relevant governance properties and provides mecha-
nisms for incorporating disparate governance-relevant information sources (addressing
SDL and some LCM issues). GDs are described in detail in the next section.

Inadequate consistency cheking Due to the specific nature of the governmental au-
thority, a fundamental need in our case-study was to check the consistency of the gov-
ernment policies. The only analysis operation WS-Policy envisioned for this was the
intersection of policies. In our case, this analysis was not appropriate due to the syntac-
tical or structural nature of this operation. For example, two identical-meaning policies
may prove inconsistent by using the intersection operation. Consequently, a semantical
consistency notion is needed.

One of the most valuable features of any language is to dispose of a tool support able
to debug programs written in that language as well as to provide some interesting prop-
erties. In our user case, one of the most valuable properties was to check the consistency.
It is said that a policy is consistent if it has no internal contradictions.

If the automatic management and enforcement of policies is the aim, a formal seman-
tics of governance policies is needed. The open and flexible nature of WS-Policy makes
it difficult to provide homogeneous semantics to policies, since each domain specific
DSL would have its own semantics. This problem motivates the merely structural-
syntactical nature policy intersection operation as defined in WS-Policy, avoiding its
usage in diverse scenarios [6, 1], we name this drawback as Syntax/Structure Driven
Semantics (SDS). LCD and SDS drawbacks motivate the creation of two general pur-
pose XML-based DSLs for governance policy assertions and SOA modelling described
in detail in the next section. Based on those DSLs and the authors‘ experience providing
formal semantics for SLAs specified in WS-Agreement by using CSPs [19, 13, 12], a
CSP based semantics for WS-Governance documents using those DSLs is proposed in
Sec. 5 addressing SDS. Based on those semantics a consistency property for policies
and governance documents is defined.

4 From WS-Policy to Ws-Governance
A WS-Governance Document (GD) provides policies definitions along with contextual
metadata, sources-of-governance relevant information, and the specification of prop-
erties on which policies definitions is based. In so doing, WS-Governance addresses

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

4 From WS-Policy to Ws-Governance 10

Figure 4: UML Metamodel of WS-Governance

the aforementioned drawbacks of WS-Policy for governance policies definitions. The
structure of a GD in WS-Governance comprises of:

• Governance Document Context: It currently defines the governing organization
but its grammar is left open in order to support the expressions of authorizations
to enact policies on this GD, and the data needed to ensure GD authenticity and
integrity.

• Governance Properties: It defines all properties that are relevant for governance
policies. Following the philosophy of WS-Policy, its grammar is left open, allow-
ing the use of XML-based DSLs for specifying those properties.

• Governance Scope: It provides information about the SOA where policies are es-
tablished. Different information sources could be used in this section, from UDDI
registries to ad hoc databases, since any SOA element could be a governance pol-
icy subject; such as projects, developers, organizations, messages, XML-schemas
or applications servers.

• Governance Policies: It defines the policies that conform the governance. Those
polices are WS-Policy compliant, where the exogenous policy attachment mecha-
nism is mandatory. Assertion and scope definition grammar is left open, allowing
the use of XML-based DSLs.

The UML class diagram shown in Fig. 4 represents our proposal of metamodel for
WS-Governance documents.

4.1 DSLs in WS-Governance
Some elements of WS-Governance are intentionally left open for extension in order to
allow a high degree of flexibility. This flexibility is based on the use of XML-based
DSLs in some variability points, allowing the creation of a whole family of governance
languages. In Fig. 4 XML-based DSL variability points are decorated with a Variabil-
ityPoint UML stereotype. A brief description of these variability points is provided as
follows:

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

4 From WS-Policy to Ws-Governance 11

• Context DSL: the GD metadata in the context element can be extended with any
information needed by means of the nesting of new XML elements and attributes.

• SOA Specification: The architecture and elements to govern must be described
in order to define unambiguous policies.

• Governance Property Specification: A description of the properties of the gov-
erned elements of the SOA is needed in order to define expressive policies. Those
properties must be expressed using a XML-Based DSL.

• Policy Expression Specification: Policy scope and assertions can be expressed
using any predicate-oriented DSL.

In order to define effective governance documents, those DSLs must be set. In our
proposal we provide two DSLs that allow the creation of service-focused governance
policies, i.e. policies that specify assertions defined on service properties and their di-
rectly related elements such as consumers, providers, and governance relevant informa-
tion such as organizational structure. Those DSLs are Service Oriented Architecture
Modelling Language (SAML), addressing the SOA Specificaton variation point, and
Govenance Assertion Language (GAL), addressing the Governance Property Specifi-
cation and Policy Expression Specification variation points.

The UML Class Diagrams in Figs. 5 and 6 depicts the metamodel of SAML and GAL
respectively.

4.2 SOA Modeling with SAML
SAML has been designed to model the SOA state and structure, making our proposal
independent of the specific governance information sources available on each SOA, such
as UDDI Registries, LDAP directories, ad hoc databases, etc. SAML describes both the
SOA structure as elements, and its state as the corresponding governance properties
value to those elements. In this paper we focus on service-related governance policies,
so SAML mainly contains elements related with services; however SAML is extensible,
supporting the use of any XML-based construct as sub-elements of its basic structural
elements. Specifically, structural elements in SAML are described as follows:

• Service Oriented Architectures are networks of participants providing and con-
suming services to fulfill a purpose. In SAML these participants are specified as
organizations and applications.

• Organizations are participants with governance relevant identity and properties,
tracing an organizational boundary on their owned applications and services. Or-
ganizations are arranged hierarchically, where an organization can contain various
sub-organizations (e.g. departments) and have a unique parent.

• Applications represent business processes, related capabilities and software pack-
ages. They allow the arrangement of software artifacts and capabilities indepen-
dently of the organizational hierarchy in a governance-meaningful way. Appli-
cations are owned by a unique organization. Applications have a set of provided
and consumed services.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

4 From WS-Policy to Ws-Governance 12

Figure 5: UML Metamodel of SAML

• Services represent capabilities that participants provide and consume.

Regarding SOA state description, SOAML allows the specification of property values
for all the aforementioned elements based on GAL.

Finally, SAML provides a generic element for the specification of the concrete gov-
ernance data sources as references; such as UDDI registries, that should be queried to
obtain the governance-relevant SOA structure and state in order to check properties and
test policies adherence. By creating adapters that query those data sources and create
a SOAML compliant SOA model, our proposal becomes independent of those specific
data-sources, thus semantics of GDs are based on explicit SOAML models.

4.3 Specifying Governance properties, and policy assertions
with GAL

Governance Assertion Language GAL is a generic and expressive language designed to
declare governance properties and assertions. Property definitions in GAL have a name
and an identifier as attributes, comprising of: (i) type definition, where basic XML-
Schema [18] types are supported, (ii) an optional domain definition that restricts the
space of valid values of the property; where it could be described as a GAL assertion
(by intension) or as a set of values (by extension); and (iii) an optional SAML gov-
ernance subject declaration, that defines the type of SOA element that can present the
property (service, organization, policy, all, etc.). Through GAL constraints we provide
a suitable language to specify policy assertions on governance properties. Assertions
can be composed using WS-Policy composition operators: All (�), ExactlyOne (⊗)
and PolicyAlternative (⊕).

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

4 From WS-Policy to Ws-Governance 13

Figure 6: UML Metamodel of GAL

In order to allow consistency checking, in this paper we use a subset of WS-Governance
a bit less expressive, called WS-Governance*. A WS-Governance* document must use
SAML to describe the SOA to govern and GAL to define governance properties, policy
scopes and policy assertions.

A WS-Governance* document (ρ) comprises of:

• Governance Scope defines the set of organizations O, applications A and services
S to govern, and their relationships, namely: consumption of services by applica-
tions and organizations, provision of services by applications and organizations,
ownership of applications by organizations and hierarchy of organizations. Only
those elements and relationship functions are used to define policies.

• Governance Vocabulary must define the set of all properties V used in the guar-
antee terms.

• For each governance policy both scope (s) and assertion (a) must be defined as
GAL assertions on the properties defined in the governance vocabulary section,
and only to those applied to the sets and relationship functions defined in Gover-
nance Scope.

• Policy assertions can be composed using the compositors defined in WS-Policy:
All (�), ExactlyOne (⊗) and PolicyAlternative (⊕).

XML-Schemas that model WS-Governance* documents conforming the previously
described syntax are available at [17]. Although readable for humans, XML is not as
understandable as plain text, even if it is formatted for that purpose. Consequently in
Table 2 the structure of a WS-Governance* document is described in a plain text lan-
guage, named WS-Gov4People, that is equivalent to the XML-Schemas. The mapping
of schema elements onto its corresponding WS-Gov4People sentences is shown in Table
2.

A WS-Gov4People document describing the policies specified in figure 3 and a sim-
ple SOA structure is shown in the first column of table 4.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

4 From WS-Policy to Ws-Governance 14

WS-Governance/SAML/GAL XML Element WS-Gov4People Document Structure
<wsg:GovernanceDocument Name=’name?’ Id=’Id?’> Governance Document - Name (Id)
<wsg:Governor id=’Org. Id?’ name=’Org. Name?’/> Governor: Org. Name?(Org. Id?)
<wsg:GovernanceScope> Scope:

{<saml:ServiceOrientedArchitectureReference>...</...> | {SOA Registry Reference|
<saml:ServiceOrientedArchitecture>...</...>}+ SOA Governance Model}+

</wsg:GovernanceScope>
<wsg:GovernanceVocabulary> Vocabulary:
<gal:Property> ...</gal:Property>+ { Property: ... }+

</wsg:Vocabulary>
<wsg:GovernancePolicies> Policies:
{<wsp:PolicyAttachment> {Policy name? (Id?)
<wsp:AppliesTo>
<gal:QuantifiedAssertion>
{<gal:Quantifier type=’Exists|ForAll’ varname=’VarName?’ {forall|Exists VarName?

in=’Service|Org|App’>}+ in (Servs|Orgs|Apps)}+
<gal:Assertion>Scope expr?</gal:Assertion> Scope: Scope expr?
</gal:QuantifiedAssertion>

</wsp:AppliesTo>
<wsp:Policy name=’name?’ id=’Id?’>Assertion expr?</...> Assertion: Assertion expr?

</wsp:PolicyAttachment>}+ }+
</wsg:GovernancePolicies>
<wsg:GovernanceDocument>

<saml:ServiceOrientedArchitecture> SOA Governance Model:
STRUCTURE:

{<saml:Organization name=’Org. Name?’ > id=’Org. Id?’> {Organization: Org. Name? (Org. Id?)
<saml:SubOrganizations> SubOrganizations: Org. Id1?,. . . ,Org. IdN?

{<saml:Organization ...> ... </saml:Organization>}*
</saml:SubOrganizations>
<saml:Applications> Applications:

{<saml:Application name=’App. Name? id=’App. Id?’> {Application: App. Name? (App. Id?)
<saml:ProvidedServices> Provides:
{<saml:Serivce name=’Serv. Name? id=’Serv. Id?’/>}* {Service: Serv. Name? (Serv. Id?)}*
</saml:ProvidedServices>
<saml:ConsumedServices> Consumes:
{<saml:Serivce name=’Serv. Name? id=’Serv. Id?’/>}* {Service: Serv. Name? (Serv. Id?)}*
</saml:ConsumedServices>

</saml:Applications>}* }*
}+ STATE:
{<gal:PropertyValue property=’IdP’ subject=’IdS’ value=’Val. Expr?’/ > Val. Expr?*
</saml:ServiceOrientedArchitecture> }+

<gal:Property name=’Prop. Name?’ Property: Prop. Name? (Prop. Id?)
id=’Prop. Id?’ subjectType=’Serv|Org|App’>

<gal:Type>Type. Expr.?</gal:Type> for {Servs|Orgs|Apps}
<gal:Domain><gcl:Constraint>Domain Expr.? Type: Type. Expr.?

</gal:Constraint></gal:Domain>
</gal:Property> Domain: Domain Expr.?

Table 2: Mapping from WS-Governance, GAL and SAML to WS-Gov4People

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

5 Property checking through CSPs 15

5 Property checking through CSPs
In this section, we show how CP can help governance policy definition in a highly
distributed cooperative environment by checking for consistency.

5.1 CSPs in a nutshell
A constraint is a relationship among several variables, each of which ranges over a given
domain. Thus, a constraint restricts the values of its variables. Their most important
feature is their declarative nature, i.e. they specify what relationships must be held
without specifying a computational procedure to enforce them. The idea of CP is to
solve problems by stating constraints about the problem area and, consequently, finding
a solution that satisfies all of the constraints. This task is carried out by so-called solvers.
A problem expressed as a set of constraints is formalized as a Constraint Satisfaction
Problem (CSP). A CSP is defined as a set of variables and a set of constraints specifying
which combinations of variables and values are acceptable.

Definition (CSP) A CSP is a three-tuple of the form (V,D,C) where V 6= � is a finite
set of variables, D 6= � is a finite set of domains (one for each variable), and C is a set
of constraints defined on V .

A solution σ to a CSP consists of an assignment in which each variable gets a value
from its corresponding domain, as long as it satisfies each constraint.

Definition (Solution Space) Let ψ be a CSP of the form (V,D,C), its solution space,
denoted as sol(ψ), is composed of all its possible solutions.

sol(ψ) = {σ ∈ V → D|σ(C)}

where σ(C) holds iff each assigment in σ satisfies every constraint in C.

Definition (Satisfiability) Let ψ be a CSP of the form (V,D,C), it is satisfiable, de-
noted as sat(ψ), iff its solution space is not empty

sat(ψ)⇔ sol(ψ) 6= �

For instance, being ψ = ({u, v, x, y}, {{0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}},
{{u < v}{x < y}}), then sol(ψ) = {{0, 1, 0, 1}, {0, 1, 1, 2}, {1, 2, 0, 1}, {1, 2, 1, 2}}.

5.2 Semantics of GDs* based on CSPs
As shown in [23], the definition of the semantics of a language can be accomplished
through the definition of a mapping between the language itself and another language
with well-defined semantics such as Abstract State Machines, Petri Nets, rewriting logic
or CSPs. These semantic mappings between semantic domains are very useful not only
to provide precise semantics to DSLs, but also to be able to simulate, analyze or reason
about them using the logical and semantical framework available in the target domain.In

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

5 Property checking through CSPs 16

this section we define the mappings that tranform GDs* onto CSPs that provide their
precise semantics, allowing the usage of CSP solvers to reason about policies and com-
plete GDs*.

Mapping a GD* into CSPs. The mapping (µGD : ρ → ψ) of a WS-Governance*
GD (ρ) to a CSP (ψ) is performed in two steps as follows:

1. For each policy pi = (s, a) in the GD*, pi is mapped for the concrete governance
scope (SOA model in terms of services, applications, organizations and its rela-
tionships) into a constraint pCi that contains only variables and literals composed
using logical and algebraic operators. This constraint is constructed so that it tells
exactly when the policy holds in the given governance scope. This transformation
is performed by the explicit enumeration of the sets and relationships (ownership,
provision, consumption, and organizational hierarchy) on the governance scope
for each quantifier, combining the resulting constraints using logical AND (∧)
operators for universal quantifiers and logical OR (∨) operators for existential
quantifiers.

2. The set of constraints pC = {pCi }ni=1 and original GD* ρ are mapped into a CSP
ψ = {V,D,C} by creating:

• a variable vxsi|oi|ai in V for each property x and corresponding element in the
SOA (service, organization and application).

• variables vsupOrgoi
,vprovsi

,vconssi
and vownai

in V for the relation functions supOrg
(hierarchical relationship among organizations), provider and consumer
(relationship among services and applications) and owner. Additionally,
their domain of organizations, applications, and services are created.

• constraints {vsupOrgoi
= oj}, {vprovsi

= ak}, {vconssi
= ak}, and {vownai

= ol} in
C for each variable created in the previous step specifying the values of the
relationshipssupOrg, provider,consumer and owner. Those constraints
and variables express the SAML SOA structural model of the governance
scope.

• a constraint {vxsi|oi|ai = {Value Expr?}} in C for each property valuation
specified in the state section of the governance scope in ρ.

Finally, for each constraint in pC property invocation functions X(si|oj|aj) are
exchanged by their corresponding variables vxsi|oi|ai , and the resulting constraint is
added to C.

The mapping of different elements of a GD* is shown in Table 3.
In order to exemplify the use of GD*, in the left column of table 4 we can see the

expression of the policies contained in the governance documents found in the case
study (Figure 3). In the table we can see the four different parts of a GD* document:
Context, SOA Model, Vocabulary and Policies. In this context, the SOA Model part has
been enriched with the structure information of a subset in the organization: on the one
hand, Department 1 has one A1 application that provides s1 service and on the other
hand, Department 2 has two applications (Zeus and A3). The former consumes s1 and
s2 and provides s3 service; the latter only provides s2. It is important to highlight that

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

5 Property checking through CSPs 17

WS-Governance* Element CSP Mapping
Governance Document - Name (Id) GD Name, Id and Governor Org.
Governor: Org. Name?(Org. Id?) are not mapped to CSP

SOA Governance Model: For each organization oi a variable vsuporgoi is created
STRUCTURE: denoting the parent org. of oi and a domain
{Organization: Org. Name? (Org. Id?) dsuporgi = {o1, . . . n} is added to D

SubOrganizations: Org. Id1?,. . . ,Org. IdN? a constraint {Cprovoi = oj} is created encoding the orgs. hierarchy
Applications: For each application aj a variable vownaj

is created

Provides: denoting the owner org. of aj , a domain
{Service: Serv. Name? (Serv. Id?)}* downj = {o1, . . . n} is added to D

Consumes: and a constraint {Cownai
= oj} is created encoding the app. ownership

{Service: Serv. Name? (Serv. Id?)}* For each service sk a variable vprovsk is created
}* , a domain dprovk = {a1, . . . , am} is added to D

}+ and a constraint {vprovsk = al} is created encoding the provisioning
STATE:

{Property val. Expr?}* Add Constraint: vx
si|oi|ai

[Proverty val. Expr.?]

Vocabulary: Add variables & domains:
Property: X for Services for each property x we create a variable
for {Servs|Orgs|Apps} vx

si|oi|ai
for each element in

Type: boolean its corresponding set S|O|A
Domain: Domain Expr.? Add Constraint: vx

si|oi|ai
[Domain Expr.?]

Policies: Add contraint:
Policy P1

{forall y
∧S|O|A
vsi|oi|ai

(Scope expr)[y/vy
si|oi|ai

]

in (Servs|Orgs|Apps)}+ ⇒ (Assertion expr)[y/vy
si|oi|ai

]

{exists y
∨S|O|A
vsi|oi|ai

((Scope expr)[y/vy
si|oi|ai

]

in (Servs|Orgs|Apps)}+ ⇒ (Assertion expr)[y/vy
si|oi|ai

]

Scope: Scope expr? , For each constraint c ∈ C do:
Assertion: Assertion expr | (c)[vy

si|oi|ai
/vx
si|oi|ai

]

where E[x/y] means: ’ the expression E, but with occurrences of x replaced by y’

Table 3: Mapping of WS-Governance* elements onto CSPs

the policy found in the second document fragment of the example is not translated into
a policy in the GD* document but it represents structural information expressed in the
SOA Model section.

Following the mapping described in this section, in the right side of Table 3 the CSP
transformation of the GD* is presented.

5.3 Checking for Consistency
Checking a GD ρ written in WS-Governance* for consistency lets us know whether it
has internal contradictions or not. The root of the inconsistencies can be: (i) that a pol-
icy in ρ is intrinsically inconsistent; (ii) that the set of policies in ρ are inconsistent; or
(iii) even when the set of policies in ρ, P ρ = {ρ1, . . . , ρn}, are initially consistent, then
ρ can be inconsistent due to the additional information added by the SAML SOA state
and structure specified in it. For instance, the GD* shown in the first column of table 4 is
inconsistent. The cause of the inconsistency is that policies ρ2=’Critical services avail-
ability should be “’24x7’ ’ and ρ3=’Service s1 availability is “window” if it is consumed
by external applications’ are inconsistent, since s1 is both consumed by application a2

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

5 Property checking through CSPs 18

Sa
m

pl
e

SG
D

L
4P

eo
pl

e
D

oc
um

en
t

C
or

re
sp

on
di

ng
C

SP
G

ov
er

na
nc

e
D

oc
um

en
t

-C
ri

tia
lS

er
vi

ce
s

M
an

ag
em

en
t(

G
D

1)
φ
=
{V
,D
,C
}

w
he

re
C

=
{C

D
∪
C
S
O
A
∪
C
ρ
}

G
ov

er
no

r:
(o
x

)
V

=
{V

P
r
o
p
∪
V
W
∪
V
ρ
},
D

=
{D

P
r
o
p
∪
D
S
O
A
}

Sc
op

e:
V
S
O
A

={
V
p
r
o
v
∪
V
c
o
n
s
∪
V
o
w
n
∪
V
s
u
p
O
r
g
}

ST
R

U
C

T
U

R
E

:
V
p
r
o
v
=
{v
p
r
o
v

s
1

,v
p
r
o
v

s
2

,v
p
r
o
v

s
3

,v
p
r
v
O

s
1

,v
p
r
v
O

s
2

,v
p
r
v
O

s
3
}

O
rg

an
iz

at
io

n:
E

-g
ov

.O
rg

.X
(o
x

)S
ub

or
ga

ni
za

tio
ns

:o
1

,o
2

V
c
o
n
s
=
{v
c
o
n
s

s
1

,v
c
o
n
s

s
2

,v
c
o
n
s

s
3

,v
c
n
s
O

s
1

,v
c
n
s
O

s
2

,v
c
n
s
O

s
3
}

O
rg

an
iz

at
io

n:
D

ep
ar

tm
en

t1
(o

1
)

V
o
w
n
=
{v
o
w
n

a
1
,v
o
w
n

a
2
,v
o
w
n

a
3
}

A
pp

lic
at

io
ns

:
V
s
u
p
o
r
g
=
{v
s
u
p
o
r
g

o
1

,v
s
u
p
o
r
g

o
2

}

A
pp

lic
at

io
n:

A
1

A
pp

(a
1

)
D
S
O
A

=
{D

p
r
o
v
∪
D
c
o
n
s
∪
D
o
w
n
∪
D
s
u
p
o
r
g
}

Pr
ov

id
es

:s
1

(s
1

)
,A

=
{a

1
,a

2
,a

3
},
O

=
{o

1
,o

2
}

O
rg

an
iz

at
io

n:
D

ep
ar

tm
en

t2
(o

2
)

C
s
o
a
=
{C

S
tr
u
c
t
∪
C
S
ta
t
}

A
pp

lic
at

io
ns

:
C
S
tr
u
c
t
=
{{
v
p
r
o
v

s
1

=
a
1
},
{v
p
r
o
v

s
2

=
a
3
},
{v
p
r
v
O

s
1

=
o
1
},
{v
p
r
o
v

s
3

=
a
2
},
{v
p
r
v
O

s
2

=
o
3
}}

A
pp

lic
at

io
n:

Ze
us

(a
2

)
{v
p
r
o
v

s
3

=
a
2
},
{v
p
r
v
O

s
3

=
o
2
},
{v
c
o
n
s

s
1

=
a
2
},
{v
c
o
n
s

s
2

=
a
2
},
{v
c
n
s
O

s
1

=
o
2
},

C
on

su
m

es
:s

1
(s

1
)s

2
(s

2
)P

ro
vi

de
s:

s3
(s

3
)

{{
v
c
n
s
O

s
2

=
o
2
},
v
c
o
n
s

s
3

=
�
},
{v
o
w
n

a
1

=
o
1
},
{v
o
w
n

a
2

=
o
2
},

A
pp

lic
at

io
n:

A
3

A
pp

(a
3

)
{v
o
w
n

a
3

=
o
2
},
{v
s
u
p
O
r
g

o
1

=
o
x
},
{v
s
u
p
O
r
g

o
2

=
o
x
}}

Pr
ov

id
es

:s
2

(s
2

)
C
S
ta
t
=
{{
v
C
r
it

s
1

=
tr
u
e}
}

ST
A

T
E

:
D
o
w
n
=
{O
,O
,O
},
D
s
u
p
O
r
g
=
{O
,O
}

C
ri

tic
al

(s
1

)=
tr

ue
D
p
r
o
v
=
D
c
o
n
s
=
{A
,A
,A
,O
,O
,O
}

Vo
ca

bu
la

ry
:

V
P
r
o
p
=
{v
C
r
it

s
1

,v
C
r
it

s
2

,v
C
r
it

s
3

v
A
v
a
il

s
1

,v
A
v
a
il

s
2

,v
A
v
a
il

s
3
}

Pr
op

er
ty

:C
ri

tic
al

fo
r

Se
rv

ic
es

Ty
pe

:b
oo

le
an

D
P
r
o
p
=
{{
tr
u
e,
f
a
ls
e}
,{
tr
u
e,
f
a
ls
e}
,{
tr
u
e,
f
a
ls
e}
,

Pr
op

er
ty

:A
va

ila
bi

lit
y

fo
r

Se
rv

ic
es

Ty
pe

:e
nu

m
{′
2
4
x
7
′ ,
′
o
f
f
ic
e′
},
{′
2
4
x
7
′ ,
′
o
f
f
ic
e′
},
{′
2
4
x
7
′ ,
′
o
f
f
ic
e′
}}

D
om

ai
n:

’2
4x

7’
,’o

ffi
ce

’
C
D

=
∅

si
nc

e
th

er
e

is
no

do
m

ai
n

co
ns

tr
ai

nt
s

Po
lic

ie
s:

C
ρ
=
{C

ρ
1
,C

ρ
2
,C

ρ
3
}

Po
lic

y
P

1
(ρ

1
)f

or
al

ls
in

Se
rv

ic
es

C
ρ
1
=
{∧

3 i=
1
((
v
c
r
it

s
i

=
tr
u
e)
⇒

(v
p
r
v
O

s
i

=
v
c
o
n
s
O

s
i

))
}
=
{(
(v
c
r
it

s
1

=
tr
u
e)
⇒

(v
p
r
v
O

s
1

=
v
c
n
s
O

s
1

))
∧

Sc
op

e:
C

ri
tic

al
(s

)=
tr

ue
A

ss
er

tio
n:

P
ro

vi
de

rO
(s

)=
C

on
su

m
er

O
(s

)
((
v
c
r
it

s
2

=
tr
u
e)
⇒

(v
p
r
v
O

s
2

=
v
c
n
s
O

s
2

))
∧
((
v
c
r
it

s
3

=
tr
u
e)
⇒

(v
p
r
v
O

s
3

=
v
c
n
s
O

s
3

))
}

Po
lic

y
P

2
(ρ

2
)f

or
al

ls
in

Se
rv

ic
es

C
ρ
2
=
{∧

3 i=
1
((
v
c
r
it

s
i

=
tr
u
e)
⇒

(v
A
v
a
il

s
i

=
′
2
4
x
7
′)
)}

=
{(
(v
c
r
it

s
1

=
tr
u
e)
⇒

(v
A
v
a
il

s
1

=
′
2
4
x
7
′)
)∧

Sc
op

e:
C

ri
tic

al
(s

)=
tr

ue
A

ss
er

tio
n:

Av
ai

la
bi

lit
y(

s)
=

′
2
4
x
7
′

((
v
c
r
it

s
2

=
tr
u
e)
⇒

(v
A
v
a
il

s
2

=
′
2
4
x
7
′)
)
∧
((
v
c
r
it

s
2

=
tr
u
e)
⇒

(v
A
v
a
il

s
2

=
′
2
4
x
7
′)
)}

Po
lic

y
P

3
(ρ

3
)f

or
al

la
in

A
pp

lic
at

io
ns

C
ρ
3
=
{∧

3 i=
1
((
sc
o
n
s

s
1

=
a
i
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
i

)
⇒

(v
A
v
a
il

s
1

=
′
o
f
f
ic
e′
))
}
=

Sc
op

e:
a
∈
C
o
n
su
m
er

(s
1
)
∧
O
w
n
er

(a
)
6=
O
w
n
er

(P
r
o
v
id
er

(s
1
))

=
{(
(s
c
o
n
s

s
1

=
a
i
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
1

)
⇒

(v
A
v
a
il

s
1

=
′
o
f
f
ic
e′
))
∧
((
sc
o
n
s

s
1

=
a
2
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
2

)
⇒

A
ss

er
tio

n:
Av

ai
la

bi
lit

y(
s 1

)=
’o

ffi
ce

’
⇒

(v
A
v
a
il

s
1

=
′
o
f
f
ic
e′
))
∧
((
sc
o
n
s

s
1

=
a
3
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
3

)
⇒

(v
A
v
a
il

s
1

=
′
o
f
f
ic
e′
))
}

Ta
bl

e
4:

S
am

pl
e

W
S

-G
ov

er
na

nc
e4

Pe
op

le
on

to
C

S
P

m
ap

pi
ng

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

6 Related Work 19

’Zeus’ of department 2 and critical. This information, service consumption and critical-
ity of services are specified by the SOA Structure and State section of the GDs*, thus
the corresponding constraintAvailability(s1) =′ 24x7′∧Availability(s1) =′ window′

is obviously unsatisfiable due to the SOA state and structure, not because of an incosis-
tency of policies per se, and consequently ρ2 and ρ3 are inconsistent in ρ.

Definition Internal Consistency A GD* ρ is said to be consistent iff its corresponding
equivalent CSP is satisfiable.

consistent(ρ)⇔ sat(ψρ)

Definition Consistency. A non empty set of GDs in WS-Governance* P = {ρ1, . . . , ρn}
is said to be consistent iff its corresponding equivalent CSPs are simultaneously satisfi-
able.

consistent(P)⇔ sat(
n∧
i=1

ψρi)

As an example, our approach found an additional inconsistence: in the mapping of the
GD* shown in Table 4, the corresponding CSP ψ contains among others the following
constraints: {vcrits1 = true ⇒ vprovOs1

= vconsOs1
}, {vcrits2 = true}, {vconsOs1

= o2}, and
{vprovOs1 = o1}. This set of constraints in unsatisfiable, since vprovs1

= o2 and vprovs2
= o1

are unsatisfiable, and consequently the GD* is inconsistent.

5.4 Prototype implementation
We have developed an implementation of our approach using the Choco constraint
solver [9]. This prototype receives two XML documents as input: a WS-Governcance*
document ρD, and a SAML document that provides governance relevant information
ΓD, simulating a UDDI registry enriched with metadata to support governance policies
reasoning. After mapping the ρD and ΓD to the equivalent CSP, our proof-of-concept
prototype processes the CSP and returns a report showing the results of the following
checks: intrinsic consistency of each isolated policy of ρD, consistency of the whole set
of policies of ρD and the general consistency of ρD on ΓD. Our propotype implementa-
tion is available for download at http://www.isa.us.es/GDA.

6 Related Work
Concerning policy definition, Ponder is the pioneer and probably most widely used
language. Ponder [3] is a declarative, object oriented language for the specification
of management polices in distributed object systems. Additionally, Ponder provides
structuring techniques for policy administration in large scenarios and systems. WS-
Governance incorporates similar concepts by the explicit declaration of governor and
document context, and uses SAML and GAL assertions to model scope. The usage of

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

7 Conclusions and Future Work 20

WS-Policy as the base policy expression construct, and explicit declaration of gover-
nance relevant information sources, makes WS-Governance better suited for SOA gov-
ernance policies declaration. However, an interesting capability supported by Ponder
that we plan to add to WS-Governance in the future is the declaration of policy types
as templates. Rei and KAoS [22], both based on semantic web concepts are proposals
oriented to the definition of policies for expressing web services capabilities policies.
However, is WS-Policy the proposal that has more successful in industrial scenarios,
thus we have chosen it for extension in order to define SOA governance policies.

Our proposal provides a richer consistency notion allowing the detection of semanti-
cal inconsistences in policies with complex interaction as shown in this paper. General
policy conflict analysis is not a novel problem [10], but its application in the context of
SOA governance policies in this paper is original. Several approaches have been pro-
posed for policy expression and conflict analysis in the context of network management
[20], and security [5], but they are based on Binary Decision Diagrams (BDD), forcing
the reasoning with less expressive policies than our CSP based proposal.

7 Conclusions and Future Work
In this paper, based on the specific needs of our case study, a novel XML-based lan-
guage called WS-Governance has been proposed. WS-Governance takes WS-Policy as
a starting point and extends it with two new languages (GAL and SAML), maintaining
the compatibility with this standard. The main benefit of WS-Governance is to con-
textualize policies and integrate governance data sources, enabling effective governance
since it provides a formal semantics that supports automated consistency checking. This
paper represents a significant improvement in the context of SOA Governance, since a
vendor-independent governance language with precise semantics is proposed, allowing
the specification of expressive Governance Documents independently of the underlying
infrastructure. Furthermore, the GD semantics and consistency operation paves the way
for the building of a new generation of governance tools. In this scenario governance
policies are created in a distributed, independent but collaborative way, maintaining
global consistency. This collaborative process helps governance boards on the creation
of the essential normative framework needed for the achievement of the SOA promise.

There are some challenges we have to face in the near feature, namely: i) define ex-
tensions of the GD context variability point in order to effectively ensure authentication
and authorization of the enacting organization for defining policies and avoid tampering
(currently this extension is supported by the language through the variability point but
those mechanisms are not specified); (ii) extend WS-Governance to support the defini-
tion of policy templates improving reuse and usability; (iii) developing an appropriate
tooling for GDs edition; iv) improve WS-Governance and the mapping onto CSP in
order to support advanced temporal concerns such as described in [14]; v) carry out
a performance analysis of our implementation in order to study the influences of the
SOA model, type of governance properties and number and complexity of governance
policies.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

8 Acnowledgements* 21

8 Acnowledgements*
This work was partially supported by the European Commission (FEDER) and Span-
ish Government under Web-Factories (TIN2006-00472) and SETI (TIN 2009-07366)
projects, and by the Andalusian Government under project ISABEL (TIC-2533) and
THEOS (TIC-5906).

http://www.micinn.es/

http://www.juntadeandalucia.es/organismos/economiainnovacionyciencia.html

References
[1] Anne H. Anderson. Domain-independent, composable web services policy asser-

tions. In POLICY, pages 149–152, 2006.

[2] Jan Bernhardt and Detlef Seese. A conceptual framework for the governance
of service-oriented architectures. In Service-Oriented Computing, ICSOC 2008
Workshops, pages 327–338. Springer, 2009.

[3] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The
ponder policy specification language. In POLICY ’01: International Workshop on
Policies for Distributed Systems and Networks, pages 18–38. Springer, 2001.

[4] Patricia Derler and Rainer Weinreich. Models and tools for soa governance. In
Trends in Enterprise Application Architecture, pages 112–126. Springer, 2007.

[5] Hazem H. Hamed, Ehab S. Al-Shaer, and Will Marrero. Modeling and verification
of ipsec and vpn security policies. In ICNP, pages 259–278, 2005.

[6] Bernhard Hollunder. Domain-specific processing of policies or: Ws-policy inter-
section revisited. In ICWS, pages 246–253, 2009.

[7] L. Frank Kenney and Daryl C. Plummer. Magic quadrant
for integrated soa governance technology sets. Technical re-
port, Gartner RAS Core Research, March 2009. Available at
http://mediaproducts.gartner.com/reprints/oracle/article65/article65.html.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

http://www.micinn.es/
http://www.juntadeandalucia.es/organismos/economiainnovacionyciencia.html

References 22

[8] Kostas Kontogiannis, Grace A. Lewis, and Dennis B. Smith. A research agenda for
service-oriented architecture. In SDSOA ’08: Proceedings of the 2nd international
workshop on Systems development in SOA environments, pages 1–6, New York,
NY, USA, 2008. ACM.

[9] Francois Laburthe, Narendra Jussien, Guillaume Rochart, Hadrien Cambazard,
Charles Prud’homme, Arnaud Malapert, and Julien Menana. Choco, java li-
brary for constraint satisfaction problems (csp), constraint programming (cp) and
explanation-based constraint solving (e-cp). One Source Software (BSD license)
available online.

[10] Emil Lupu and Morris Sloman. Conflicts in policy-based distributed systems man-
agement. IEEE Trans. Software Eng., 25(6):852–869, 1999.

[11] Eric A. Marks. Service-Oriented Architecture Governance for the Services Driven
Enterprise. John Wiley & Sons, 2008.

[12] Carlos Müller, Manuel Resinas, and Antonio Ruiz-Cortés. Explaining the non-
compliance between templates and agreement offers in ws-agreement*. In Proc.
of the 7th International Conference on Service Oriented Computing (ICSOC), vol-
ume 5900, pages 237–252, Sweden, Stockholm, Nov 2009. Springer Verlag.

[13] Carlos Müller, Antonio Ruiz-Cortés, and Manuel Resinas. An initial approach to
explaining sla inconsistencies. In 6th. Int. Conf. on Service-Oriented Computing
(ICSOC), volume 5364 of LNCS, pages 394–406, Sidney, Australia, Dec 2008.
Springer Verlag.

[14] Carlos Müller, Octavio Martín-Díaz, Antonio Ruiz Cortés, Manuel Resinas, and
Pablo Fernandez. Improving temporal-awareness of ws-agreement. In ICSOC,
pages 193–206, 2007.

[15] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented com-
puting: State of the art and research challenges. IEEE Computer, 40(11):38–45,
November 2007.

[16] J. A. Parejo, Pablo Fernández, and Antonio Ruiz-Cortés. Towards automated sla-
based governance policy enforcement. In International Joint Conference on Ser-
vice Oriented Computing (ICSOC), 2009.

[17] José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés. Soa governance
languages schemas. including schemas for soa governance description language
(sgdl), soa modelling languange (saml), and governance assertions language (gal).
Online XML Schemas, 06 2010.

[18] David Peterson, Shudi (Sandy) Gao, Ashok Malhotra, C. M. Sperberg-McQuee,
and Henry S. Thompson. W3c xml schema definition language (xsd) 1.1 part 2:
Datatypes. W3C Working Draft, 12 2009.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

References 23

[19] Antonio Ruiz-Cortés, Octavio Martín-Díaz, Amador Durán, and Miguel Toro. Im-
proving the automatic procurement of web services using constraint programming.
International Journal of Cooperative Information Systems, 14(4):439–467, Dec
2005.

[20] Taghrid Samak, Ehab Al-Shaer, and Hong Li. Qos policy modeling and conflict
analysis. In POLICY, pages 19–26, 2008.

[21] T. G. J. Schepers, M. E. Iacob, and P. A. T. Van Eck. A lifecycle approach to soa
governance. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied
computing, pages 1055–1061, New York, NY, USA, 2008. ACM.

[22] A. Uszok, J.M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S. Aitken.
Kaos policy management for semantic web services. Intelligent Systems, IEEE,
19(4):32–41, Jul-Aug 2004.

[23] Antonio Vallecillo. A journey through the secret life of models. Schloss Dagstuhl
- Leibniz-Zentrum fÃ1

4
r Informatik, 2008.

[24] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad
Yendluri, Toufic Boubez, and Ümit Yalçinalp. Web services policy 1.5 - attach-
ment. W3C Recommendation, 09 2007.

[25] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad
Yendluri, Toufic Boubez, and Ümit Yalçinalp. Web services policy 1.5 framework.
W3C Recommendation, September 2007.

J. A. Parejo, P. Fernandez and A. Ruiz ISA Group

	Introduction
	Preliminaries
	Compatibility amongst policies

	A motivating use case
	WS-Policy drawbacks

	From WS-Policy to Ws-Governance
	DSLs in WS-Governance
	SOA Modeling with SAML
	Specifying Governance properties, and policy assertions with GAL

	Property checking through CSPs
	CSPs in a nutshell
	Semantics of GDs* based on CSPs
	Checking for Consistency
	Prototype implementation

	Related Work
	Conclusions and Future Work
	Acnowledgements*

