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ABSTRACT

In this paper a multivariate contrast function is proposed
for the blind signal extraction of a subset of the indepen-
dent components from a linear mixture. This contrast com-
bines the robustness of the joint approximate diagonaliza-
tion techniques with the flexibility of the methods for blind
signal extraction. Its maximization leads to hierarchical and
simultaneous ICA extraction algorithms which are respec-
tively based on the thin QR and thin SVD factorizations.
The interesting similarities and differences with other exist-
ing contrasts and algorithms are commented.

1. INTRODUCTION

In the last decades powerful criteria and algorithms has been
developed to solve the problem of the analysis of the inde-
pendent components in a linear mixture [1, 2, 3]. In the
history of this problem one may distinguish to different ap-
proaches: the first one is usually named blind signal sepa-
ration (BSS) and consists in the simultaneous estimation of
all the latent independent components from the mixture; the
second one is known as blind signal extraction (BSE) and
consists in the estimation of only a subset of the indepen-
dent components.

The BSE problem can be regarded as more general and
flexible than BSS because of the following two reasons: 1)
BSE includes BSS as the particular the case where one is
interested in all the independent components, 2) BSE has
computational advantages over BSS if only a small subset
of the independent components is of interest. These compu-
tational savings can be important in applications like MEG
and EEG, where the decomposition of the observations con-
siders a large number of possible independent components
but only a few of them are of interest.

This work has been supported by the CICYT project of the Government
of Spain (Grant TIC2001-0751-C04-04).

The original criteria for blind signal extraction were ba-
sed in the hierarchical the recovery of the independent com-
ponents [4, 5] one by one alternating extraction with de-
flation. These criteria have been extended to allow the si-
multaneous extraction of an arbitrary number of indepen-
dent components [6, 7]. Another desired property of any
BSS/BSE criterion is its robustness, understood in the sense
of its ability to give accurate estimates from the available
data. Popular techniques for blind signal separation [8, 9,
10] are robust in the previous sense, having criteria based
on the joint approximate diagonalization of several cumu-
lant slices. However, up to our knowledge, no equivalent
approach for blind signal extraction has been obtained yet.
Thus, the purpose of this contribution is to present algo-
rithms that perform the simultaneously extraction a subset
of independent components from the mixture by combining
the information of several cumulant slices of the observa-
tions process.

2. SIGNAL MODEL

As shown in figure 1, the chosen signal model for the ob-
servations x(t) = [x1(t), · · · , xM (t)]T obey the following
equation

x(t) = As(t) + n(t) (1)

where s(t) = [s1(t), · · · , sN (t)]T is the signal vector pro-
cess of N independent components, n(t) the noise vector
process, and A is a M ×N mixing matrix. We consider the
following assumptions:

A1 The components of s(t) are mutually independent, lo-
cally stationary and normalized to zero mean and unit
variance.

A2 The noise vector process n(t) is locally stationary, Gaus-
sian, white (Rn(t2, t1) = δ(t2 − t1)E[n(t)(n(t))H ])
and with a known correlation matrix Rn(t, t) =
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Fig. 1. Signal model for the blind extraction of P sources.

E[n(t)(n(t))H ] or one that can be accurately esti-
mated from the observations, perhaps using factor ana-
lysis or any robust prewhitening technique.

A3 The mixing matrix A is full-column rank.

A4 For a given subset of P independent components
{s1(t), . . . , sP (t)}, that one wishes to extract, there
exist a set Ω = {τk = (t

(k)
1 , . . . , t

(k)
q ), k = 1, . . . , r :

τk ∈ R
q if q > 2, τk ∈ R

2 \ {(t, t),∀t ∈ R} if
q = 2} and a permutation σ of the indices 1, . . . , P
that sorts the following statistic of the components

ψΩ(sj) =
∑

τ∈Ω

wτ |Cum(sj(t1), · · · , sj(tq))|
2

in such a way that these inequalities hold true

ψΩ(sσ(1)) > · · · > ψΩ(sσ(P )) >

ψΩ(sP+1) ≥ · · · ≥ ψΩ(sN ) (2)

From A1 one obtains AAH = Rx(t, t) − Rn(t, t). From
A2 and A3, using principal component analysis one can
project the observations onto the signal subspace to reduce
their dimensionality from M to N and also sphere the re-
sulting signals. The N ×M prewhitenning system W =
(AAH)−1/2 gives the vector of preprocessed observations

z(t) = Wx(t) (3)

In order to extractP independent components (1 ≤ P ≤
N ) from the mixture we use a P × N matrix U which
is semi-unitary (UUH = IP ). This matrix multiplies the
preprocessed observations to give the outputs or estimated
sources y(t) = [y1(t), · · · , yP (t)]T as

y(t) = Uz(t) = Gs(t) + UWn(t) (4)

where G = UWA denotes the global transfer function
from the independent components to the outputs.

Assumption A4 guarantees that there exist and order re-
lation among the sources that is maximized by those we
want to extract.

3. EXTRACTION OF A SINGLE SOURCE

We will first analyze the case of P = 1, i.e., the extraction
of a single source. Then U and G are row vectors both of

unit 2-norm and there is a single output y(t) = Uz(t). We
propose to estimate the desired independent component by
jointly maximizing a weighted square sum of cumulants of
fixed1 order q ≥ 2, determined by the tuples τ = (t1, · · · ,
tq) contained the set Ω. A contrast function that achieves
this objective is given by

ψΩ(y) =
∑

τ∈Ω

wτ |Cum (y(t1), · · · , y(tq))|
2

subject to ‖U‖2 = 1. (5)

were wτ are positive weighting terms. The chosen notation
t1, . . . , tq in (5) is due to the fact that from A1 and A2 the
observation process may be large term non-stationary, case
for which the contrast can exploit the same cumulant slices
at different times (using segments of quasi-stationary data).

The problem with this approach is in the difficulty of the
optimization of (5), which is highly non-linear with respect
to U. The following theorem, whose proof is sketched in
the Appendix, shows how to circumvent this difficulty by
proposing a similar contrast function to (5) but whose de-
pendence with respect to each of the extracting system can-
didates is quadratic, and thus, much more easy to optimize
using algebraic methods.

Theorem 1 Under the assumptions A1-A4, particularized
for the extraction of only one independent component s1,
there exist a set Ω for which

ψΩ(s1) > ψΩ(sj) ∀j = 2, . . . , N. (6)

Considering a set of q candidates for the extracting system
{U[1], . . . ,U[q]} and the set of their respective outputs ȳ =
{y[1], . . . , y[q]}, the following multivariate function

ψΩ(ȳ) =
∑

τ∈Ω

wτ

∣

∣

∣
Cum(y[1](t1), · · · , y

[q](tq))
∣

∣

∣

2

subject to ‖U[m]‖2 = 1, m = 1, . . . , q.(7)

where wτ > 0, is a contrast function whose global maxi-
mum leads to the extraction of the desired source, i.e., at
this extreme point y[1](t) = · · · = y[q](t) = s1(t).

We should note that this contrast admits a least squares match-
ing interpretation associated with the rank one approxima-
tion of cumulant tensors [11]. A good method to maxi-
mize the proposed contrast ψΩ(ȳ) is to optimize it cycli-
cally with respect to each one of the elements U[m], m =
1, . . . , q, while keeping fixed the others. In the following,
the superindex ()[k] will continue denoting the k-th vari-
able (cyclic notation) while the superindex ()(k) will indi-
cate the variable taken value at the k-th iteration (sequen-
tial notation). Then, note that at the (k)th iteration the [(k

1The results of the paper also apply for an arbitrary combination of cu-
mulants with different orders but, due to the somewhat more cumbersome
notation it needs, this extension will be provided elsewhere.



mod q)+1] variable will be optimized. Due to the invariant
property of ψΩ(ȳ) with respect to permutations in its argu-
ments, the cyclic maximization of the contrast is equivalent
to the sequential maximization of the function

φΩ(U(k)) =
∑

τ∈Ω

wτ |Cum(y(k)(t1), y
(k−1)(t2), · · ·

. . . , y(k−q+1)(tq))|
2

= U(k)M(k−1)U(k)H (8)

with respect to the extraction system U(k) through itera-
tions. Note that M(k−1) is a constant matrix (as long as
U(k−1), · · · ,U(k−q+1) are kept fixed) given by

M(k−1) =
∑

τ∈Ω

wτc
(k−1)
zy (τ)

(

c(k−1)
zy (τ)

)H

(9)

c(k−1)
zy (τ) = Cum(z(t1), y

(k−1)(t2), · · · , y
(k−q+1)(tq))

Since the vector U(k)H which maximizes φ(U(k)) is the
eigenvector associated to the dominant eigenvalue of M(k−1),
we can move the extracting vector U(k−1) towards the solu-
tion with one or more iterations of any of the standard eigen-
pair finding methods. Starting from the previous solution, if
one considers to use L iterations of the power method to
approximate the dominant eigenvector (in practice L = 1
works well), the following extraction algorithm is obtained

U(0) = U(k−1)

FOR l = 1 : L

U(l) =

∑

τ∈Ω wτd
(l−1)
y (τ)

(

c
(k−1)
zy (τ)

)H

∥

∥

∥

∥

∑

τ∈Ω wτd
(l−1)
y (τ)

(

c
(k−1)
zy (τ)

)H
∥

∥

∥

∥

2

(10)

END

U(k) = U(L)

where d(l−1)
y (τ) = U(l−1)c

(k−1)
zy (τ).

3.1. Convergence analysis

The iterative optimization of the function φΩ(·) with respect
to U(k) through iterations will result in a monotonous as-
cent sequence φΩ(U(0)) ≤ φΩ(U(1)) ≤ . . . ≤ φΩ(U(k))
that maximizes φΩ(·). However, this property by itself does
not guarantee the convergence to an extraction solution be-
cause deceptive local maxima of φΩ(U(k)) might exist. The
following theorem (whose proof is sketched in appendix B)
shows that this is not the case.

Theorem 2 Under assumptions A1-A4, the only local ma-
xima of φΩ(U(k)) correspond with solutions that extract
one of the independent components of the mixture.

4. EXTRACTION OF SEVERAL SOURCES

In the case of the extraction of P independent components
(1 ≤ P ≤ N ) the P ×N matrix U(k) is semi-unitary with
rows U

(k)
i: , i = 1, . . . , P . A result proved in [7] states

that any non-negative contrast ψΩ(y[1], . . . , y[q]) designed
for the extraction of a single source, that satisfies (2) and
(20), can be used to construct a contrast function for the ex-
traction of the independent components s1(t), · · · , sP (t).
Particularized to our case, this leads to the sequential opti-
mization, of

ΦΩ(U(k)) =

P
∑

i=1

φΩ(U
(k)
i: ) s.t. U(k)(U(k))H = IP . (11)

In table 1 we consider two choices for the optimization of
the previous function which lead to the thin ICA algorithms
(TICA).

4.1. Hierarchical extraction

A first option (see step 5b, 1st choice) is to hierarchically
maximize (11) with respect to the rows U

(k)
i: , i = 1, . . . , P

in such a way that each ith row satisfies the constraints
U

(k)
i: (U

(k)
j: )H = δij ∀j ≤ i, i.e., the first rows are less con-

strained than the last ones. Using Householder reflections
the new update is expressed in a very compact and simple
form, it is U(k) = QH where Q is a tall semi-unitary ma-
trix of dimension N × P which results from the thin QR
decomposition2 of the weighted statistic C

(k−1)
zy defined in

step 5a of table 1.

4.2. Simultaneous extraction

A second option (see step 5b, 2nd choice) is to simultane-
ously maximize ΦΩ(U(k)) with respect to all the rows of
U(k). After defining the Hermitian matrix of multipliers Λ,
the gradient of the Lagrangian function associated to (11) is

∇LΩ(U(k)) = ∇ΦΩ(U(k)) − ΛU(k) (12)

Noting that ∇ΦΩ(U(k)) weakly depends with U(k), only
through a set of the diagonal terms, and approximating these
diagonal terms by their current estimates D

(k−1)
y (τ) we ob-

tain ∇ΦΩ(U(k)) ≈ (C
(k−1)
zy )H . The solution of the equa-

tions

(C(k−1)
zy )H = ΛU(k) (13)

U(k)(U(k))H = IP (14)
ΛH = Λ (15)

2The thin QR decomposition and the thin Singular Value Decomposi-
tion both have, for P << N , a computational complexity of O(NP 2)
flops. An efficient implementation of them can be found under the MatLab
commands qr(·, 0) and svd(·, 0).



Table 1. Summary of the thin ICA algorithms.

1. Set P ≤ N the number of independent
components to extract from x(t).

2. Prewhitening z(t) = Wx(t)

3. Initialization

U
(0) = IP×N ; y

(0)(t) = U
(0)

z(t); k = 1;

4. Estimate ∀τ ∈ Ω the matrices

C
(k−1)
zy (τ) = [c(k−1)

zy1
(τ), . . . , c(k−1)

zyq
(τ)]

where c
(k−1)
zyi

(τ) is defined in (18)
and initialize U(0) = U(k−1)

5. FOR l = 1 : L

(a) Compute the diagonal matrices

D
(l−1)
y (τ) = diag

(

U
(l−1)

C
(k−1)
zy (τ)

)

and the weighted sum:

C
(l−1)
zy =

∑

τ∈Ω

wτC
(k−1)
zy (τ)(D(l−1)

y (τ))∗

(b) Choice 1. OR 2.


































1. Hierarchical approach:

[Q,R] = qr(C
(l−1)
zy , 0)

U(l) = QH

2. Simultaneous approach:

[Q,∆P×P ,V] = svd(C
(l−1)
zy , 0)

U(l) = Vsign(∆P×P )QH

END

6. Update U(k) = U(L) and estimate
P independent components:

y
(k)(t) = U

(k)
z(t)

7. IF Convergence STOP
ELSE k = k + 1; RETURN TO 4

that maximizes ΦΩ(U(k)) is

[Q,∆P×P ,V] = svd(C(k−1)
zy , 0)

U(k) = Vsign(∆P×P )QH (16)

where svd(·, 0) is the MatLab command for the thin singular
value decomposition. The validity of the approximation can
be further improved at iteration k, by considering L subiter-
ations (l = 1, . . . , L) of a zigzag procedure which updates
the estimates D

(l−1)
y (τ) of the diagonal terms as the solu-

tion changes. This is done in step 5. of table 1.

4.3. Projection onto the symmetric subspace

From theorem 1 one a priori knows that the solutions U[m],
m = 1, . . . , q which extract the independent components
belong to the symmetric subspace U[1] = . . . = U[q]. This
information can be exploited to improve the convergence of
TICA algorithms just adding, at the end of each iteration, a
projection step of U(k), . . . ,U(k−q+1) onto this subspace

U(k),U(k−1), . . . ,U(k−q+1) → U(k), . . . ,U(k) (17)

This is obtained using definition (b) instead of (a)

c(k−1)
zyi

(τ) =























a) Without projection:
Cum(z(t1), y

(k−1)
i (t2), · · · , y

(k−q+1)
i (tq))

b) With projection:
Cum(z(t1), y

(k−1)
i (t2), · · · , y

(k−1)
i (tq))

(18)

5. SIMULATIONS

In this section we illustrate how the algorithm (in similarly
with [9]) can be applied to obtain accurate estimates from
reduced set of observations. In our example an array of 20
sensors registers 250 snapshots of the observations. These
are a random instantaneous mixture of 10 independent sig-
nals, in presence of white additive Gaussian noise, and with
a maximum signal to noise ratio of 15dB. The desired inde-
pendent components are the three correlated signals that can
be obtained, after normalization, from the filtering of three
binary processes by the corresponding systems F1(z

−1) =
(1+0.4z−1+0.9z−2+.5z−3)−1, F2(z

−1) = (1+0.6z−1−
0.3z−2)−1 and F3(z

−1) = (1 − 0.7z−1)−1. The other
seven independent components are samples of temporally
i.i.d. uniform processes. We chose second order statistics
q = 2 because for short data records like this they are usu-
ally the most reliable, and we set Ω = {(t1, t1−1), (t1, t1−
2), · · · , (t1, t1 − 7)} because these seven pairs guarantee
that the considered independent components can be ordered
according to (2). We run the algorithm in one hundred ran-
dom experiments (with different random matrices, sources
and noise samples). In each experiment we applied the si-
multaneous TICA algorithm, with P = 3 and L = 2, which
extracted in all the cases the desired subset sources. As can
be observed in figure 2 the convergence of the TICA algo-
rithm is quite fast, requiring between 3 and 6 iterations. Un-
fortunately, no proper comparison can be given with other
algorithms because SOBI and JADE cannot extract a subset
of signals while Fast-ICA did not perform well for such a
small data set.

6. DISCUSSION

Recently, we notice that the contrast function proposed in
theorem 1 admits a least squares cumulant matching inter-



pretation associated with the rank one approximation of a
set of cumulant tensors. A closely related contrast and an
alternating Least Squares technique similar to that we use
were previously proposed in [11] to solve the Blind Source
Separation problem. The results of this paper bring a com-
plementary insight for the simultaneous extraction problem
and lead to the proposal of the thin ICA algorithms. In se-
quel, we comment some of the interesting links of these al-
gorithms with other existing approaches:

• For P = 1, q = 4 and Ω = {(t, t, t, t)} the TICA al-
gorithms with projection extract a single independent
component by maximizing the modulo of the kurto-
sis of the output. In this case, both TICA algorithms
particularize to the fixed point algorithm (Fast-ICA
with cubic non-linearity) proposed in [5]. For arbi-
trary P ≤ N the thin ICA implementation based
on the thin QR decomposition is equivalent to the
hierarchical application of the fixed point algorithm
with deflation. Similarly, the thin ICA implementa-
tion based on the SVD reduces to the fixed point al-
gorithm with symmetric orthogonalization when P =
N (BSS), and provides a novel extension of it for
P < N (BSE).

• For P = N and q = 2 (alternatively q = 4) the
TICA algorithms extract all the independent compo-
nents using second order statistics (fourth order statis-
tics) and, when it is possible, using also any non-
stationarity of the independent components. The cri-
terion (7) is equivalent to that of the SOBI [9] (JADE
[8]) algorithm based on the joint approximate diago-
nalization of a certain set of cumulant slices, although,
the implementation differs.

• For 1 < P < N and arbitrary q the TICA algo-
rithms extract P independent components using the
joint optimization criteria (11). In this case, none of
the previously cited algorithms can solve this prob-
lem: fixed point algorithms (Fast-ICA) does not per-
form a joint optimization of several statistics, while
SOBI and JADE implementations are not suitable for
extraction because the extended Jacobi plane rotations
they use are not the most adequate technique for the
estimation of a subset of eigenvectors.

7. CONCLUSIONS

We have proposed a multivariate contrast function for the
extraction of a subset of desired independent components
from a linear mixture. This contrast function jointly opti-
mizes several statistics of the same order and have no spu-
rious maxima. We have suggested the thin ICA algorithms
for the maximization of the contrast because they combine,
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centiles. Lower figure presents the coefficients of the differ-
ent rows of a 3 × 10 matrix G for one sample experiment.

at the same time, several of the advantages of other powerful
techniques like Fast-ICA, JADE and SOBI.

A. PROOF OF THEOREM 1

The proof starts observing that under assumptions A1-A4
the contrast (7) is theoretically unaffected by the additive
noise. Then, using Cauchy-Schwarz’s inequality one ob-
tains that each square cumulant within the summation is up-
per bounded by

∣

∣

∣Cum(y[1](t1), · · · , y
[q](t− τq))

∣

∣

∣

2

≤

N
∑

j=1

|G
[p]
1j |

2|Cum(sj(t1), · · · , sj(tq))|
2

·





N
∑

j=1

∏

m6=p

|G
[m]
1j |2





Since the global transfer vectors are normalized

N
∑

j=1

q
∏

m6=p

|G
[m]
1j |2 ≤

q
∏

m6=p

N
∑

j=1

|G
[m]
1j |2 = 1 (19)

therefore,

∣

∣

∣
Cum(y[1](t1), · · · , y

[q](tq))
∣

∣

∣

2

≤
N

∑

j=1

|G
[p]
1j |

2

·|Cum(sj(t1), · · · , sj(tq)|
2



Substituting these terms in (7) results in

ψΩ(ȳ) ≤

N
∑

j=1

|G
[p]
1j |

2ψ(sj) p = 1, . . . , q. (20)

But from the ordering ψΩ(s1) > ψΩ(sj) ∀j = 2, . . . , N in
A4, and the constraint ‖G[p]‖2 = 1 we finally obtain

ψΩ(y[1], . . . , y[q]) ≤ ψΩ(s1) , (21)

which means that the upper bound coincides with the ex-
traction of the desired independent component. Noting that
the equality between both sides of (19) only holds when the
row vectors are equal G[1] = · · · = G[q] and aligned with
one of the axis ej

T , j = 1, · · · , N , one can conclude that
the global maximum of ψΩ(ȳ) is only attained at the extrac-
tion of the desired source, i.e., when U[1] = · · · = U[q] =
(WAe1)H where e1 = (1, 0, . . . , 0)T . �

B. PROOF OF THEOREM 2

Any critical point U′ of φΩ(·) has associated a global ex-
traction system G′ = U′WA. Following [12] we define
the set of indices for which the elements of G′ are nonzero

I = {m : G′
1m 6= 0,m = 1, . . . , N}, (22)

From the proof of theorem 1 one can observe that any so-
lution which extracts one of the independent components
(I has cardinality one) is a local maximum of the contrast.
Thus, the deceptive local maximum of φΩ(·), if they exit,
should correspond with G′ having at least two nonzero ele-
ments, however, these kind of points cannot be a maximum
of the function φ(·) because we can always find local per-
turbation of them for which the function increases. For a
local perturbation α ∈ R

N where: ‖α‖ sufficient small,
∑N

j=1 αj = 0, αj = 0 ⇔ j 6∈ I , and such that

|G1j |
2 = |G′

1j |
2 + αj , j = 1, . . . , N ; (23)

the function φ(·), at the perturbed point U, is written as

φ(U) = (1 + γ(α))φ(U′) + β(α) + o(‖α‖2)

where

γ(α) =
q(q − 2)

4

∑

j∈I

∣

∣

∣

∣

∣

αj

G′
1j

∣

∣

∣

∣

∣

2

(24)

β(α) =
∑

τ∈Ω

wτ

∣

∣

∣

∣

∣

∣

q

2

∑

j∈I

αj

(G′
1j)

q

|G′
1j |

2
csj

(τ)

∣

∣

∣

∣

∣

∣

2

(25)

Since γ(α) ≥ 0 and β(α) > 0 for all q ≥ 2 we have that

φ(U) > φ(U′) , (26)

and we conclude that any solution for which I has cardina-
lity greater than 1 cannot be a local maximum of φΩ(·). �
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