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   Abstract—In  this  paper,  we  deal  with  questions  related  to
blockchains  in  complex  Internet  of  Things  (IoT)-based
ecosystems.  Such  ecosystems  are  typically  composed  of  IoT
devices,  edge  devices,  cloud  computing  software  services,  as  well
as  people,  who  are  decision  makers  in  scenarios  such  as  smart
cities.  Many  decisions  related  to  analytics  can  be  based  on  data
coming from IoT sensors, software services, and people. However,
they  are  typically  based  on  different  levels  of  abstraction  and
granularity.  This  poses  a  number  of  challenges  when  multiple
blockchains  are  used  together  with  smart  contracts.  This  work
proposes to apply our concept of elasticity to smart contracts and
thereby enabling analytics in and between multiple blockchains in
the  context  of  IoT.  We  propose  a  reference  architecture  for
Elastic  Smart  Contracts  and  evaluate  the  approach  in  a  smart
city scenario, discussing the benefits in terms of performance and
self-adaptability of our solution.
    Index Terms—Blockchain,  elasticity,  Internet  of  Things  (IoT),
smart cities, smart contracts, virtual chains.
  

I. Introduction

C ITIES  are  complex  ecosystems,  and  their  effective  and
efficient functioning has enormous impact on the quality

logistics  systems,  and  critical  infrastructures.  Cloud  systems
have  been  introduced  and  used  to  store  and  analyze  these
streaming, things-based, and social  big (in terms of “volume,
variety,  velocity,  and  veracity”)  data  through  complex
middleware for various analytics needed for the operation and
optimization of cities.  Human capabilities have been invoked
in  the  loop  to  design  and  monitor  cities  together  with
software. All of these data, analytics capabilities, and domain
knowledge  in  smart  cities  involves  a  large  number  of
stakeholders, ranging from individual citizens to corporations,
including  also  government  agencies  for  both  vertical  and
horizontal problems (such as energy consumption analytics or
human  mobility  analytics).  In  this  view,  one  needs  to
understand that analytics of smart cities are far from just “big
data  analytics” and  IoT  data  analytics.  Smart  cities  analytics
have  an  inherent  ecosystem requirement,  leading  to  different
paradigm  shifts  in  big  data  analytics  from  transactions  to
ecosystem  perspectives  as  well  as  in  the  involvement  of
multiple,  not  necessarily  trusted  stakeholders  besides  ICT
sensors, networks and analytics.

Key  city  analytics  often  require  data,  analytics,  and
capabilities  from  both  vertical  and  logical  domains  (e.g.,
related  to  energy  consumption)  in  a  complex  ecosystem  of
things, software services, and people which results in multiple
stakeholders,  with  varying  trustworthiness  degrees.  Comple-
xities  in  these  analytics  can  be  viewed  by  these  stakeholders
from different angles: i) physical (space) view: City analytics
can be  carried  out  for  a  single  block,  a  street,  or  a  house; ii)
logical  domain  view:  City  analytics  are  needed  for  various
vertical domains (e.g., building management, intelligent transpor-
tation  management,  and  infrastructure  maintenance)  and
horizontal domains (e.g., energy policy and governance, social
wellbeing,  and  urban  planning);  and iii)  time  view:  City
analytics  can  be  performed  at  different  time-scales,  e.g.,
online  (with  near  real-time  streaming  data),  offline  (with
historical  data),  as  well  as  a  combination  of  both  near  real-
time  and  historical  data,  also  considering  accountability
aspects.  While  current  data  gathering  techniques  are  able  to
collect  various types of data,  state-of-the-art  analytics techni-
ques  isolate  data  produced  by  technical  systems  (e.g.,  from
sensors)  and  social  systems  (e.g.,  from  people)  and  then
centralize  the  data  in  centers  (e.g.,  in  clouds)  to  carry  out
analytics at  centralized places (although utilizing parallel  and
distributed  computing  resources).  Such  approaches  rely
entirely on software capabilities to deal with big data captured
through  distributed  hierarchical  networks  of  computing
elements.

In  city  analytics,  data,  information,  knowledge,  and
computational capabilities from software services, things, and
people  are  distributed  in  deep,  interwoven  distributed  ICT

of life of their citizens and society as a whole. However,
building smart cities is probably one of the most difficult
challenges our society faces today. Among the variety of
problems that need to be solved, the question of how to
leverage existing ICT technologies to develop foundations for
smart city analytics in a transparent and trustworthy form
greatly concerns all stakeholders in today’s smart cities.

As of today, we have observed several technologies
enabling the connection between social and technical
subsystems for smarter city analytics. A huge number of
Internet of Things (IoT) devices as well as human
participation have been introduced to provide various types of
data about urban mobility and transportation systems,

 electricity grid, smart buildings, manufacturing, intelligent
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architectures.  Therefore,  state-of-the-art  approaches  are  not
adequate  as  they  collect  data  at  the  edge  of  the  city  where
things  and  people  reside,  bring  the  data  to  the  root  of  the
hierarchy  (e.g.,  cloud),  and  perform  analytics  based  on  data
provided  by  predefined  settings.  First,  it  does  not  support
time-scale  because  fine-scale  and  coarse-scale  data  analytics
are  not  interoperable,  since  either  we  miss  a  lot  of  data  (in
coarse-scale data) or we have to deal with lots of data (in fine-
scale  data).  Second,  this  also  makes  the  filtering  and  pre-
processing  data  challenging  for  supporting  complex  logical
domains,  which  must  deal  with  different  logical  horizontal
and  vertical  scales.  Finally,  we  also  have  severe  problems
with physical scale: as most of the time we centralize data in
one cloud data center  so we do not  have enough information
to  cover  all  physical  spaces  with  sufficient  quality  to
guarantee  time-aware  analytics,  e.g.,  subjects  to  be  analyzed
change  rapidly  in  physical  world  and  we  lack  up-to-date
information in the centralized computing environment.

We  believe  we  need flexible  and  elastic  mechanisms  to
support  city  analytics by harnessing collective capabilities  of
things, people,  and  software  to  carry  out  timely, quality-
aware, and  elastic  analytics  spanning  both  horizontal  and
vertical  domains.  Given  the  huge  number  of  things,  people,
and  software  services  easy  to  be  found  and  utilized  without
the  need  of  centralized  control,  we  should  investigate  a
fundamental paradigm shift  in utilizing collective capabilities
that  are  distributed  across  the  city  infrastructure  to  enable
coordinated  analytics  in  a  flexible  and  elastic  manner.  Such
analytics  must  be  provided  with  adjustable  quality  of  results
for  multiple  stakeholders  where  complex,  transparent,  and
trusted collaboration between things, software, and people are
needed  to  understand  and  address  past,  current,  and  future
problems  of  smart  cities  based  on  historical,  current,  and
predicted data [1].

In  this  work,  we  discuss  to  what  extent  blockchain
technologies  are  adequate  to  support  complex  analytics  in
these  ecosystems.  We  first  introduce  a  concrete  motivating
scenario in smart cities analytics (Section II) and analyze how
existing  approaches  to  smart  contracts  and virtual  chains  can
be applied to carry out the relevant analytics (Section III). Our
vision,  described  in  Section  IV,  further  develops  the  smart
contract  notion  towards  an  elastic  smart  contract,  which
considers elasticity concerns, while providing a framework to
horizontally  and  vertically  integrate  data  and  its  associated
analytics capabilities by promoting the idea of glue contracts.
Then, we discuss the elasticity forces that drive our elasticity
rationale  in  Section  V.  Section  VI  showcases  our  reference
architecture  to  support  elastic  smart  contracts,  while  Section
VII  evaluates  our  proposal  based  on  a  Hyperledger  Fabric
implementation. Finally, in Section VIII we conclude that our
proposal  will  provide  a  comprehensive  support  for  the
different capabilities required in complex scenarios like smart
cities.  

II. Motivating Scenario

As depicted in Fig. 1,  in this article we consider smart  city
infrastructures  consisting  of  a)  IoT  sensors,  b)  edge  devices,

which perform computational tasks such as analytics tasks, c)
more “powerful” edge servers (aka fog computing nodes), and
d) cloud  computing  data  centers  as  the  fundamental
architectural  building  blocks  for  sensing  and  processing  IoT
data in smart cities.

At  the  lowest  level  of  the  current  smart  city  infrastructure,
we see that data flows from the edges to the data center. From
the  infrastructure  perspective,  at  the  edge  (e.g.,  buildings  or
districts)  we  can  identify  numerous  capabilities  offered  by
things,  software  services,  and  even  people.  At  (and  through)
the data centers, several types of software services and people
(from  the  crowds,  professional  groups,  etc.)  are  available  to
perform  data  management  and  analysis.  Although  various
types  of  infrastructures  connecting  people,  IoT,  and  software
services  are  distributed,  current  city  analytics  processes  are
mainly  performed  in  the  cloud  using  software  services  to
provide  results  to  humans.  In  principle,  analytics  processes
can  be  carried  out  in  multiple  places  within  the  city
infrastructure by leveraging the collective capabilities of units
of IoT, people, and software services. However, with today’s
techniques,  such  units  cannot  be  collectively  composed  and
provisioned on the fly  for  subsequent  distribution throughout
the city infrastructure. This prevents us from providing timely
and elastic analytics to support non-functional concerns, such
as cost, security, and privacy.

For complex problems, city analytics processes are logically
divided into a set of sub-analytics processes that cover a set of
concerns in distinct horizontal and vertical domains, as shown
in Fig. 1. Computational tasks can be structured in a “vertical”
way  or  in  a “horizontal”  way.  Given  the  exemplified  city
analytics  process  for  policy  and  regulation  of  sustainable
environments, let us consider an analysis for a city block. Sub-
analytics  process  concerns  could  be  energy  consumption  of
buildings  and  infrastructure,  citizen  wellbeing  and  opinions,
environmental impacts of regulations, or incentive policies for
green  businesses,  to  name  just  a  few.  These  sub-analytics
processes  belong to  different  vertical  and horizontal  domains
and  we  need  to  correlate  them  and  their  results  in  order  to
understand  how  to  create  policy  and  how  to  regulate
sustainable  environments.  In  principle,  such  sub-analytics
processes are also complex and some of them will  be carried
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Fig. 1.     Vertical offloading of analytics computation [2].
 



A. Smart Contracts
In  a  complex scenario  like  the  introduced before,  a  variety

of  stakeholders  have  to  collaborate,  sharing  information
between  them  and  allowing  each  party  to  carry  out  analysis
and provide decentralized services over the shared data. Trust
issues  become fundamental  in  this  setting,  since  parties  have
to continuously agree on the validity of the data and services
they  need  to  integrate.  Blockchain  technologies  are  a  natural
fit,  providing  transparency  and  non-tampering  to  the  data
shared in a trustless network [3]. In addition to these features,
privacy  and  rights  management  can  be  considered  by  using

different  blockchain  implementations,  ranging  from
permissioned  blockchains  [4]  to  specific  solutions  tailored  to
IoT-based  ecosystems [5]–[7],  including  novel  approaches  to
data management that focus on trust and privacy preservation
[1], [8].

Since  the  introduction  of  smart  contracts  [9],  blockchains
have  evolved  from  mere  distributed  digital  ledgers  to
distributed  computing  platforms  that  can  include  not  only  an
immutable  data  repository,  but  also  logical  and  behavioral
information  to  automatically  rule  the  relationships  between
stakeholders.  Thus,  smart  contracts  can  encode  functionality
needed  to  provide  additional  services  on  top  of  the  data
registered  in  the  blockchain  [10].  These  contracts  essentially
aggregate some data under certain conditions that will trigger
its execution. Although the data used within the contract logic
is  mostly  obtained from the  blockchain  where  the  contract  is
deployed, oftentimes there is a need to consider external data
(commonly  referred  as  off-chain  data).  In  order  to  retain  the
trustless  characteristic  of  blockchains,  an  additional  agent,
namely  an  oracle,  needs  to  provide  the  external  data  in  a
secured, trusted form [11].  

B. Virtual Chains
Furthermore,  there  are  scenarios  where  there  is  a  need  to

separate nodes and information between different levels, as in
our  motivating  scenario  (see  Section  II).  Virtual  blockchains
provide  means  to  implement  specific  functionality  on  top  of
existing blockchains [12] by introducing an abstraction layer,
so  that  the  different  application  nodes  subscribing  to  the
virtual  chain  will  access  data  and  execute  smart  contracts
tailored  to  their  characteristics,  while  using  a  single
blockchain  as  the  backbone  for  recording  every  transaction
within  the  whole  system.  Thus,  multiple  virtual  blockchains
(or  virtual  chains  for  short)  comprising  the  different  levels
discussed  in  our  motivating  scenario  can  be  deployed  and
integrated  using  this  approach.  However,  sharing  data
between  different  virtual  chains  and  from  off-chain  sources
still  needs  the  introduction  of  oracles,  which  could  be  just
rights  management  systems  in  case  of  internal  oracles
allowing  data  access  between  virtual  chains  deployed  on  the
same regular blockchain.  

C. Elasticity
As the complexity of  the systems grows,  the need to adapt

to  variable  flows  of  information  and  constraints  to  develop
appropriate  outcomes  represents  an  important  challenge.  To
this  concern,  elasticity [13] is  presented as the capabilities  to
react  and  accommodate  changes  in  the  environment  with  an
autonomous  mechanism.  In  [14],  authors  provide  a  formal
model  of  elasticity  as  a  three-dimensional  space  involving
resources,  quality,  and  cost  aspects  that  provide  the
appropriate  framework  to  define  and  analyze  the  elasticity
properties  of  an  information  system  that  will  be  used  as  a
starting point of our conceptual proposal.  

IV. Conceptual Proposal

Smart  contracts  represent  an  appropriate  framework  to

out in the cloud (such as environmental impacts, and incentive 
policies)  whereas  others  can be  performed at  the  edge where 
things  and  people  reside  (e.g.,  building  energy  consumption, 
and  citizen  wellbeing  and  opinions).  They  also  require 
different  algorithms,  data,  and  knowledge  from  different 
stakeholders.  Among  them,  there  are  different  ways  to 
exchange  analytics  results  and  requests  to  ensure  the  final 
result of the city analytics to be delivered. To the best of our 
knowledge,  state-of-the-art  techniques  just  focus  on 
centralized analytics for single domains. This leads to a severe 
problem  for  city  analytics:  As  the  scope  of  current  analytics 
processes  is  limited  to  isolated  domains  and  problems  are 
either  solved  by  software  services  or  people,  the  results  may 
not be adequate and substantial in the overall context of a city. 
We  argue  that  smart  city  analytics  must  be  researched  from 
the  perspective  of  ecosystems  in  which  capabilities  to 
contribute to analytics processes are based on hybrid resource 
types  composed  of  software,  people,  and  things,  and  where 
elasticity concerns may pose additional challenges to properly 
consider  a  dynamically  changing  number  and  type  of  those 
resources, with varying degree of quality and associated costs. 
Moreover,  different  stakeholders  from  multiple  vertical  and 
horizontal  domains  impose  requirements  on  analytics 
processes  due  to  the  associated  ecosystem  of  people, 
technology, and institutions.

Furthermore, in this scenario it is crucial that the shared data 
used  to  perform  decentralized  analytics  in  any  dimension 
comes from trusted sources. However, considering the number 
of  agents  and  stakeholders  participating  in  a  smart  city 
ecosystem,  trustworthiness  cannot  be  assumed.  Furthermore, 
certain  stakeholders,  such  as  public  administrations,  usually 
require transparency and tamper resistance to the data they use 
to analyze and provide services to other agents. For instance, a 
local  administration  may  enact  a  contract  with  an  external 
company to  provide street  cleaning services,  using data  from 
IoT sensors and possibly edge devices located on the streets to 
plan the optimal  cleaning routes.  Both the input  data  and the 
cleaning  routes  derived  from  its  analysis  should  be  publicly 
accessible  in  a  transparent  and  immutable  form,  so  that  the 
local  administration  or  even  citizens  can  check  whether  the 
street  cleaning  company  adheres  to  the  contract  in  place  and 
the  quality  level  of  the  provided  service,  while  providing 
  flexibility and adaptability to changes in the ecosystem.

III. Related Work



develop a computational mechanism combining data off-chain
with  the  one  present  in  the  blockchain.  However,  in  order  to
address the analytical challenges discussed in the motivational
scenario,  the  framework  should  be  extended  to  support  a
variable  and  multilevel  nature  of  the  actors  involved.
Specifically, in this section, we outline how the elasticity and
integration  aspects  are  fundamental  cornerstones  to  build  an
appropriate smart contract ecosystem to develop more capable
blockchains  for  complex  scenarios  such  as  a  smart  city.  In
this  context,  this  conceptual  proposal  outlines  the  key  des-
ign  principles  of  the  implemented  framework  described  in
Section VI.  

A. Integration Concerns
Separating  the  information  needs  in  different  levels  allows

organizations  to  focus  on  their  interests,  while  regulatory
bodies can grant access to those organizations only to specific
data.  In  this  context,  from a  blockchain  perspective  there  are
multiple  architectural  alternatives  to  implement  the  level
stratification,  which  can  be  characterized  by  analyzing  three
aspects:

1) Granularity:  Several  mapping  options  could  be  defined
to assign a given blockchain to a single level (fine granularity)
or multiple levels (coarse granularity). In addition, there could
be  some  scenarios  where  the  same  levels  are  composed  of
multiple different blockchains.

2) Accessibility:  From  this  perspective,  we  refer  to  the
capability  to  analyze  the  blockchain  content  by  different
agents; i.e., the blockchain represents an open system (public)
to  any  agent  or  a  closed  system (private  or  permissioned)  to
certain agents.

3) Deployment  model: In  this  context,  we  address  the
logical  implementation  and  deployment  of  the  chain,  i.e.,
existing  blockchains  that  are  implemented  over  a  specific
technical protocol or virtual chains that are materialized inside
a regular existing blockchain.

Consequently,  we  can  have  a  wide  variety  of  modelling
choices for a given scenario.  As an example, Fig. 2 depicts a
particular  abstract  scenario  showing  several  options,  namely
Level 1 with two fine grain blockchains (one private and one
public),  Level N  with  one  fine  grain  public  blockchain  that
contains  two  virtual  chains,  and  a  coarse  grain  private
blockchain  that  spans  over  all  levels  and  contains  a  virtual
chain  for  each  level.  From  an  analytics  perspective,  since
smart  contracts  are  meant  to  be  executed  in  the  context  of  a
single  blockchain,  we  envision  the  need  for  different  cross-
chain  integration  mechanisms  (as  exemplified  in Fig. 2)
depending  on  three  factors:  Whether  integration  is  done
between regular blockchains (Examples labeled with 1 and 2)
or virtual chains (3 and 4); between chains in the same level (1
and  3)  or  different  level  (2  and  4);  or  between  the  same
accessibility  context  (3  and  4)  or  between  a  public  and  a
private chain (1 and 2). Taking these challenges into account,
we claim the need for a special kind of smart contracts, coined
as  glue  contracts,  with  the  special  responsibility  of  making
data  available  across  two  different  chains  (virtual  or  regular)
corresponding  to  the  same  level  (horizontal  integration)  or

different levels (vertical integrations).
In this context, it is important to highlight that the discussed

integration alternatives would represent different types of glue
contracts.  Thus,  in  order  to  integrate  two  different  chains,  a
possible  solution  could  make  use  of  oracles  in  order  to
maintain  the  trust  level  of  the  whole  ecosystem.  In  this
particular  case,  the software oracles  are just  simple gateways
to  the  accessed  blockchains  which  do  not  need  to  add  an
additional  trust  method  to  the  already  trusted  data  from  the
accessed  blockchains.  Another  example  of  mechanism  used
by  glue  contracts  to  address  an  integration  between
accessibility  contexts  could  be  the  usage  of  IPFS1 as  the
intermediary  persistence  area  for  data.  In  the  case  of  cross-
level  (or  vertical)  integrations,  glue  contracts  would  be  in
charge  of  aggregating  the  data  from  inferior  levels  into  new
kind  of  information  for  higher  levels.  Furthermore,  glue
contracts  need  to  address  possible  divergences  between
blockchain  implementations  and  protocols  of  chains  to  be
integrated.  There  exist  alternatives  to  reconcile  these
divergences  when  dealing  with  crypto  currencies  [15],  [16]
that  could  be  extended  to  allow  dealing  with  complex  asset
integration.  

B. Elasticity Concerns
Following  the  model  presented  in  [14],  our  proposal  takes

into  account  the  elasticity  concerns  to  allow  stakeholders  to
dynamically  reconfigure  the  integration  between  levels,
depending  on  the  horizontal  and/or  vertical  offloading  needs
(i.e., contract execution), by leveraging elasticity for analytical
and glue contracts, correspondingly.

Specifically,  in  order  to  incorporate  the  elasticity
dimensions  in  smart  contracts,  we  need  to  provide  means  to
elastically  define  resources,  quality  properties,  and  costs
associated with a particular contract. To this end, we propose
to  add  an  abstraction  layer  to  current  smart  contracts  which
will  define  the  elasticity  policies  for  a  particular  contract.
Therefore,  executing  a  so  called elastic  smart  contract will
transparently  consider  elasticity  aspects  on  top  of  the  actual
functionality  provided  by  the  contract.  Furthermore,
stakeholders  should  consider  executions  costs  for  contracts
(e.g.,  gas  for  Ethereum  smart  contracts)  as  well  as
infrastructural  costs  of  the  blockchains  to  plan  the  actual
architecture  of  chains  in  levels.  To  this  end,  a  decentralized
market  of  agents  [17]  would  allow  the  dynamic
reconfiguration of the ecosystem taking cost information into
account.  In order  to  develop these implications,  in  Section V

Level 1
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Fig. 2.     Integration points between blockchains.
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we detail the different elasticity forces derived from the nature
of the blockchain paradigm.  

C. Visionary Use Case
To exemplify the applicability of the proposal we outline a

supporting architecture grounded on the current capabilities of
blockchain technological state of the art. In such a context, in
the  current  evolution  state  of  the  technology  towards  richer
ecosystems,  we  expect  continuous  improvements  and
revisions of the conceptual frameworks presented. In this use
case,  (Fig. 3 shows a  fragment  of  the  envisioned blockchain)
we  can  conceptualize  an  architecture  of  different  virtual
chains (composed of “virtual” blocks) that coexist in the same
blockchain ecosystem (composed of “grounded” blocks) with
smart  contract  capabilities  (such  as  Ethereum).  In  such  a
framework,  each  grounded  block  would  be  a  container  for
multiple  virtual  blocks  that  correspond to  the  different  levels
and  contain  either  data  or  contracts  related  to  that  level.
Specifically,  in Fig. 3  we  exemplify  a  fragment  of  the
blockchain (Blocks i  to (i+7)) including two levels (note that
in  a  real  scenario  there  potentially  exists  a  higher  number  of
levels).  Inside Level 1 we can identify information generated
by  two  agents  (s1 and  s2 )  and  one  elastic  analytical  smart
contract  (EAC1)  in  charge  of  creating  derived  data  from  the
activity in the level. Next, in Level 2, we can see two kinds of
elastic  glue  contract  (EGC).  On  the  one  hand,  EGC1
aggregates the information from Level 1 and incorporates the
aggregation as new data in Level 2. On the other hand, EGC2
(implemented as an oracle) imports data off-chain to the Level
2. Finally, EAC2 analyzes the data of this level to create a new
kind of information.

In  this  context,  we  can  identify  different  examples  of
multiple  interleaved  analytics  that  can  be  mapped  to  the
abstract  blockchain  fragment  presented  in Fig. 3 :  from  low-
level  analytics  regulating  small  physical  spaces  that  mainly
involve  sensor  data,  to  high-level  analytics  involving  other
kind  of  data  sources  such  as  human  actor  decisions  or  off-

chain census data. For the sake of clarity, we propose a simple
example  that  would  correspond  with  two  low  levels  of
analytics representing an adaptable urban lighting system:

Level 1 (street section) would represent a section of a street
composed by a number of sensors and lights; concretely in the
chain  fragment  depicted,  agents s1,  s2  could  represent  two
presence sensors  for  a  given road section that  introduce their
observations  as  data  in  the  chain  with  different  time
resolution.  The  analytics  contract  EAC1 would  periodically
perform  an  analysis  over  the  sensors  data  to  calculate  a
presence  prediction  (α)  in  the  section;  this  analytical
information  would  be  used  to  actuate  into  adaptable  street
lights  in  the  street  section  that  switch  on  in  the  presence  of
cars, so they dynamically adapt their switch-off latency to the
actual prediction.

Level 2 (street) the glue contract EGC1 could aggregate the
presence prediction of different sections calculated in Level 1
in order to create an estimation of the traffic flow in the street
(β).  In  this  level,  the  glue  contract  EGC2 could  include
weather forecast as off-chain data (γ) so the analytics contract
EAC2 could calculate an estimation of the congestion risk (δ)
in  order  to  optimize  the  traffic  lights  rules  for  the  given  the
street.

Furthermore,  in  a  potential  superior Level  N we  could
leverage advanced use cases such as a new generation contract
for  waste  management  service  that  regulates  the  actual
resource assignment algorithm based on the data harvested by
the  sensors;  this  could  be  implemented  by  a  combination  of
elastic  smart  contracts  using  the  analytics  gathered  and
calculating  the  actual  bills  automatically,  providing  a
completely  transparent  and  non-tamper  management
procedure.

Examples  of  the  three  elasticity  dimensions  emerge  from
our  use  case:  i) Resources  range  from  the  information
providers  that  can  correspond  with  things  (e.g.,  sensors),
software  (e.g.,  government  information  systems)  or  people
(e.g.,  an  approval  from  a  stakeholder);  ii)  Depending  on  the
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type of resource, a taxonomy of quality aspects can be defined
(such  as  resolution  data  in  sensors,  availability  of  the
government  information  system  or  readiness  of  the
stakeholder);  iii)  Finally, costs  involved  in  the  process  can
also  be  structured  in  terms  of  the  resource  type  (e.g.,  energy
cost  of  the  sensor,  infrastructure  cost  of  the  information
system, or personnel costs). All these concerns would be taken
into  account  to  create  the  elasticity  policies  for  each  elastic
contract;  as  an  example  in  the  use  case,  EAC1 would  have  a
policy to select the number of sensors (resources) filtered by a
particular  data  frequency  (quality)  and  constrained  by  a
maximum number of gas used in the execution of the analytics
(cost).  

V. Elasticity Forces

As  discussed  in  previous  sections  Elastic  Smart  Contracts
are  means  to  provide  an  appropriate  analysis  framework  that
is integrated into the blockchain taking into account resources,
quality and cost considerations. Indeed, this elasticity need is
grounded  in  the  fact  that  analytics  over  a  big  set  of  data,
performed  by  means  of  smart  contracts  in  a  blockchain,
represent  an  actual  challenge.  In  this  section  we  analyze  the
different forces that would drive the elasticity rationale.

We can define two different kinds of data used as input for
analytics (i.e., by means of smart contracts) in the blockchain
paradigm.  On  the  one  hand,  the  paradigm  provides  a
persistent, immutable and non-tampered way to store a set of
transactions  in  the  chain.  On  the  other  hand,  for  the  sake  of
efficiency,  in  actual  implementations  of  the  paradigm,  there
are  also  other  current  (and  mutable)  data  available  in  the
ledger  that  can  be  used  into  the  analytics  (such  as  the Asset
objects in Hyperledger Fabric). In such a context, although the
access  and  modification  of  that  mutable  data  is  highly
efficient, as the global size of that kind of data increases there
could  be  a  severe  impact  over  the  blockchain  performance.
Consequently,  the performance implications of  maintaining a
big set of data, imposes a trade-off over the appropriate size of
data that should be maintained for the analytics while keeping
an appropriate blockchain performance.

We are  going  to  discuss  this  trade-off  proposing  a  number
of  dimensions  that  characterize  the  potential  scenarios  by
means of three different perspectives.

First, in order to characterize the amount of data needed in a
given  scenario,  we  propose  a  general  classification  of
analytics  depending  on  the  following  two  analytical
requirements dimensions:

1) History: How much data should we retain to perform the
analysis (i.e., how big should be the storage to keep the data).

2) Freshness:  How  current  the  data  should  be  (i.e.,  how
frequently should we harvest data to perform the analysis).

Taking  both  dimensions  into  considerations, Fig. 4
represents  a  quadrant  that  shows  a  wide  range  of  types  of
analysis  that  are  bounded  in  two  extreme  types:  On  the  one
hand (top-left), an analysis over a large set of historic data that
is  typically  used  for  long  term  decisions  that  could  have  a
subtle permanent effect such as the stop lights policies in our
scenario; On the other hand (bottom-right), an analysis over a
small  set  of  fresh  data  that  is  typically  used  for  short  term

decisions that could potentially have a strong punctual impact
such  as  switch  on  and  off  the  street  lights  in  our  scenario.
Complementary,  there  are  two  other  hybrid  possibilities
(bottom-left  and  top-right)  that  could  lean  to  those  streams
depending on the requirements in a particular scenario.

Second,  depending  on  the  actual  scenario,  in  order  to
characterize  its  variability,  we  propose  a  global  characteri-
zation  of  the  dynamics  of  the  analysis  depending  on  the
following two dimensions:

1) Data Density: In some scenarios we can have a fixed rate
of  data  generated  (e.g.,  an  air  quality  sensor  that  takes  one
measure  every  second)  or  a  variable  flow  of  data  depending
on  the  situation  (e.g.,  our  example  where  the  sensor  in  the
street only generates the data if a car is detected).

2) Elasticity  Requirements: These  requirements  could
include  any  of  the  elasticity  dimensions  [14]  (i.e.,  quality  or
cost  considerations).  In  some  scenarios,  the  requirements  are
fixed (e.g., maximum time for the analytics to be done), while
in others there is  a need for tuning the elasticity dynamically
(e.g.,  a  dynamic  change  on  the  threshold  for  the  analysis
execution cost).

Using  those  dimensions,  in Fig. 5 ,  we  show  the  quadrant
that  highlights  the  need  for  elasticity  in  a  potential  scenario.
On  the  bottom-left  case  there  is  no  need  for  elasticity,  while
on  the  rest  there  could  be  a  suitable  scenario  for  it.
Conversely,  in  the  most  complex  situation  (top-right)  the
highest  variability  is  present  and,  therefore,  a  potential
elasticity mechanism will be highly required.
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Fig. 5.     Quadrant 2: Data Density vs Elasticity Requirements.

As  a  third  perspective,  we  can  combine  the  preexisting
dimensions  Data  Density  (i.e.,  Data  generation rate)  with  the
analytical  requirements  (i.e.,  Freshness  and  History)  to
propose a characterization of the stress levels that penalize the
blockchain performance in a given situation derived from the
amount  of  data  that  should  be  maintained  in  the  ledger.
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VI. Realizing Elastic Smart Contracts

In  order  to  support  elasticity  concerns  for  smart  contracts
execution  and  management,  we  devised  the  elastic  smart
contract  reference  architecture  shown  in Fig. 7 .  We
contextualize  our  proposal  using  the  visionary  use  case
introduced  in  Section  IV-C,  which  we  implemented  using  a
Hyperledger Fabric [4] blockchain.

Specifically, Fig. 7  shows  the  key  interactions  by
representing with solid lines the direct invocation or usage of
a component (such as a smart contract) or resource (such as a
configuration file) and by using the light green dashed line to
represent the triggering of a component invocation based on a
given  event  following  the publish-subscribe  pattern.
Alternatively,  the  dashed  dark  green  line  represent  the  smart
contract  execution  in  the  blockchain  (Hyperledger  Fabric  in
our  implementation)  triggered  by  an  off-chain  invocation  of
the appropriate API.

The  main  component  of  our  proposal,  called Elasticity
Orchestrator, manages the execution of the blockchain system
by monitoring the elasticity dimensions and calling the appro-
priate  smart  contracts  according to  the time and performance
constraints  of  the  particular  scenario.  These  constraints  are
specified  as  elasticity  rules  (ER  in Fig. 7 ),  which  define  the
lower  and  upper  bounds  admissible  for  the  duration  of  the
analysis execution, as well as the initial values for the history
and freshness analytical requirements discussed in Section V,
represented as history time window (HTW) and frequency of
update (FUP) metrics in Fig. 7, correspondingly.

d1, ...,dn

Within  the  boundaries  of  the Elasticity  Orchestrator,  we
separate the responsibilities in two modules. On the one hand,
the Harvesting  Manager is  responsible  for  managing  the
acquisition of input data from a set of sensors (or a data source
in general) and updating the data stored in the blockchain that
will  be  actually  used  to  perform  the  appropriate  analytics.
Periodically,  according to the current  freshness required (i.e.,
FUP),  the  update  management  function  obtains  a  set  of
detections from  the  sensors  being  used  and  updates
the  data  asset  considering  the  current  history  time  window
(i.e.,  HTW). In order to do so,  it  submits a transaction to the
Update  Data  smart  contract,  which  will  register  the  newly
acquired data within the data asset that will serve as the input
for  the  analysis  smart  contract,  while  removing  the  old  data
that falls behind the HTW.

In  parallel  to  this  process,  the  elasticity  operation  function
performs  the  evaluation  of  the  current  status  of  the  system
with  respect  to  the  specified  elasticity  rules.  Taking  into
consideration  the  average  duration  of  the  analysis  execution
(referenced  as  AD  in Fig. 7 ),  the  elasticity  operation
periodically  evaluates  whether  FUP  and  HTW  should  be
changed  to  improve  the  expected  performance  of  the  elastic
smart  contract.  This  evaluation  is  performed  by  two  smart
contracts, named Evaluate Frequency and Evaluate History in
Fig. 7,  so  that  the  evolution  of  the  elasticity  dimensions  is
registered and timestamped in the blockchain ledger.

On the other hand, the Analysis Manager module focuses on
executing the actual analytics of the specific scenario suppor-
ted  by  blockchains.  Thus,  the  calculation  management  func-
tion is responsible for executing periodically (as stated in ER)
the Analysis smart contract, which uses the Data asset updated
by the harvesting manager as its input, and stores the analysis
results (AR) in another Result asset located in the blockchain.
The  results  from  these  executions  are  also  collected  by  the
metric gathering function, which aggregates both the AR and
the  generated  performance  statistics  (PS),  including  the
analysis duration (AD) used for the elasticity operation of the
system.  The  Analysis  smart  contract  communicates  this
information by emitting a New Result event, so that not only
the  metric  gathering  but  also  the  elasticity  operation  can  use
the  current  metrics,  especially  AD,  to  dynamically  adjust  the
elasticity dimensions FUP and HTW.

This  reference  architecture  can  be  applied  to  any  of  the
envisioned  scenarios  exemplified  in  Section  IV-C.  Although
our  proposed  architecture  is  showcased  and  evaluated  in  the
next section in the context of a single elastic analytical smart
contract,  the  same  approach  can  be  replicated  in  more
complex,  multi-level  scenarios,  adapting  our  elasticity
orchestrator to support elastic glue contracts, where the update
management  part  supports  the  data  integration  from  other
blockchains  or  external  oracles,  while  the  calculation
management handles the aggregation mechanism.  

VII. Evaluation

In this section, we evaluate the benefits of our elastic smart
contract  reference  architecture,  analysing  the  effect  of
supporting elasticity concerns in analytical smart contracts.  

Specifically,  in Fig. 6 ,  we  can  see  how  the  lowest  stress 
(bottom-left)  covers  situations  with  a  low  rate  of  data 
generation (i.e., low data density) while keeping a short list of 
historical  data (i.e.,  short  history)  and a low update rate  (i.e., 
low  freshness).  For  instance,  considering  our  scenario,  in  a 
situation with a small number of cars in the street (i.e., low car 
detections), only the last detection per sensor is stored, and the 
update  frequency  of  the  detections  is  set  up  every  once  in  a 
while  (e.g.,  once  per  hour).  On  the  other  extreme  of  the 
quadrant  (top-right),  we have a high density situation,  with a 
frequent  update  and a  long history.  In  our  scenario,  a  related 
situation could need to cope with a high number of cars in the 
street, having to store a long list of detections (e.g., the last 50 
detections  per  sensor),  and  to  update  very  frequently  those 
detections (e.g., once per second).



A. Implementation and Experimental Setup
In  order  to  analyze  the  impact  of  the  elasticity  in  our

scenario,  we  developed  a  prototype  of  the  elasticity
orchestrator  presented  in  Section  VI  The  chosen  blockchain
framework  was  Hyperledger  Fabric  v2.1.0,  deploying  a  test
network  using  the  default  Raft  consensus  algorithm,  and  we
implemented  both  the  Elasticity  Orchestrator  and  the  smart
contracts  (chaincodes in  Hyperledger  Fabric  terminology)
using Node.js2.

The use case scenario that  we use to evaluate our proposal
resembles  the  Level  1  example  introduced  in  Section  IV-C.
Specifically,  we  simulate  a  variable  number  of  sensors
uniformly distributed alongside a street of variable length, and
apply an analytic that calculates the average traffic flow of the
street, expressed in average cars per second. We deployed the
different  smart  contracts  according  to  our  proposed
architecture in the three nodes that comprised our Hyperledger
Fabric test network. Two of those nodes were associated with
an  organization,  while  the  other  was  located  in  another
organization. The consensus algorithm was configured so that
any node may approve submitted transactions.

The  experiments  were  executed  in  a  computer  equipped
with an Intel  Core i7-7700HQ 2.80 GHz CPU and 16 GB of
RAM, running under  an Ubuntu 18.04 operating system.  We
repeated  each  experiment  three  times  and  obtained  average
values for presenting the results3.  

B. Experimental Results
In general, all the experiments performed considered a street

length  of  1  km  and  4  sensors  distributed  uniformly.  The
distribution of the input of cars on the street was also fixed, so
that the analysis results obtained from calculating the car flow
could  be  compared  in  terms  of  the  analysis  error.  The
simulation run for one hour for each experiment. With respect
to the elasticity rules, we also fixed the following parameters:

1) The elasticity  range for  the  analysis  duration  was  set
between  50  and  100  milliseconds,  so  any  value  outside  this
range would trigger  the elasticity  operation,  modifying either
the  HTW  or  the  FUP  to  maintain  the  analysis  execution
performance within the elasticity range.

2) The frequency  of  analysis  calculation was  set  to  8
seconds, so that every 8 seconds the elastic orchestrator would
try to execute the analysis smart contract.

3) The elasticity  evaluation  frequency was  fixed  at  5
seconds.  This  results  in  an  evaluation  of  the  system
performance  every  5  seconds,  when  the  elasticity  range  is
compared to the current average analysis duration.

As our baseline, we first evaluated how a regular blockchain
implementation of the analytical contract without considering
elasticity  behaves. Fig. 8  summarizes  the  results  of  this
experiment.  First,  the  top  diagram  shows  that,  as  the  system
warms  up,  the  number  of  car  detections  stored  in  the
blockchain increases up to 6000 detections. We had to impose
this  limit  to  the  experiment  because  the  blockchain  starts  to
return  consensus  failures  in  our  setup  due  to  database
congestion. Nevertheless, the figure clearly shows that most of
the  executions  (62.81%)  performed  worse  than  our  upper
bound  for  triggering  elasticity  (100  ms),  with  1.34% of  the
executions lasting more than 150 ms.

The  bottom  diagram  in Fig. 8  shows  the  analysis  results
(cars  per  second),  comparing  them  with  the  real  calculation
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2 The  prototype  implementation  and  experiments  launcher  can  be  found  at
https://doi.org/10.5281/zenodo.4095100
3 The complete experimental results obtained can be found at https://doi.org/10.
5281/zenodo.4267996



performed  directly  from the  input  data,  so  that  we  can  show
the  analysis  error  between  the  real  value  for  the  traffic  flow
and  the  computed  value  obtained  from  the  analytical  smart
contract  execution.  The  blue  line  (real  input  of  cars  per
second)  represents  the  simulation  pattern  that  we  use  for
introducing sensor detections in our system. The analysis error
increases  especially  after  the  density  of  car  detections
introduced  increases,  remaining  around  the  average  error
value of 0.35 cars per second for the rest of the experiment.

For  the  second  experiment,  we  introduced  the  previously
described elasticity rules, and analysed how an elastic history
window  would  affect  the  analysis  performance.  In  this  case,
we  fixed  the  FUP  to  1  second,  so  that  every  second  the
elasticity  orchestrator  would  update  the  detections  stored  in
the  data  asset  of  the  blockchain.  The  initial  HTW was  set  at
1800 seconds  (30  minutes). Fig. 9  shows  the  results  we
obtained. In this case, the number of stored detections (shown
at  the  top  diagram) that  are  used to  calculate  the  traffic  flow
varies  along  the  experiment  duration,  according  to  the
elasticity  operation of  our  system.  At  the  beginning,  as  more
cars enter the street, the number of stored detections increases.
Once  the  HTW  is  filled  with  detections,  since  the  analysis
performance  is  below the  lower  bound,  we  increase  the  time
window  so  that  we  can  obtain  a  more  accurate  analytic
without sacrificing performance.

However,  by  the  1250  s  point  of  time,  the  performance
degrades  as  it  overcomes  the  upper  bound  of  the  elasticity
range (100 ms). The bottom diagram of the figure shows how
our elasticity orchestrator acts by decreasing the HTW, so that
less  data  is  used  to  compute  the  analysis.  This  results  in  a
performance  improvement,  with  the  analysis  duration  now
located  within  the  elasticity  range.  For  the  rest  of  the
experiment,  the  HTW  remains  largely  the  same,  with  some
particular  changes  due  to  some  spikes  in  the  analyisis
performance. With respect to the analysis error, we can see in
the  middle  diagram  that  the  difference  between  the  real

calculation  of  cars  per  second  remains  low  until  the  second
rise  on  stored  detections  where  there  are  worse  values.
However  the  average  analysis  error  in  this  case  is  0.33  cars
per  second,  which  even  improves  the  error  obtained  without
considering  elasticity.  But  most  importantly,  the  number  of
executions  of  the  traffic  flow  analytic  above  the  100  ms
threshold  decreased  dramatically  to  only  2% of  them,  while
there was only one execution that spiked above 150 ms.

Finally, we performed an experiment where the elasticity is
applied  to  the  FUP.  In  this  case,  we  fixed  the  HTW to  store
detections  from  the  last  600  seconds,  and  started  the
simulation with a FUP of 1 second. Fig. 10 sums up the results
of the experiment. When the simulation starts, as low density
of  detections  are  collected  into  the  blockchain,  the  analysis
performed  is  able  to  use  all  the  data  stored,  so  the  analysis
error  is  negligible.  However,  when more cars  enter  the street
and  hence  more  detections  need  to  be  analysed  to  properly
calculate the traffic flow, the analysis error increases.

Since  the  analysis  performance is  contained or  even below
the  elasticity  range,  our  system  starts  to  decrease  the  update
frequency,  so  that  the  time  between  updates  is  lower.  That
causes  an  increase  in  the  stored  detections  which  in  turn
makes  the  elasticity  orchestrator  to  increase  the  FUP  so  that
less  data  is  stored  and  the  analysis  performance  improves
again.  This  pattern  is  repeated  every  time  the  sensors  detect
more  cars,  which  also  causes  the  analysis  error  to  fluctuate.
Because  of  this,  the  average  analysis  error  is  higher  in  this
case (0.37), and also the number of executions above the 100
ms  threshold  (25.73%),  since  the  elasticity  behaviour  takes
longer to affect the analysis performance.  

C. Discussion
The  most  important  conclusion  that  our  evaluation  results

show  is  that  adding  elastic  capabilities  to  smart  contracts
improves  their  performance,  especially  when  applied  to
scenarios  where  there  is  a  large  amount  of  data  generated,
such  as  IoT-based  analytics.  Our  system  successfully
maintains  the  analysis  duration  within  the  specified  time
limits,  avoiding  the  saturation  of  the  system  by  dynamically
adapting the elasticity dimensions.

The effectiveness of our proposal relies on the limitation of
history  and  freshness  of  the  data,  which  in  principle  could
affect  the  accuracy  of  the  analytics  performed.  However,
according  to  our  experimental  results,  the  analysis  error  is
even  more  contained  compared  to  the  baseline,  since  our
elasticity  orchestrator  allows  the  system  to  actually  increase
the  considered  history  window  or  data  freshness,  hence
improving  the  quality  of  the  analytic  results  at  some  points.
Nevertheless, when the elasticity operation reduces the history
or freshness dimensions, the resulting analysis error increases,
though  on  average  we  get  similar  results  as  the  baseline
approach.

Finally,  comparing  the  two  dimensions  that  we  evaluated,
the  performance  of  the  system  is  better  when  we  applied  an
HTW-based elasticity in contrast to the FUP-based approach.
We  found  that  varying  the  history  window  the  number  of
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Fig. 8.     No elasticity.
 



detections stored changes more abruptly, which in turn affects
the system performance faster than changing the frequency of
update of the data asset.  The evaluation results show that the
variation  of  the  FUP  is  more  gradual,  which  conduces  to  a
more  gradual  effect  on  the  analysis  performance.
Consequently  FUP-based  elasticity  takes  longer  to  stabilize
the analysis duration, and suffers from a rebound effect, which
causes  a  higher  number  of  executions  above  the  elasticity

range, though still better than the baseline.
  

VIII. Conclusions

When facing complex scenarios as those that arise in smart
cities,  where  transparency  and  accountability  of  the  data  and
analytics are key goals, blockchains are a natural fit. However
as  these  scenarios  are  typically  composed  by  complex
ecosystems of IoT sensors, edge devices, fog nodes, and cloud
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Fig. 9.     HTW based Elasticity.
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Fig. 10.     FUP based Elasticity.
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data  centers,  the  application  of  traditional  blockchain 
technologies  poses  several  challenges  concerning  elasticity 
and  integration  aspects,  since  the  requirements  for  the 
analytics  to  be  performed  varies  dynamically,  not  only  in 
terms of resources needed, quality and cost aspects, but also in 
the  dimensions  of  those  resources.  Thus,  in  order  to  support 
elasticity as well as horizontal and vertical integration, in this 
paper  we  introduce  the  concept  of  elastic  and  glue  smart 
contracts.

The  evolution  of  current  blockchains  towards  supporting 
our  envisioned  elastic  smart  contracts  needs  the  introduction 
of  elasticity  related  information  to  the  contracts  logic.  We 
propose  an  elasticity  policy  abstraction  layer  to  extend  the 
existing  smart  contracts  introducing  rules  to  account  for 
variations in the three elasticity aspects (resources, quality and 
cost).  Additionally,  we  characterize  the  different  integration 
scenarios  that  can  be  applied  to  elastic  smart  contracts, 
exemplifying them in the context of smart cities and providing 
a  reference  architecture.  Our  vision  is  that  using  approaches 
such  as  virtual  chains  and  adapting  current  elastic  services 
frameworks,  we  can  achieve  a  greater  level  of  integration 
inside  (and  between)  the  various  analytical  levels  while 
keeping  a  flexible  reconfiguration  of  the  architecture  in  case 
there  is  a  need  for  vertical  or  horizontal  offloading  of 
computation.

As future work, we expect to apply the current approach to 
deal with more complex analytics such as the case of machine 
learning  techniques  where  there  is  a  need  for  reliable 
configuration parameters  tuning.  Moreover,  we plan to  apply 
the current  framework to analyze real  traffic information and 
to  analyze  the  potentials  of  these  analytics  to  drive  real-time 
decisions  (e.g.,  street  light  management)  exploring  the 
improvements  in  terms  of  operational  expenses.  Concerning 
the  blockchain  features  used,  we  plan  to  extend  the  current 
framework to incorporate the cost of transactions (e.g., the gas 
in  Ethereum)  as  another  dimension  of  the  elasticity 
  requirements.
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