
Elastic Smart Contracts in Blockchains
Schahram Dustdar, Fellow, IEEE, Pablo Fernández, José María García, and Antonio Ruiz-Cortés, Member, IEEE

 Abstract—In this paper, we deal with questions related to
blockchains in complex Internet of Things (IoT)-based
ecosystems. Such ecosystems are typically composed of IoT
devices, edge devices, cloud computing software services, as well
as people, who are decision makers in scenarios such as smart
cities. Many decisions related to analytics can be based on data
coming from IoT sensors, software services, and people. However,
they are typically based on different levels of abstraction and
granularity. This poses a number of challenges when multiple
blockchains are used together with smart contracts. This work
proposes to apply our concept of elasticity to smart contracts and
thereby enabling analytics in and between multiple blockchains in
the context of IoT. We propose a reference architecture for
Elastic Smart Contracts and evaluate the approach in a smart
city scenario, discussing the benefits in terms of performance and
self-adaptability of our solution.
 Index Terms—Blockchain, elasticity, Internet of Things (IoT),
smart cities, smart contracts, virtual chains.

I. Introduction

C ITIES are complex ecosystems, and their effective and
efficient functioning has enormous impact on the quality

logistics systems, and critical infrastructures. Cloud systems
have been introduced and used to store and analyze these
streaming, things-based, and social big (in terms of “volume,
variety, velocity, and veracity”) data through complex
middleware for various analytics needed for the operation and
optimization of cities. Human capabilities have been invoked
in the loop to design and monitor cities together with
software. All of these data, analytics capabilities, and domain
knowledge in smart cities involves a large number of
stakeholders, ranging from individual citizens to corporations,
including also government agencies for both vertical and
horizontal problems (such as energy consumption analytics or
human mobility analytics). In this view, one needs to
understand that analytics of smart cities are far from just “big
data analytics” and IoT data analytics. Smart cities analytics
have an inherent ecosystem requirement, leading to different
paradigm shifts in big data analytics from transactions to
ecosystem perspectives as well as in the involvement of
multiple, not necessarily trusted stakeholders besides ICT
sensors, networks and analytics.

Key city analytics often require data, analytics, and
capabilities from both vertical and logical domains (e.g.,
related to energy consumption) in a complex ecosystem of
things, software services, and people which results in multiple
stakeholders, with varying trustworthiness degrees. Comple-
xities in these analytics can be viewed by these stakeholders
from different angles: i) physical (space) view: City analytics
can be carried out for a single block, a street, or a house; ii)
logical domain view: City analytics are needed for various
vertical domains (e.g., building management, intelligent transpor-
tation management, and infrastructure maintenance) and
horizontal domains (e.g., energy policy and governance, social
wellbeing, and urban planning); and iii) time view: City
analytics can be performed at different time-scales, e.g.,
online (with near real-time streaming data), offline (with
historical data), as well as a combination of both near real-
time and historical data, also considering accountability
aspects. While current data gathering techniques are able to
collect various types of data, state-of-the-art analytics techni-
ques isolate data produced by technical systems (e.g., from
sensors) and social systems (e.g., from people) and then
centralize the data in centers (e.g., in clouds) to carry out
analytics at centralized places (although utilizing parallel and
distributed computing resources). Such approaches rely
entirely on software capabilities to deal with big data captured
through distributed hierarchical networks of computing
elements.

In city analytics, data, information, knowledge, and
computational capabilities from software services, things, and
people are distributed in deep, interwoven distributed ICT

of life of their citizens and society as a whole. However,
building smart cities is probably one of the most difficult
challenges our society faces today. Among the variety of
problems that need to be solved, the question of how to
leverage existing ICT technologies to develop foundations for
smart city analytics in a transparent and trustworthy form
greatly concerns all stakeholders in today’s smart cities.

As of today, we have observed several technologies
enabling the connection between social and technical
subsystems for smarter city analytics. A huge number of
Internet of Things (IoT) devices as well as human
participation have been introduced to provide various types of
data about urban mobility and transportation systems,

 electricity grid, smart buildings, manufacturing, intelligent

This work was partially supported by FEDER/Ministerio de Ciencia
e Innovación – Agencia Estatal de Investigación under project
HORATIO (RTI2018-101204-B-C21), by Junta de Andalucía under projects
APOLO (US-1264651) and EKIPMENT-PLUS (P18-FR-2895), and by
the TU Wien Research Cluster Smart CT. Recommended by
Associate Editor Laurence T. Yang. (Corresponding author: José María
García.)

S. Dustdar is with the Distributed Systems Group, Vienna University of
Technology, Wien 1040, Austria (e-mail: dustdar@dsg.tuwien.ac.at).

P. Fernández, J. M. García, and A. Ruiz-Cortés are with the Smart
Computer Systems Research and Engineering Lab, Research Institute of
Computer Engineering, University of Sevilla, Sevilla 41012, Spain (e-mail:
josemgarcia@us.es; pablofm@us.es; aruiz@us.es).

architectures. Therefore, state-of-the-art approaches are not
adequate as they collect data at the edge of the city where
things and people reside, bring the data to the root of the
hierarchy (e.g., cloud), and perform analytics based on data
provided by predefined settings. First, it does not support
time-scale because fine-scale and coarse-scale data analytics
are not interoperable, since either we miss a lot of data (in
coarse-scale data) or we have to deal with lots of data (in fine-
scale data). Second, this also makes the filtering and pre-
processing data challenging for supporting complex logical
domains, which must deal with different logical horizontal
and vertical scales. Finally, we also have severe problems
with physical scale: as most of the time we centralize data in
one cloud data center so we do not have enough information
to cover all physical spaces with sufficient quality to
guarantee time-aware analytics, e.g., subjects to be analyzed
change rapidly in physical world and we lack up-to-date
information in the centralized computing environment.

We believe we need flexible and elastic mechanisms to
support city analytics by harnessing collective capabilities of
things, people, and software to carry out timely, quality-
aware, and elastic analytics spanning both horizontal and
vertical domains. Given the huge number of things, people,
and software services easy to be found and utilized without
the need of centralized control, we should investigate a
fundamental paradigm shift in utilizing collective capabilities
that are distributed across the city infrastructure to enable
coordinated analytics in a flexible and elastic manner. Such
analytics must be provided with adjustable quality of results
for multiple stakeholders where complex, transparent, and
trusted collaboration between things, software, and people are
needed to understand and address past, current, and future
problems of smart cities based on historical, current, and
predicted data [1].

In this work, we discuss to what extent blockchain
technologies are adequate to support complex analytics in
these ecosystems. We first introduce a concrete motivating
scenario in smart cities analytics (Section II) and analyze how
existing approaches to smart contracts and virtual chains can
be applied to carry out the relevant analytics (Section III). Our
vision, described in Section IV, further develops the smart
contract notion towards an elastic smart contract, which
considers elasticity concerns, while providing a framework to
horizontally and vertically integrate data and its associated
analytics capabilities by promoting the idea of glue contracts.
Then, we discuss the elasticity forces that drive our elasticity
rationale in Section V. Section VI showcases our reference
architecture to support elastic smart contracts, while Section
VII evaluates our proposal based on a Hyperledger Fabric
implementation. Finally, in Section VIII we conclude that our
proposal will provide a comprehensive support for the
different capabilities required in complex scenarios like smart
cities.

II. Motivating Scenario

As depicted in Fig. 1, in this article we consider smart city
infrastructures consisting of a) IoT sensors, b) edge devices,

which perform computational tasks such as analytics tasks, c)
more “powerful” edge servers (aka fog computing nodes), and
d) cloud computing data centers as the fundamental
architectural building blocks for sensing and processing IoT
data in smart cities.

At the lowest level of the current smart city infrastructure,
we see that data flows from the edges to the data center. From
the infrastructure perspective, at the edge (e.g., buildings or
districts) we can identify numerous capabilities offered by
things, software services, and even people. At (and through)
the data centers, several types of software services and people
(from the crowds, professional groups, etc.) are available to
perform data management and analysis. Although various
types of infrastructures connecting people, IoT, and software
services are distributed, current city analytics processes are
mainly performed in the cloud using software services to
provide results to humans. In principle, analytics processes
can be carried out in multiple places within the city
infrastructure by leveraging the collective capabilities of units
of IoT, people, and software services. However, with today’s
techniques, such units cannot be collectively composed and
provisioned on the fly for subsequent distribution throughout
the city infrastructure. This prevents us from providing timely
and elastic analytics to support non-functional concerns, such
as cost, security, and privacy.

For complex problems, city analytics processes are logically
divided into a set of sub-analytics processes that cover a set of
concerns in distinct horizontal and vertical domains, as shown
in Fig. 1. Computational tasks can be structured in a “vertical”
way or in a “horizontal” way. Given the exemplified city
analytics process for policy and regulation of sustainable
environments, let us consider an analysis for a city block. Sub-
analytics process concerns could be energy consumption of
buildings and infrastructure, citizen wellbeing and opinions,
environmental impacts of regulations, or incentive policies for
green businesses, to name just a few. These sub-analytics
processes belong to different vertical and horizontal domains
and we need to correlate them and their results in order to
understand how to create policy and how to regulate
sustainable environments. In principle, such sub-analytics
processes are also complex and some of them will be carried

Horizontal
offloading

V
er

tic
al

of
flo

ad
in

g

Cloud

Edge
servers

Edge
devices

IoT
devices

Sensor Control logic Actuator

network

PAN

WAN

LAN/
RAN

Internet

Fig. 1. Vertical offloading of analytics computation [2].

A. Smart Contracts
In a complex scenario like the introduced before, a variety

of stakeholders have to collaborate, sharing information
between them and allowing each party to carry out analysis
and provide decentralized services over the shared data. Trust
issues become fundamental in this setting, since parties have
to continuously agree on the validity of the data and services
they need to integrate. Blockchain technologies are a natural
fit, providing transparency and non-tampering to the data
shared in a trustless network [3]. In addition to these features,
privacy and rights management can be considered by using

different blockchain implementations, ranging from
permissioned blockchains [4] to specific solutions tailored to
IoT-based ecosystems [5]–[7], including novel approaches to
data management that focus on trust and privacy preservation
[1], [8].

Since the introduction of smart contracts [9], blockchains
have evolved from mere distributed digital ledgers to
distributed computing platforms that can include not only an
immutable data repository, but also logical and behavioral
information to automatically rule the relationships between
stakeholders. Thus, smart contracts can encode functionality
needed to provide additional services on top of the data
registered in the blockchain [10]. These contracts essentially
aggregate some data under certain conditions that will trigger
its execution. Although the data used within the contract logic
is mostly obtained from the blockchain where the contract is
deployed, oftentimes there is a need to consider external data
(commonly referred as off-chain data). In order to retain the
trustless characteristic of blockchains, an additional agent,
namely an oracle, needs to provide the external data in a
secured, trusted form [11].

B. Virtual Chains
Furthermore, there are scenarios where there is a need to

separate nodes and information between different levels, as in
our motivating scenario (see Section II). Virtual blockchains
provide means to implement specific functionality on top of
existing blockchains [12] by introducing an abstraction layer,
so that the different application nodes subscribing to the
virtual chain will access data and execute smart contracts
tailored to their characteristics, while using a single
blockchain as the backbone for recording every transaction
within the whole system. Thus, multiple virtual blockchains
(or virtual chains for short) comprising the different levels
discussed in our motivating scenario can be deployed and
integrated using this approach. However, sharing data
between different virtual chains and from off-chain sources
still needs the introduction of oracles, which could be just
rights management systems in case of internal oracles
allowing data access between virtual chains deployed on the
same regular blockchain.

C. Elasticity
As the complexity of the systems grows, the need to adapt

to variable flows of information and constraints to develop
appropriate outcomes represents an important challenge. To
this concern, elasticity [13] is presented as the capabilities to
react and accommodate changes in the environment with an
autonomous mechanism. In [14], authors provide a formal
model of elasticity as a three-dimensional space involving
resources, quality, and cost aspects that provide the
appropriate framework to define and analyze the elasticity
properties of an information system that will be used as a
starting point of our conceptual proposal.

IV. Conceptual Proposal

Smart contracts represent an appropriate framework to

out in the cloud (such as environmental impacts, and incentive
policies) whereas others can be performed at the edge where
things and people reside (e.g., building energy consumption,
and citizen wellbeing and opinions). They also require
different algorithms, data, and knowledge from different
stakeholders. Among them, there are different ways to
exchange analytics results and requests to ensure the final
result of the city analytics to be delivered. To the best of our
knowledge, state-of-the-art techniques just focus on
centralized analytics for single domains. This leads to a severe
problem for city analytics: As the scope of current analytics
processes is limited to isolated domains and problems are
either solved by software services or people, the results may
not be adequate and substantial in the overall context of a city.
We argue that smart city analytics must be researched from
the perspective of ecosystems in which capabilities to
contribute to analytics processes are based on hybrid resource
types composed of software, people, and things, and where
elasticity concerns may pose additional challenges to properly
consider a dynamically changing number and type of those
resources, with varying degree of quality and associated costs.
Moreover, different stakeholders from multiple vertical and
horizontal domains impose requirements on analytics
processes due to the associated ecosystem of people,
technology, and institutions.

Furthermore, in this scenario it is crucial that the shared data
used to perform decentralized analytics in any dimension
comes from trusted sources. However, considering the number
of agents and stakeholders participating in a smart city
ecosystem, trustworthiness cannot be assumed. Furthermore,
certain stakeholders, such as public administrations, usually
require transparency and tamper resistance to the data they use
to analyze and provide services to other agents. For instance, a
local administration may enact a contract with an external
company to provide street cleaning services, using data from
IoT sensors and possibly edge devices located on the streets to
plan the optimal cleaning routes. Both the input data and the
cleaning routes derived from its analysis should be publicly
accessible in a transparent and immutable form, so that the
local administration or even citizens can check whether the
street cleaning company adheres to the contract in place and
the quality level of the provided service, while providing
 flexibility and adaptability to changes in the ecosystem.

III. Related Work

develop a computational mechanism combining data off-chain
with the one present in the blockchain. However, in order to
address the analytical challenges discussed in the motivational
scenario, the framework should be extended to support a
variable and multilevel nature of the actors involved.
Specifically, in this section, we outline how the elasticity and
integration aspects are fundamental cornerstones to build an
appropriate smart contract ecosystem to develop more capable
blockchains for complex scenarios such as a smart city. In
this context, this conceptual proposal outlines the key des-
ign principles of the implemented framework described in
Section VI.

A. Integration Concerns
Separating the information needs in different levels allows

organizations to focus on their interests, while regulatory
bodies can grant access to those organizations only to specific
data. In this context, from a blockchain perspective there are
multiple architectural alternatives to implement the level
stratification, which can be characterized by analyzing three
aspects:

1) Granularity: Several mapping options could be defined
to assign a given blockchain to a single level (fine granularity)
or multiple levels (coarse granularity). In addition, there could
be some scenarios where the same levels are composed of
multiple different blockchains.

2) Accessibility: From this perspective, we refer to the
capability to analyze the blockchain content by different
agents; i.e., the blockchain represents an open system (public)
to any agent or a closed system (private or permissioned) to
certain agents.

3) Deployment model: In this context, we address the
logical implementation and deployment of the chain, i.e.,
existing blockchains that are implemented over a specific
technical protocol or virtual chains that are materialized inside
a regular existing blockchain.

Consequently, we can have a wide variety of modelling
choices for a given scenario. As an example, Fig. 2 depicts a
particular abstract scenario showing several options, namely
Level 1 with two fine grain blockchains (one private and one
public), Level N with one fine grain public blockchain that
contains two virtual chains, and a coarse grain private
blockchain that spans over all levels and contains a virtual
chain for each level. From an analytics perspective, since
smart contracts are meant to be executed in the context of a
single blockchain, we envision the need for different cross-
chain integration mechanisms (as exemplified in Fig. 2)
depending on three factors: Whether integration is done
between regular blockchains (Examples labeled with 1 and 2)
or virtual chains (3 and 4); between chains in the same level (1
and 3) or different level (2 and 4); or between the same
accessibility context (3 and 4) or between a public and a
private chain (1 and 2). Taking these challenges into account,
we claim the need for a special kind of smart contracts, coined
as glue contracts, with the special responsibility of making
data available across two different chains (virtual or regular)
corresponding to the same level (horizontal integration) or

different levels (vertical integrations).
In this context, it is important to highlight that the discussed

integration alternatives would represent different types of glue
contracts. Thus, in order to integrate two different chains, a
possible solution could make use of oracles in order to
maintain the trust level of the whole ecosystem. In this
particular case, the software oracles are just simple gateways
to the accessed blockchains which do not need to add an
additional trust method to the already trusted data from the
accessed blockchains. Another example of mechanism used
by glue contracts to address an integration between
accessibility contexts could be the usage of IPFS1 as the
intermediary persistence area for data. In the case of cross-
level (or vertical) integrations, glue contracts would be in
charge of aggregating the data from inferior levels into new
kind of information for higher levels. Furthermore, glue
contracts need to address possible divergences between
blockchain implementations and protocols of chains to be
integrated. There exist alternatives to reconcile these
divergences when dealing with crypto currencies [15], [16]
that could be extended to allow dealing with complex asset
integration.

B. Elasticity Concerns
Following the model presented in [14], our proposal takes

into account the elasticity concerns to allow stakeholders to
dynamically reconfigure the integration between levels,
depending on the horizontal and/or vertical offloading needs
(i.e., contract execution), by leveraging elasticity for analytical
and glue contracts, correspondingly.

Specifically, in order to incorporate the elasticity
dimensions in smart contracts, we need to provide means to
elastically define resources, quality properties, and costs
associated with a particular contract. To this end, we propose
to add an abstraction layer to current smart contracts which
will define the elasticity policies for a particular contract.
Therefore, executing a so called elastic smart contract will
transparently consider elasticity aspects on top of the actual
functionality provided by the contract. Furthermore,
stakeholders should consider executions costs for contracts
(e.g., gas for Ethereum smart contracts) as well as
infrastructural costs of the blockchains to plan the actual
architecture of chains in levels. To this end, a decentralized
market of agents [17] would allow the dynamic
reconfiguration of the ecosystem taking cost information into
account. In order to develop these implications, in Section V

Level 1

1

2

3

4

Level N

Fig. 2. Integration points between blockchains.

1 https://ipfs.io/

we detail the different elasticity forces derived from the nature
of the blockchain paradigm.

C. Visionary Use Case
To exemplify the applicability of the proposal we outline a

supporting architecture grounded on the current capabilities of
blockchain technological state of the art. In such a context, in
the current evolution state of the technology towards richer
ecosystems, we expect continuous improvements and
revisions of the conceptual frameworks presented. In this use
case, (Fig. 3 shows a fragment of the envisioned blockchain)
we can conceptualize an architecture of different virtual
chains (composed of “virtual” blocks) that coexist in the same
blockchain ecosystem (composed of “grounded” blocks) with
smart contract capabilities (such as Ethereum). In such a
framework, each grounded block would be a container for
multiple virtual blocks that correspond to the different levels
and contain either data or contracts related to that level.
Specifically, in Fig. 3 we exemplify a fragment of the
blockchain (Blocks i to (i+7)) including two levels (note that
in a real scenario there potentially exists a higher number of
levels). Inside Level 1 we can identify information generated
by two agents (s1 and s2) and one elastic analytical smart
contract (EAC1) in charge of creating derived data from the
activity in the level. Next, in Level 2, we can see two kinds of
elastic glue contract (EGC). On the one hand, EGC1
aggregates the information from Level 1 and incorporates the
aggregation as new data in Level 2. On the other hand, EGC2
(implemented as an oracle) imports data off-chain to the Level
2. Finally, EAC2 analyzes the data of this level to create a new
kind of information.

In this context, we can identify different examples of
multiple interleaved analytics that can be mapped to the
abstract blockchain fragment presented in Fig. 3 : from low-
level analytics regulating small physical spaces that mainly
involve sensor data, to high-level analytics involving other
kind of data sources such as human actor decisions or off-

chain census data. For the sake of clarity, we propose a simple
example that would correspond with two low levels of
analytics representing an adaptable urban lighting system:

Level 1 (street section) would represent a section of a street
composed by a number of sensors and lights; concretely in the
chain fragment depicted, agents s1, s2 could represent two
presence sensors for a given road section that introduce their
observations as data in the chain with different time
resolution. The analytics contract EAC1 would periodically
perform an analysis over the sensors data to calculate a
presence prediction (α) in the section; this analytical
information would be used to actuate into adaptable street
lights in the street section that switch on in the presence of
cars, so they dynamically adapt their switch-off latency to the
actual prediction.

Level 2 (street) the glue contract EGC1 could aggregate the
presence prediction of different sections calculated in Level 1
in order to create an estimation of the traffic flow in the street
(β). In this level, the glue contract EGC2 could include
weather forecast as off-chain data (γ) so the analytics contract
EAC2 could calculate an estimation of the congestion risk (δ)
in order to optimize the traffic lights rules for the given the
street.

Furthermore, in a potential superior Level N we could
leverage advanced use cases such as a new generation contract
for waste management service that regulates the actual
resource assignment algorithm based on the data harvested by
the sensors; this could be implemented by a combination of
elastic smart contracts using the analytics gathered and
calculating the actual bills automatically, providing a
completely transparent and non-tamper management
procedure.

Examples of the three elasticity dimensions emerge from
our use case: i) Resources range from the information
providers that can correspond with things (e.g., sensors),
software (e.g., government information systems) or people
(e.g., an approval from a stakeholder); ii) Depending on the

γ γ

α αα

ββ

δδ

α α

Blocki+7Blocki Blocki+1 Blocki+2 Blocki+3 Blocki+4 Blocki+5 Blocki+6

EAC1

EGC1

s1 s1 s1 s1

s2 s2 s2

EGC2

EAC2

s1

s2

Le
ve

l 1
Le

ve
l 2

EAC1

Elastic analytical
smart contract

Data
agent

Elastic glue
smart contract

Fig. 3. Visionary use case with multiple integration points.

type of resource, a taxonomy of quality aspects can be defined
(such as resolution data in sensors, availability of the
government information system or readiness of the
stakeholder); iii) Finally, costs involved in the process can
also be structured in terms of the resource type (e.g., energy
cost of the sensor, infrastructure cost of the information
system, or personnel costs). All these concerns would be taken
into account to create the elasticity policies for each elastic
contract; as an example in the use case, EAC1 would have a
policy to select the number of sensors (resources) filtered by a
particular data frequency (quality) and constrained by a
maximum number of gas used in the execution of the analytics
(cost).

V. Elasticity Forces

As discussed in previous sections Elastic Smart Contracts
are means to provide an appropriate analysis framework that
is integrated into the blockchain taking into account resources,
quality and cost considerations. Indeed, this elasticity need is
grounded in the fact that analytics over a big set of data,
performed by means of smart contracts in a blockchain,
represent an actual challenge. In this section we analyze the
different forces that would drive the elasticity rationale.

We can define two different kinds of data used as input for
analytics (i.e., by means of smart contracts) in the blockchain
paradigm. On the one hand, the paradigm provides a
persistent, immutable and non-tampered way to store a set of
transactions in the chain. On the other hand, for the sake of
efficiency, in actual implementations of the paradigm, there
are also other current (and mutable) data available in the
ledger that can be used into the analytics (such as the Asset
objects in Hyperledger Fabric). In such a context, although the
access and modification of that mutable data is highly
efficient, as the global size of that kind of data increases there
could be a severe impact over the blockchain performance.
Consequently, the performance implications of maintaining a
big set of data, imposes a trade-off over the appropriate size of
data that should be maintained for the analytics while keeping
an appropriate blockchain performance.

We are going to discuss this trade-off proposing a number
of dimensions that characterize the potential scenarios by
means of three different perspectives.

First, in order to characterize the amount of data needed in a
given scenario, we propose a general classification of
analytics depending on the following two analytical
requirements dimensions:

1) History: How much data should we retain to perform the
analysis (i.e., how big should be the storage to keep the data).

2) Freshness: How current the data should be (i.e., how
frequently should we harvest data to perform the analysis).

Taking both dimensions into considerations, Fig. 4
represents a quadrant that shows a wide range of types of
analysis that are bounded in two extreme types: On the one
hand (top-left), an analysis over a large set of historic data that
is typically used for long term decisions that could have a
subtle permanent effect such as the stop lights policies in our
scenario; On the other hand (bottom-right), an analysis over a
small set of fresh data that is typically used for short term

decisions that could potentially have a strong punctual impact
such as switch on and off the street lights in our scenario.
Complementary, there are two other hybrid possibilities
(bottom-left and top-right) that could lean to those streams
depending on the requirements in a particular scenario.

Second, depending on the actual scenario, in order to
characterize its variability, we propose a global characteri-
zation of the dynamics of the analysis depending on the
following two dimensions:

1) Data Density: In some scenarios we can have a fixed rate
of data generated (e.g., an air quality sensor that takes one
measure every second) or a variable flow of data depending
on the situation (e.g., our example where the sensor in the
street only generates the data if a car is detected).

2) Elasticity Requirements: These requirements could
include any of the elasticity dimensions [14] (i.e., quality or
cost considerations). In some scenarios, the requirements are
fixed (e.g., maximum time for the analytics to be done), while
in others there is a need for tuning the elasticity dynamically
(e.g., a dynamic change on the threshold for the analysis
execution cost).

Using those dimensions, in Fig. 5 , we show the quadrant
that highlights the need for elasticity in a potential scenario.
On the bottom-left case there is no need for elasticity, while
on the rest there could be a suitable scenario for it.
Conversely, in the most complex situation (top-right) the
highest variability is present and, therefore, a potential
elasticity mechanism will be highly required.

V
ar

ia
bl

e
Fi

x

Fix Variable

D
at

a
D

en
si

ty

Elasticity Requirements

Fig. 5. Quadrant 2: Data Density vs Elasticity Requirements.

As a third perspective, we can combine the preexisting
dimensions Data Density (i.e., Data generation rate) with the
analytical requirements (i.e., Freshness and History) to
propose a characterization of the stress levels that penalize the
blockchain performance in a given situation derived from the
amount of data that should be maintained in the ledger.

Typical evolution

Long

Short

Low High

H
ist

or
y

Freshness

Fresh data
for Short

term
decisions

Historic
data for

Long term
decisions

Usually: n/a

Ty
pi

ca
l e

vo
lu

tio
n

Long /Short
term

decisions

Fig. 4. Quadrant 1: History vs Freshness.

High
High

Low
High

Low

High
Low

High
LowLow

Low High
Freshness

History History

HistoryHistory

D
at

a
D

en
si

ty

Fig. 6. Quadrant 3: Data Density vs Freshness/History.

VI. Realizing Elastic Smart Contracts

In order to support elasticity concerns for smart contracts
execution and management, we devised the elastic smart
contract reference architecture shown in Fig. 7 . We
contextualize our proposal using the visionary use case
introduced in Section IV-C, which we implemented using a
Hyperledger Fabric [4] blockchain.

Specifically, Fig. 7 shows the key interactions by
representing with solid lines the direct invocation or usage of
a component (such as a smart contract) or resource (such as a
configuration file) and by using the light green dashed line to
represent the triggering of a component invocation based on a
given event following the publish-subscribe pattern.
Alternatively, the dashed dark green line represent the smart
contract execution in the blockchain (Hyperledger Fabric in
our implementation) triggered by an off-chain invocation of
the appropriate API.

The main component of our proposal, called Elasticity
Orchestrator, manages the execution of the blockchain system
by monitoring the elasticity dimensions and calling the appro-
priate smart contracts according to the time and performance
constraints of the particular scenario. These constraints are
specified as elasticity rules (ER in Fig. 7), which define the
lower and upper bounds admissible for the duration of the
analysis execution, as well as the initial values for the history
and freshness analytical requirements discussed in Section V,
represented as history time window (HTW) and frequency of
update (FUP) metrics in Fig. 7, correspondingly.

d1, ...,dn

Within the boundaries of the Elasticity Orchestrator, we
separate the responsibilities in two modules. On the one hand,
the Harvesting Manager is responsible for managing the
acquisition of input data from a set of sensors (or a data source
in general) and updating the data stored in the blockchain that
will be actually used to perform the appropriate analytics.
Periodically, according to the current freshness required (i.e.,
FUP), the update management function obtains a set of
detections from the sensors being used and updates
the data asset considering the current history time window
(i.e., HTW). In order to do so, it submits a transaction to the
Update Data smart contract, which will register the newly
acquired data within the data asset that will serve as the input
for the analysis smart contract, while removing the old data
that falls behind the HTW.

In parallel to this process, the elasticity operation function
performs the evaluation of the current status of the system
with respect to the specified elasticity rules. Taking into
consideration the average duration of the analysis execution
(referenced as AD in Fig. 7), the elasticity operation
periodically evaluates whether FUP and HTW should be
changed to improve the expected performance of the elastic
smart contract. This evaluation is performed by two smart
contracts, named Evaluate Frequency and Evaluate History in
Fig. 7, so that the evolution of the elasticity dimensions is
registered and timestamped in the blockchain ledger.

On the other hand, the Analysis Manager module focuses on
executing the actual analytics of the specific scenario suppor-
ted by blockchains. Thus, the calculation management func-
tion is responsible for executing periodically (as stated in ER)
the Analysis smart contract, which uses the Data asset updated
by the harvesting manager as its input, and stores the analysis
results (AR) in another Result asset located in the blockchain.
The results from these executions are also collected by the
metric gathering function, which aggregates both the AR and
the generated performance statistics (PS), including the
analysis duration (AD) used for the elasticity operation of the
system. The Analysis smart contract communicates this
information by emitting a New Result event, so that not only
the metric gathering but also the elasticity operation can use
the current metrics, especially AD, to dynamically adjust the
elasticity dimensions FUP and HTW.

This reference architecture can be applied to any of the
envisioned scenarios exemplified in Section IV-C. Although
our proposed architecture is showcased and evaluated in the
next section in the context of a single elastic analytical smart
contract, the same approach can be replicated in more
complex, multi-level scenarios, adapting our elasticity
orchestrator to support elastic glue contracts, where the update
management part supports the data integration from other
blockchains or external oracles, while the calculation
management handles the aggregation mechanism.

VII. Evaluation

In this section, we evaluate the benefits of our elastic smart
contract reference architecture, analysing the effect of
supporting elasticity concerns in analytical smart contracts.

Specifically, in Fig. 6 , we can see how the lowest stress
(bottom-left) covers situations with a low rate of data
generation (i.e., low data density) while keeping a short list of
historical data (i.e., short history) and a low update rate (i.e.,
low freshness). For instance, considering our scenario, in a
situation with a small number of cars in the street (i.e., low car
detections), only the last detection per sensor is stored, and the
update frequency of the detections is set up every once in a
while (e.g., once per hour). On the other extreme of the
quadrant (top-right), we have a high density situation, with a
frequent update and a long history. In our scenario, a related
situation could need to cope with a high number of cars in the
street, having to store a long list of detections (e.g., the last 50
detections per sensor), and to update very frequently those
detections (e.g., once per second).

A. Implementation and Experimental Setup
In order to analyze the impact of the elasticity in our

scenario, we developed a prototype of the elasticity
orchestrator presented in Section VI The chosen blockchain
framework was Hyperledger Fabric v2.1.0, deploying a test
network using the default Raft consensus algorithm, and we
implemented both the Elasticity Orchestrator and the smart
contracts (chaincodes in Hyperledger Fabric terminology)
using Node.js2.

The use case scenario that we use to evaluate our proposal
resembles the Level 1 example introduced in Section IV-C.
Specifically, we simulate a variable number of sensors
uniformly distributed alongside a street of variable length, and
apply an analytic that calculates the average traffic flow of the
street, expressed in average cars per second. We deployed the
different smart contracts according to our proposed
architecture in the three nodes that comprised our Hyperledger
Fabric test network. Two of those nodes were associated with
an organization, while the other was located in another
organization. The consensus algorithm was configured so that
any node may approve submitted transactions.

The experiments were executed in a computer equipped
with an Intel Core i7-7700HQ 2.80 GHz CPU and 16 GB of
RAM, running under an Ubuntu 18.04 operating system. We
repeated each experiment three times and obtained average
values for presenting the results3.

B. Experimental Results
In general, all the experiments performed considered a street

length of 1 km and 4 sensors distributed uniformly. The
distribution of the input of cars on the street was also fixed, so
that the analysis results obtained from calculating the car flow
could be compared in terms of the analysis error. The
simulation run for one hour for each experiment. With respect
to the elasticity rules, we also fixed the following parameters:

1) The elasticity range for the analysis duration was set
between 50 and 100 milliseconds, so any value outside this
range would trigger the elasticity operation, modifying either
the HTW or the FUP to maintain the analysis execution
performance within the elasticity range.

2) The frequency of analysis calculation was set to 8
seconds, so that every 8 seconds the elastic orchestrator would
try to execute the analysis smart contract.

3) The elasticity evaluation frequency was fixed at 5
seconds. This results in an evaluation of the system
performance every 5 seconds, when the elasticity range is
compared to the current average analysis duration.

As our baseline, we first evaluated how a regular blockchain
implementation of the analytical contract without considering
elasticity behaves. Fig. 8 summarizes the results of this
experiment. First, the top diagram shows that, as the system
warms up, the number of car detections stored in the
blockchain increases up to 6000 detections. We had to impose
this limit to the experiment because the blockchain starts to
return consensus failures in our setup due to database
congestion. Nevertheless, the figure clearly shows that most of
the executions (62.81%) performed worse than our upper
bound for triggering elasticity (100 ms), with 1.34% of the
executions lasting more than 150 ms.

The bottom diagram in Fig. 8 shows the analysis results
(cars per second), comparing them with the real calculation

ANALYSIS MANAGER

ELASTICITY ORCHESTRATOR

Performance
Stats

<<BLOCKCHAIN>>
HYPERLEDGER FABRIC

②
Remove
Old data

[d1, …, dn] , HTW

[d1, …, dn]

[d1, …, dn]

<<SUBMIT
TRANSACTION>>HARVESTING MANAGER

UPDATE
MANAGEMENT

ELASTICITY
OPERATION

<<SMARTCONTRACT>>
UPDATE DATA

<<SMARTCONTRACT>>
EVALUATE

FREQUENCY

<<SMARTCONTRACT>>
EVALUATE

HISTORY

<<SMARTCONTRACT>>
ANALYSIS

SENSORSENSORSENSORSENSORSENSOR i

d i

①
Insert new

data

HTW

<<EVENT>>
NEW

RESULT

<<EVALUATE
TRANSACTION>>

Data
Asset

Result
Asset

AR

ER

E

AD, AR, PS

New FUP

AD

Avg AD

New FUP
New HTW

New HTW

Avg AD

ER

ERAnalysis
Results

Elasticity
Rules

<<SUBMIT
TRANSACTION>>

METRIC
GATHERING

CALCULATION
MANAGEMENT

di: Data from sensor
AR: Analysis Result
AD: Analysis Duration

HTW: History Time Window
FUP: Frequency of Update
PS: Performance Stats

FUP

<<EVALUATE
TRANSACTION>>

Fig. 7. Elastic smart contract architecture.

2 The prototype implementation and experiments launcher can be found at
https://doi.org/10.5281/zenodo.4095100
3 The complete experimental results obtained can be found at https://doi.org/10.
5281/zenodo.4267996

performed directly from the input data, so that we can show
the analysis error between the real value for the traffic flow
and the computed value obtained from the analytical smart
contract execution. The blue line (real input of cars per
second) represents the simulation pattern that we use for
introducing sensor detections in our system. The analysis error
increases especially after the density of car detections
introduced increases, remaining around the average error
value of 0.35 cars per second for the rest of the experiment.

For the second experiment, we introduced the previously
described elasticity rules, and analysed how an elastic history
window would affect the analysis performance. In this case,
we fixed the FUP to 1 second, so that every second the
elasticity orchestrator would update the detections stored in
the data asset of the blockchain. The initial HTW was set at
1800 seconds (30 minutes). Fig. 9 shows the results we
obtained. In this case, the number of stored detections (shown
at the top diagram) that are used to calculate the traffic flow
varies along the experiment duration, according to the
elasticity operation of our system. At the beginning, as more
cars enter the street, the number of stored detections increases.
Once the HTW is filled with detections, since the analysis
performance is below the lower bound, we increase the time
window so that we can obtain a more accurate analytic
without sacrificing performance.

However, by the 1250 s point of time, the performance
degrades as it overcomes the upper bound of the elasticity
range (100 ms). The bottom diagram of the figure shows how
our elasticity orchestrator acts by decreasing the HTW, so that
less data is used to compute the analysis. This results in a
performance improvement, with the analysis duration now
located within the elasticity range. For the rest of the
experiment, the HTW remains largely the same, with some
particular changes due to some spikes in the analyisis
performance. With respect to the analysis error, we can see in
the middle diagram that the difference between the real

calculation of cars per second remains low until the second
rise on stored detections where there are worse values.
However the average analysis error in this case is 0.33 cars
per second, which even improves the error obtained without
considering elasticity. But most importantly, the number of
executions of the traffic flow analytic above the 100 ms
threshold decreased dramatically to only 2% of them, while
there was only one execution that spiked above 150 ms.

Finally, we performed an experiment where the elasticity is
applied to the FUP. In this case, we fixed the HTW to store
detections from the last 600 seconds, and started the
simulation with a FUP of 1 second. Fig. 10 sums up the results
of the experiment. When the simulation starts, as low density
of detections are collected into the blockchain, the analysis
performed is able to use all the data stored, so the analysis
error is negligible. However, when more cars enter the street
and hence more detections need to be analysed to properly
calculate the traffic flow, the analysis error increases.

Since the analysis performance is contained or even below
the elasticity range, our system starts to decrease the update
frequency, so that the time between updates is lower. That
causes an increase in the stored detections which in turn
makes the elasticity orchestrator to increase the FUP so that
less data is stored and the analysis performance improves
again. This pattern is repeated every time the sensors detect
more cars, which also causes the analysis error to fluctuate.
Because of this, the average analysis error is higher in this
case (0.37), and also the number of executions above the 100
ms threshold (25.73%), since the elasticity behaviour takes
longer to affect the analysis performance.

C. Discussion
The most important conclusion that our evaluation results

show is that adding elastic capabilities to smart contracts
improves their performance, especially when applied to
scenarios where there is a large amount of data generated,
such as IoT-based analytics. Our system successfully
maintains the analysis duration within the specified time
limits, avoiding the saturation of the system by dynamically
adapting the elasticity dimensions.

The effectiveness of our proposal relies on the limitation of
history and freshness of the data, which in principle could
affect the accuracy of the analytics performed. However,
according to our experimental results, the analysis error is
even more contained compared to the baseline, since our
elasticity orchestrator allows the system to actually increase
the considered history window or data freshness, hence
improving the quality of the analytic results at some points.
Nevertheless, when the elasticity operation reduces the history
or freshness dimensions, the resulting analysis error increases,
though on average we get similar results as the baseline
approach.

Finally, comparing the two dimensions that we evaluated,
the performance of the system is better when we applied an
HTW-based elasticity in contrast to the FUP-based approach.
We found that varying the history window the number of

500
400
300
200
100

0

8000

6000

4000

2000

0

5
4
3
2
1
0

0.6

0.4

0.2

0

CARS per SECOND REAL CARS per SECOND
REAL INPUT OF CARS per SECOND ANALYSIS ERROR

Execution time (s)

8
12

8
24

8
36

8
48

8
60

8
72

8
84

8
96

8
10

88
12

08
13

28
14

48
15

68
16

88
18

08
19

28

21
68

20
48

22
88

24
08

25
28

26
48

27
68

28
88

30
08

31
28

32
48

33
68

34
88

Execution time (s)

8
12

8
24

8
36

8
48

8
60

8
72

8
84

8
96

8
10

88
12

08
13

28
14

48
15

68
16

88
18

08
19

28

21
68

20
48

22
88

24
08

25
28

26
48

27
68

28
88

30
08

31
28

32
48

33
68

34
88

C
al

cu
la

tio
n

tim
e

(m
s)

C
ar

s p
er

 se
co

nd
ANALYSIS PERFORMANCE STORED DETECTIONS

Fig. 8. No elasticity.

detections stored changes more abruptly, which in turn affects
the system performance faster than changing the frequency of
update of the data asset. The evaluation results show that the
variation of the FUP is more gradual, which conduces to a
more gradual effect on the analysis performance.
Consequently FUP-based elasticity takes longer to stabilize
the analysis duration, and suffers from a rebound effect, which
causes a higher number of executions above the elasticity

range, though still better than the baseline.

VIII. Conclusions

When facing complex scenarios as those that arise in smart
cities, where transparency and accountability of the data and
analytics are key goals, blockchains are a natural fit. However
as these scenarios are typically composed by complex
ecosystems of IoT sensors, edge devices, fog nodes, and cloud

5
4
3
2
1
0

4
3
2
1
0

Execution time (s)

ANALYSIS PERFORMANCE STORED DETECTIONS
250
200
150
100
50
0

3000

2000

1000

0

5000
4000
3000
2000
1000
0

1.00
0.75
0.50
0.25
0

REAL INPUT OF CARS per SECOND REAL CARS per SECOND

HISTORY WINDOW ANALYSIS ERROR

8 72 13
6

20
0

26
4

32
8

39
2

45
6

52
0

58
4

64
8

71
2

77
6

84
0

90
4

96
8

10
32

10
96

11
60

12
24

12
88

A
R

D
 (m

s)
H

TW
 (s

)
C

ar
s/

se
c

13
52

14
16

14
80

15
44

16
08

16
72

17
36

18
00

18
64

19
28

19
92

20
56

21
20

21
84

22
48

23
12

23
76

24
40

25
04

25
68

26
32

26
96

27
60

28
24

28
88

29
52

30
16

30
80

31
44

32
08

32
72

33
36

34
00

34
64

35
28

35
92

8 72 13
6

20
0

26
4

32
8

39
2

45
6

52
0

58
4

64
8

71
2

77
6

84
0

90
4

96
8

10
32

10
96

11
60

12
24

12
88

13
52

14
16

14
80

15
44

16
08

16
72

17
36

18
00

18
64

19
28

19
92

20
56

21
20

21
84

22
48

23
12

23
76

24
40

25
04

25
68

26
32

26
96

27
60

28
24

28
88

29
52

30
16

30
80

31
44

32
08

32
72

33
36

34
00

34
64

35
28

35
92

8 72 13
6

20
0

26
4

32
8

39
2

45
6

52
0

58
4

64
8

71
2

77
6

84
0

90
4

96
8

10
32

10
96

11
60

12
24

12
88

13
52

14
16

14
80

15
44

16
08

16
72

17
36

18
00

18
64

19
28

19
92

20
56

21
20

21
84

22
48

23
12

23
76

24
40

25
04

25
68

26
32

26
96

27
60

28
24

28
88

29
52

30
16

30
80

31
44

32
08

32
72

33
36

34
00

34
64

35
28

35
92

CARS per SECOND

Fig. 9. HTW based Elasticity.

8000
6000
4000
2000
0

5
4
3
2
1
0

5
4
3
2
1
0

5
4
3
2
1
0

300

200

100

0

1.25

0.75

0.25

−0.25

STORED DETECTIONSANALYSIS PERFORMANCE

REAL INPUT OF CARS per SECOND REAL CARS per SECOND

UPDATE FREQUENCY ANALYSIS ERROR

A
R

D
 (m

s)
C

ar
s/

se
c

FU
P

(s
)

Execution time (s)

8 72 13
6

20
0

26
4

32
8

39
2

45
6

52
0

58
4

64
8

71
2

77
6

84
0

90
4

96
8

10
32

10
96

11
60

12
24

12
88

13
52

14
16

14
80

15
44

16
08

16
72

17
36

18
00

18
64

19
28

19
92

20
56

21
20

21
84

22
48

23
12

23
76

24
40

25
04

25
68

26
32

26
96

27
60

28
24

28
88

29
52

30
16

30
80

31
44

32
08

32
72

33
36

34
00

34
64

35
28

35
92

8 72 13
6

20
0

26
4

32
8

39
2

45
6

52
0

58
4

64
8

71
2

77
6

84
0

90
4

96
8

10
32

10
96

11
60

12
24

12
88

13
52

14
16

14
80

15
44

16
08

16
72

17
36

18
00

18
64

19
28

19
92

20
56

21
20

21
84

22
48

23
12

23
76

24
40

25
04

25
68

26
32

26
96

27
60

28
24

28
88

29
52

30
16

30
80

31
44

32
08

32
72

33
36

34
00

34
64

35
28

35
92

8 72 13
6

20
0

26
4

32
8

39
2

45
6

52
0

58
4

64
8

71
2

77
6

84
0

90
4

96
8

10
32

10
96

11
60

12
24

12
88

13
52

14
16

14
80

15
44

16
08

16
72

17
36

18
00

18
64

19
28

19
92

20
56

21
20

21
84

22
48

23
12

23
76

24
40

25
04

25
68

26
32

26
96

27
60

28
24

28
88

29
52

30
16

30
80

31
44

32
08

32
72

33
36

34
00

34
64

35
28

35
92

CARS per SECOND

Fig. 10. FUP based Elasticity.

M. Zhaofeng, W. Xiaochang, D. K. Jain, H. Khan, G. Hongmin, and W.
Zhen, “ A blockchain-based trusted data management scheme in edge
computing,” IEEE Trans. Industrial Informatics , vol. 16, no. 3,
pp. 2013–2021, 2020.

[1]

M. Gusev, B. Koteska, M. Kostoska, B. Jakimovski, S. Dustdar, O.
Scekic, T. Rausch, S. Nastic, S. Ristov, and T. Fahringer, “A deviceless
edge computing approach for streaming IoT applications,” IEEE
Internet Computing, vol. 23, no. 1, pp. 37–45, 2019.

[2]

M. Swan, Blockchain: Blueprint for a New Economy. O’Reilly Media,
2015.

[3]

E. Androulaki, A. Barger, V. Bortnikov, S. Muralidharan, C. Cachin, K.
Christidis, A. De Caro, D. Enyeart, C. Murthy, C. Ferris, G. Laventman,
Y. Manevich, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C.
Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger

[4]

fabric: A distributed operating system for permissioned blockchains,” in
Proc. 13th EuroSys Conf., EuroSys . New York, USA: Association for
Computing Machinery, Inc, 2018, pp. 1–15.

A. Dorri, S. S. Kanhere, and R. Jurdak, “ Towards an optimized
blockchain for IoT,” in Proc. 2nd Int. Conf. Internet-of-Things Design
and Implementation. New York, USA: ACM, 2017, pp. 173–178.

[5]

Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain
based decentralized trust management in vehicular networks,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1495–1505, 2019.

[6]

T. Jiang, H. Fang, and H. Wang, “Blockchain-based internet of vehicles:
Distributed network architecture and performance analysis,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4640–4649, 2019.

[7]

J. Feng, L. T. Yang, R. Zhang, and B. S. Gavuna, “Privacy preserving
tucker train decomposition over blockchain-based encrypted industrial
IoT data,” IEEE Trans. Industrial Informatics, vol. 17, no. 7,
pp. 4904–4913, 2021.

[8]

V. Buterin, “ A Next-Generation Smart Contract and Decentralized
Application Platform,” Ethereum.org, Tech. Rep., 2013. [Online].
Available: https://ethereum.org/en/whitepaper/

[9]

X. Huang, D. Ye, R. Yu, and L. Shu, “Securing parked vehicle assisted
fog computing with blockchain and optimal smart contract design,”
IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 426–441, 2020.

[10]

X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran, and
S. Chen, “ The blockchain as a software connector,” in Proc. 13th
Working IEEE/IFIP Conf. Software Architecture, 2016, pp. 182–191.

[11]

J. Nelson, M. Ali, R. Shea, and M. J. Freedman, “ Extending existing
blockchains with virtualchain,” in Proc. Workshop on Distributed
Cryptocurrencies and Consensus Ledgers, 2016.

[12]

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “ Elasticity in
cloud computing: State of the art and research challenges,” IEEE Trans.
Services Computing, vol. 11, no. 2, pp. 430–447, 2018.

[13]

G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “ RSYBL: A
framework for specifying and controlling cloud services elasticity,”
ACM Trans. Internet Technology, vol. 16, no. 3, pp. 1–20, 8, 2016.

[14]

M. Herlihy, “ Atomic cross-chain swaps,” in Proc. Annu. ACM Symp.
Principles of Distributed Computing. New York, USA: Association for
Computing Machinery, 2018, pp. 245–254.

[15]

A. Hope-Bailie and S. Thomas, “ Interledger: Creating a standard for
payments,” in Proc. 25th Int. Conf. Companion on World Wide Web.
New York, USA: Association for Computing Machinery, 2016, pp.
281–282.

[16]

J. M. García, P. Fernandez, A. Ruiz-Cortés, S. Dustdar, and M. Toro,
“Edge and cloud pricing for the sharing economy,” IEEE Internet
Computing, vol. 21, no. 2, pp. 78–84, 3, 2017.

[17]

Schahram Dustdar (F’ 16) is Full Professor of
computer science heading the Research Division of
Distributed Systems at the TU Wien, Austria. He is
founding Co-Editor-in-Chief of the new ACM
Transactions on Internet of Things (ACM TIoT) as
well as Editor-in-Chief of Computing (Springer). He
is an Associate Editor of IEEE Transactions on
Services Computing, IEEE Transactions on Cloud
Computing, ACM Transactions on the Web, and
ACM Transactions on Internet Technology, as well

as on the editorial board of IEEE Internet Computing and IEEE Computer.
Dustdar is Recipient of the ACM Distinguished Scientist Award (2009), the
IBM Faculty Award (2012), an Elected Member of the Academia Europaea:
The Academy of Europe, where he is Chairman of the Informatics Section, as
well as an IEEE Fellow.

data centers, the application of traditional blockchain
technologies poses several challenges concerning elasticity
and integration aspects, since the requirements for the
analytics to be performed varies dynamically, not only in
terms of resources needed, quality and cost aspects, but also in
the dimensions of those resources. Thus, in order to support
elasticity as well as horizontal and vertical integration, in this
paper we introduce the concept of elastic and glue smart
contracts.

The evolution of current blockchains towards supporting
our envisioned elastic smart contracts needs the introduction
of elasticity related information to the contracts logic. We
propose an elasticity policy abstraction layer to extend the
existing smart contracts introducing rules to account for
variations in the three elasticity aspects (resources, quality and
cost). Additionally, we characterize the different integration
scenarios that can be applied to elastic smart contracts,
exemplifying them in the context of smart cities and providing
a reference architecture. Our vision is that using approaches
such as virtual chains and adapting current elastic services
frameworks, we can achieve a greater level of integration
inside (and between) the various analytical levels while
keeping a flexible reconfiguration of the architecture in case
there is a need for vertical or horizontal offloading of
computation.

As future work, we expect to apply the current approach to
deal with more complex analytics such as the case of machine
learning techniques where there is a need for reliable
configuration parameters tuning. Moreover, we plan to apply
the current framework to analyze real traffic information and
to analyze the potentials of these analytics to drive real-time
decisions (e.g., street light management) exploring the
improvements in terms of operational expenses. Concerning
the blockchain features used, we plan to extend the current
framework to incorporate the cost of transactions (e.g., the gas
in Ethereum) as another dimension of the elasticity
 requirements.

IX. Acknowledgments

Authors would like to thank Pablo García for his support on
the prototype implementation and evaluation.

References

Pablo Fernández received the Ph.D. on technology
and software engineering from the University of
Sevilla, Spain, in 2013. Since 2019 he has been an
Associate Professor with the Applied Software
Engineering Group, Smart Computer Systems
Research and Engineering Lab, Research Institute of
Computer Engineering, University of Sevilla, Spain.
His current research is focused on the automated
governance of organizations and infrastructures
based on service level agreements and commitments.

José María García received the M.Sc. degree
(Hons.) in computer science and software
engineering from the University of Sevilla, Spain, in
2008, and the Ph.D. on technology and software
engineering from the same university in 2012.
 From 2006 to 2013, he was a Research Assistant
with the University of Sevilla. From 2013 to 2015,
he was a Postdoc Researcher and Assistant Professor
with the Semantics Technology Institute of the
University of Innsbruck, Austria. In 2015, he

rejoined the University of Sevilla as Assistant Professor, and since 2019 he
has been an Associate Professor with the Applied Software Engineering
Group, Smart Computer Systems Research and Engineering Lab, Research

Institute of Computer Engineering, University of Sevilla, Spain. His research
focus is on blockchain, semantic web technologies, service-oriented
architectures and linked data.

Antonio Ruiz-Cortés (M’ 20) received the B.Sc.
degree (Extraordinary Award) in computer science
from the University of Sevilla, Spain, in 1992, and
the M. Sc. and Ph. D. degrees (Extraordinary Award)
on informatics engineering from the same university
in 1996 and 2002, respectively.

 From 1990 to 1998, he was in the Computer
Industry. From 1996 to 1998, he was a Part Time
Lecturer with the University of Huelva. In 1998 he
joined the University of Sevilla as Full Time

Lecturer. In 2004 he founded the Applied Software Engineering Group at the
University of Sevilla. Since 2016 he has been a Full Professor of software and
service engineering and since 2019 he heads the SCORE Lab at the
University of Sevilla. His current research focuses on service-oriented
computing, business process management, testing and software product lines.
Prof. Ruiz-Cortés is Elected Member of the Academy of Europe and since
2018, President of the Spanish Society on Software Engineering
(SISTEDES). He is also an Associate Editor of Springer Computing and
International Journal of Cooperative Information Systems; and Recipient of
the Most Influential Paper of SPLC (2017) and VAMOS Award (2020).

