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Abstract. In this work, we propose a new greedy clustering algorithm
to identify groups of related genes. Clustering algorithms analyze genes
in order to group those with similar behavior. Instead, our approach
groups pairs of genes that present similar positive and/or negative inter-
actions. Our approach presents some interesting properties. For instance,
the user can specify how the range of each gene is going to be segmented
(labels). Some of these will mean expressed or inhibited (depending on
the gradation). From all the label combinations a function transforms
each pair of labels into another one, that identifies the type of interac-
tion. From these pairs of genes and their interactions we build clusters
in a greedy, iterative fashion, as two pairs of genes will be similar if they
have the same amount of relevant interactions. Initial two–genes clusters
grow iteratively based on their neighborhood until the set of clusters does
not change. The algorithm allows the researcher to modify all the cri-
teria: discretization mapping function, gene–gene mapping function and
filtering function, and provides much flexibility to obtain clusters based
on the level of precision needed.

The performance of our approach is experimentally tested on the yeast
dataset. The final number of clusters is low and genes within show a
significant level of cohesion, as it is shown graphically in the experiments.

1 Introduction

In any biologic process, cells and genes in particular play an important role which 
can be measured by their different levels of expression. These levels depend on the 
type of process, on the stage, and on the experimental condition that is analyzed. 
The knowledge about these, under a specific situation, helps to understand the 
function that genes play in a particular biological process.

Current works accomplished by researchers in the Bioinformatic field, like 
SAGE [1] for measuring gene expression, or like [2, 3] to store this gene expression 
in structure denominated microarray, make possible the simultaneous study of 
numerous genes under different conditions. Many different approaches have been 
applied to analyze this structure, including principal component analysis [4] as 
well as supervised [5] and unsupervised [6–10] learning. In unsupervised learning, 
clustering techniques are used to identify groups of genes that show the same 
expression pattern under different conditions.



[6] applied the k–means algorithm to find clusters in yeast data. In [7] graph–
theoretic and statistical techniques were used to identify tight groups of highly 
similar elements. In [8] a memetic algorithm is presented, i.e., a genetic algorithm 
combined with local search -based on a tree representation of the data - for 
clustering gene expression data. With this aim, in [9] is explored a novel type 
of gene–sample–time microarray data sets, which records the expression levels 
of various genes under a set of samples during a series of time points. Even 
evolutionary algorithm [10] have been used to discover clusters in gene expression 
data.

All of these methods are based on the idea of grouping those genes that show 
the same behavior. In this work, we propose a novel clustering algorithm to 
identify groups of related genes based on the idea of clustering pair of genes 
which present the same type of interaction.

In broad outlines, the remainder of the paper is organized as follows. In sec-
tion 2, the characteristics of our approach are detailed. Later in Section 3, we 
describe the results of our experiments. Finally, the most interesting conclusions 
are summarized in Section 4.

2 Description

The algorithm presented in this paper can be divided into four steps: encod-
ing of each gene expression (segmentation), representation of the interaction of 
every two genes (gene–gene interaction), filtering of most representative inter-
actions (filtering), and clustering interactions (neighborhood–based clustering). 
The overall approach, named InterClus, is illustrated in Algorithm 1. Each 
step represents a line of code in the algorithm.

Algorithm 1. Interclus
INPUT M: microarray (Conditions,Genes)

Ω: alphabet of discretization
α: discretization mapping
Π : alphabet of interactions
β: interactions mapping
F : Filter

OUTPUT S: Set of Clusters
begin

M ′=Segmentation(M,Ω,α)
M ′′=Encoding_Gene–Gene_Interactions(M ′,Π ,β)
L=Filtering(M ′′,F ,Π)
S=Build_Set_of_Clusters(L)

end

The first three steps of the process are depicted in Figure 1. Each of these
steps is described in detail in the next subsections. In addition, the last step,
neighborhood–based clustering is also explained.
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Fig. 1. First three steps of Algorithm 1. First step: definition of the discretization
mapping function to obtain a discretized matrix. Second step: definition of the gene–
gene interaction mapping function to obtain the gene–gene interaction matrix. Third
step: selection of gene–gene interactions that satisfy the filtering criterion.

2.1 Segmentation

The first step addresses the segmentation of each gene expression level. Due
to the fact these levels are represented by numerical values, the segmentation is
done by discretizing the range of values. In this way, different labels are obtained
according to the gene expression level under particular stimulus (experimental
condition). However, the discretization is local, i.e., the same expression level for
two different genes might transform into different labels.

To carry out the discretization, we need to define an alphabet Ω, which is
used to provide labels for the mapping, and a mapping function α, which is
used to assign labels from Ω to the numerical values. The definition of Ω and
α is provided by the user: characters for Ω and a discretization mapping table
for α, in which the user can also make use of symbols ∞, μ and σ, standing
for infinite, mean and standard deviation. Any expression that uses these special
symbols is valid, together with arithmetical operators and numbers. For instance,
in Figure 1, the first step transforms the gene expression level matrix into a
discretized matrix by using the discretization mapping α, defined over a three–
symbol alphabet Ω = {I, M, E}. If the gene expression level is in (−∞, μ − σ)
then the label “I” is assigned (inhibited); if it is in [μ − σ, μ + σ], then the label
is “M” (medium); and finally, if it is in (μ + σ, +∞), then “E” (expressed). An
expression like μ + 2σ is also feasible, and any number of labels as well.
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Fig. 2. Gene-Gene Interactions

Note that although we use values like μ or σ, these values are different for each
gene, so the discretization is local. A value of 0.6 for a gene can mean “expressed”,
and perhaps “inhibited” for another one, where both states translate further into
labels.

2.2 Gene–Gene Interaction

Once each gene expression level has been labelled, we will focus on the inter-
action between every pair of genes. Firstly, another alphabet Π is needed to
assign a label to any possible combination of gene pairs. For example, we might
be interested in differentiating the interaction inhibited–expressed from the in-
teraction expressed–expressed. In general, the size of the set Π is, at maximum,
the square of the size of the set Ω, although usually should be lower. In Fig-
ure 1, it is shown in the first step that |Ω| = 3, and in the second step, the
gene–gene interaction mapping has exactly 9 combinations, but the size of the
alphabet Π is 5, corresponding to {Z,S,P,N,Q}. In this example, Z stands for
null, S for similar, P for positive, N for negative, and Q for both expressed. The
interaction mapping function β is also defined by the user, as a mapping table,
β : Ω × Ω → Π .

As the microarray has M genes and N experiments, for each gene, M − 1
interactions with the remaining genes are needed. In short, there will be M ×
(M −1) interactions, as it is illustrated in Figure 2. The left–hand side of Figure
2 represents the discretized matrix obtained after the first step, in which rows
mean experiments and columns mean genes. The values Dij of a specific row
and column are discrete, belonging to the alphabet Ω. To the right, any possible
pair of different genes is enumerated in columns. In general, gene i can interact
with other M − 1 genes. The value Iij,k of a row k and a column represents
the symbol from the alphabet Π obtained after analyzing the two genes i and j
involved in the interaction under the experiment k.

The new matrix M ′′ encodes the information of all possible interactions, al-
though not every one might be interesting. For example, in Figure 1, we see in
the table generated by the second step that many columns have only the symbol
“S”, which means similar, i.e., there is no significant up– or down–regulation in
this case. The first column shows that genes 1 and 2 have similar behavior, so
its interaction is not relevant. In this way, we might withdraw much irrelevant
information if we were able to select the most interesting patterns in columns.
That is the aim of the third step, described in the next subsection.



Algorithm 2. Step–3 Filtering
INPUT M ′′: Interaction Matrix

F : Filter
Π : alphabet of interactions

OUTPUT LF : List of gene subsets
begin

LF := {}
for all pair of gene (gi, gj) with i �= j do

Se := {}
for all experiment ek do

Se := Se + Iij,k

end for
S′

e := Filter(Se, F )
LF := LF + S′

e

end for
end

2.3 Filtering

The fact that two genes are inhibited under most or all of the experimental
conditions, has no biological importance. Therefore, this situation can be easily
ignored. When two genes are both expressed under most or all of the exper-
imental conditions, that might have biological meaning. In fact, many studies
only focus on this aspect: the interaction expressed–expressed. In this work, we
are also interested in other cases: for example, when most of the time an in-
hibited gene is related to an expressed gene, and vice verse. And this situation
is especially interesting when the complementary is true as well, i.e., if gene 1
is expressed then gene 2 is inhibited and if gene 1 is inhibited then gene 2 is
expressed. The last situation is more difficult to detect and is one of the main
goals in this work.

Another interesting issue is that what means “most of the time” for a pair of
genes may not have the same meaning for another pair. For example, in Figure
1 the gene 1 is related to genes 2, 3 and 4, in the first three columns. The
most significant behavior is shown by the interaction 1–3, because for the last
experiment the label is “P”. However, if we analyze the gene 2 against genes 1, 3
and 4, the most significant behavior is shown by the interaction 2–4, because for
the experiments 1 and 3 the labels are “N” and “Q”, respectively. This gives some
clues about the strength of interactions, and provides us a specific criterion for
each gene regarding the remainder. Therefore, although the filtering function is
global, the value provided by the filtering function might be different for each
gene. That happens in Figure 1, in the third step, as gene 1 is related to gene
3 (the filter function value is 1), gene 2 is related to gene 4 (the filter function
value is 2), etc. Note that if gene 2 were also related to gene 3 with filter function
value equal to 1, this interaction will not be chosen as the maximum value for
the filter function was 2.
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Fig. 3. Filtering process

In Figure 3 is depicted the use of filtering, where Ci,F denotes the con-
ditions established for the gi–interactions using the filter F , and SCi,F rep-
resents the subset of genes whose interactions satisfy the condition Ci,F . As
explained earlier, for the example in Figure 1, the condition C1,F would be
max(|P | + |Q| + |N |) = 1, but C2,F would be max(|P | + |Q| + |N |) = 2.

The filtering algorithm is illustrated in Algorithm 2, where LF denotes the
list of all the subsets SCi,F . That is, LF = {SC1,F , SC2,F , ..., SCM,F }. After this
process, the filtering algorithm will generate the list of subsets of genes related to
each one, if exists. In Figure 1 is provided, in the third step, the list of four subsets
of genes, each of them with only one gene, by using the filter max(|P |+|Q|+|N |).

Also, in this filtering process is possible to establish a minimum threshold. This
value will have been satisfied for each Ci,F , so that if the condition established
for gi-interactions do not satisfy it, SCi,F will be empty and, therefore, it will not
be part of LF . In this way, we manage to give greater power to the filter function,
since it is possible to select those gene interactions that fulfil the filtering criterion
a minimum number of times.

Note that it does not make sense to establish this threshold in a value greater
than the number of experiments of the original dataset, because all of the SCi,F

subsets will be empty, and so, the LF list as well.

2.4 Neighborhood–Based Clustering

Once the relevant interactions between each pair of genes have been obtained, it
is time to cluster them. The clustering algorithm, named SNN (Similar Nearest
Neighbor), is based on the similarity of groups, instead of analyzing pairs of
elements. It builds clusters by grouping genes whose neighbors are similar. SNN
stars considering each gene as a separate cluster and at each step merges clusters
which have exactly the same neighbors. Thus, the concept of neighborhood is
redefined to handle correctly with clusters of neighbors.

Definition 1 (Neighborhood of a gene). The neighborhood Ng(i, F ) of a
gene gi using the Filter F , is the set of genes whose amount of relevant interac-
tions with regards to the gene i fulfils the condition Ci,F .

Ng(gi) = SCi (1)



Algorithm 3. Step–4 SNN

INPUT LF : List of gene subsets
OUTPUT RSC: Set of Clusters
begin

SC := θ
for all gene gi do

RSC[i] := {gi}
end for
repeat

for all cluster Ch ∈ RSC, 1 ≤ h ≤ |RSC| do
NSC[h] := Nc(Ch)

end for
SC := RSC
RSC := Reduction(SC, NSC)

until SC = RSC
end

Algorithm 4. Reduction
INPUT C: Set of Cluster

NSC: Neighbor Set of Cluster
OUTPUT R: Reduced set of clusters
begin

R := C
for all pair (i, j), with 1 ≤ i ≤ j ≤ |C| do

if S[i] = S[j] then
R[i] := R[i]

⋃
C[j]

remove R[j]
end if

end for
end

Definition 2 (Neighborhood of a cluster). The neighborhood Nc(C, F ) of
a cluster c ( cluster neighborhood) using the Filter F , is the set formed by all
the neighborhoods of each gene belonging to the cluster C.

Nc(C) =
⋃

g∈C

Ng(g) (2)

Once every necessary definition to support the algorithm at this step have been
presented, we will describe the code depicted in Algorithm 3. The input pa-
rameter is LF , containing in each position i the neighbors of gi. And the output
parameter is RSC, the reduced set of clusters, where each one comprises a group
of genes. SC is an auxiliary set of clusters and RSC is initially set with clusters
containing only one gene. The process is repeated until RSC has no change at
an iteration. The neighborhood of every cluster is calculated in order to analyze
the possible reduction of the set of cluster, task done by the Reduction function



(Algorithm 4). The reduction of a set of cluster follows the next criterion: two 
clusters are joined if both have exactly the same neighborhood. We are aware 
of the restrictive character of this criterion and a relaxation of it is considered 
among our future research directions.

3 Experiments

In this section, we address the evaluation of the performance of our approach, 
which is experimentally tested on the yeast dataset [6]. This dataset has infor-
mation on 2884 genes under 17 different experimental conditions.

In Table 1 it is shown the discretization mapping. The symbols μi and σi 

denote the mean and the standard deviation, respectively, of the expression 
levels of gi under the whole set of experiments. Thus, the gi expression level 
under ek will be labelled as I (inhibited) if it belongs to (−∞, μi + σi), or as E 
(expressed) if it belongs to [μi + σi, +∞).

The alphabet Π , used to encode each pair of gene–gene interaction, and the 
interaction mapping function β are shown in Table 2. Highly relevant interactions 
are those where genes change their state from inhibited to expressed (P) or from 
expressed to inhibited (N).

The interaction encoded as Z means that the gene does not take part in the 
experiment, and the interaction encoded as S means that there is no visible 
influence on each other. Thus, the used filter aims to select those interactions 
in which the highest number of P and N is reached. For this dataset we will 
establish a threshold value equal to 14 (note that 17 is the maximum). In this 
way, we will manage to select those gene–gene interactions which change their 
state from inhibited to expressed or from expressed to inhibited in at least 14 of 
the 17 experiments. With this filter, those genes whose interaction with others 
are P or N are selected, and those whose interaction is S or N are not. These two 
last interactions might be chosen as well, although not because of their biological 
relevance, but to make possible the comparison of the clusters obtained by using 
the filter highest(P,N). Thus, the InterClus process will be repeated three 
times with the same configuration but with different filter functions. These filters 
will be highest(P,N), highest(Z) and highest(S), respectively. However, we do not 
show the cluster obtained with highest(Z) because of its lack of biological interest.

The results obtained using our approach over the yeast dataset has been 
shown in Table 3, in which it is shown the five clusters with the highest size for 
each filter function. These clusters are ordered decreasingly according to their 
sizes. The dimension of each cluster will be shown at column “Size”. The other 
column, “Number”, represents the number of clusters which have been obtained

Table 1. Disretization mapping α

Intervals Ω

(−∞, μi + σi) I
[μi + σi, +∞) E



Table 2. Gene–Gene Interaction Mapping Function β

Ω × Ω Π

I I Z
I E P
E I N
E E S

Table 3. Results obtained using the yeast dataset

F1 =Highest(Z) F2 =Highest(P,N) F3 =Highest(S)
Number Size Number Size Number Cluster

1o 1 164 1 89 1 5
2o 1 116 1 2 - -
3o 1 84 - - - -
4o 1 54 - - - -
5o 1 45 - - - -

Fig. 4. A. Cluster (5 genes) using F3 =Highest(S); B. Cluster (89 genes) using
F2 =Highest(P,N).

with that size. The symbol "-" means that no cluster has been found with at
least two genes. For example, the size of the bigger cluster obtained using F1 is
164 genes, using F2 is 89 genes and 5 using the filter F3. The next clusters found
with these filters (second row) have been one with 116 genes, one with 2 genes
and none, respectively.

We will show two examples of clusters. Figure 4.A shows the first clus-
ter (5 genes) obtained with F3 =Highest(S). Obviously all of the genes are
highly expressed. Figure 4.B shows the first cluster (89 genes) obtained with
F2 =Highest(P,N). In this case, we are mainly interested in the interactions that
lead to changes in the regulation, from inhibited to expressed and vice versa.
These expression levels are encoded using the GenePattern tools [11]. For each
gene under one experimental condition is generated a color which represents
the expression level for this pair gene–experiment. The meaning of this colors



is depicted at the bottom in Figure 4. A preprocessing of the expression level 
(standardization and normalization by column) was carried out in order to draw 
the clusters using using regular levels of blue (inhibited) and red (expressed).

Figure 4 shows that each cluster groups genes with very similar behavior 
pattern, as the colors are almost alike.

4 Conclusions

In this work, we propose a new greedy clustering algorithm to identify groups of 
related genes. The approach is based on neighborhood of gene–gene interactions 
instead of on expression levels. One of the main features is that the algorithm 
allows the researcher to modify all the criteria: discretization mapping function, 
gene–gene mapping function and filtering function, and provides much flexibility 
to obtain clusters based on the level of precision needed. The performance of our 
approach is experimentally tested on the yeast dataset. The final number of 
clusters is low and genes within show a significant level of cohesion, as it is 
shown graphically in the experiments.
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