
I. INTRODUCTION

In order to find home automation low-cost and little-
invasive technological solutions, and easy handling for
the end user, the use of FPGA embedded systems will
be an implementation option to have into account [1].
Home automation or domotics are automation technologies
applied to buildings. This automation technologies use
control devices, sensors and actuators. These devices
communicate between them by different communication
schemes such as specific buses, wireless
communication, or electrical network. From end of
the nineties there appeared different standards of
communication like CEBus, LonWorks, KNX [2, 3].

The use of the electrical network facilitates
the installation of these technologies in the buildings
since it is not needed of any additional communication
infrastructure. In this sense, devices and communications
protocols adapted to this media have been developed [4,
5]. One of the most widespread is the X10 protocol
[5, 6]. This one was developed in 1978 by
engineers of the company Pico Electronics Ltd. in
Glenrothes, Scotland. Since then the technologies based
on the utilization of the electrical network known by
Power Line Carrier (PLC) have been spreading,
appearing a great variety of commercial products and
standards [7].

In the area of home automation architectures focused
on the education, the systems based on FPGA open a
broad field of possibilities [8]. The present communication
focuses the process of implementation of a controller
capable of communicating with all the devices
connected to an X10 network distributed in a domotics
space. In particular the developed system focuses in
an application to the illumination control. With the
control of the illumination

integrated in a domotics system it is possible to obtain an
important power saving and an increase of the comfort. The
next section describes briefly the X10 protocol. Later
the FPGA platform is presented. Finally, the last
section describes the design of the system.

II. THE X10 PROTOCOL

The X10 communication protocol allows
controlling remote devices using the electrical network
and the specific modules to which they are connected.
The control signals are based on the transmission of RF
pulses (120 KHz). The transmissions are synchronized with
the crossing by zero of the alternating current (AC). The
binary one is represented by a pulse of 120 KHz. during 1
millisecond whereas binary zero is represented by the lack
of this 120 KHz pulse.

The protocol [9] consists of address bits and commands.
In an X10 network can coexist up to 256 different
interconnected modules. The way of identifying them is by a
code (housecode) composed by a letter (from A to P) and
by a number (from 1 to 16, the device code). These
modules can recognize (depending on its characteristics.)
up to 16 different operation codes.

An X10 transmission from the controller, implemented in
a development board (DB), to the X10 interface consists of
the communication of a housecode and device code
combination followed by the command code. The sequence
of the transmission can be seen in the figure 1. We can
observe what each one of the frames of bytes means. This
format of transmission is always the same regardless of
command or address.

Manuel D. Cruz1, Juan A. Ortega1, Ángel Barriga2 and Alejandro Fernández-Montes1

1 Department of Languages and Computer Systems, University of Seville, Spain.
2 IMSE CNM-CSIC / University of Seville, Spain.

Development Environment Using FPGA for Domotics
Applications Based on X10 Technology

Abstract—This communication proposes a basic software and hardware architecture of a controller for the X10 technology interface
CM11A, oriented to the world of home automation. The implementation of the system is based in the use of programmable devices such
as FPGA (Field Programmable Gate Array). With this controller an end user will be able to control and to manage a set of devices
distributed in a domotics space.

X10Interface:CM11ASpartan 3

Standard transmission

return checksum2:

return interface ready to receive4:

Header:Code1:

Acknowledge3:

Fig. 1. X10 standard transmission

1. The DB transmit the header:code/command to
the X10 interface.

2. The X10 interface receives the frame and makes
a checksum. It transmits it back, to the DB.

3. The DB checks the checksum and sends an
acknowledgement (ACK) frame.

4. The interface receives the ACK and informs that
it is ready for more transmissions.

We can observe a code example in the System Design
section, subsection B.

There are an extensive range of products based on X10
protocol which can be classified in the following categories:
controllers, modules and complements. The system describe
in this paper is composed by a CM11A model PC
programmer (belonging to the category of the controllers.)
and a lamp module (that receives commands from the
electrical network and acts on a lamp.).

III. HARDWARE DEVELOPMENT PLATFORM

The control system has been implemented on an FPGA
development board containing a Xilinx Spartan-3 [10]. The
system operates with a clock frequency of 50 MHz
determined by an oscillator included on the board. The
board incorporates a set of elements that facilitate the system
development and allows diverse applications. It has two
SRAM memory modules up to 256 KB that store the
application. The RS232 port allows the communication with
the X10 interface.

The address (housecode) and the command
(operationcode) are formed activating four push-buttons.
The 7-segments displays allow verifying the operation and
inform, as well, about the state of the controller or the X10
devices. Finally, the JTAG communication port has been
used for download and test the application in the FPGA In
figure 2 the components that have been used are shown.

Fig. 2. Xilinx’s Spartan-3 development board

The FPGA development environment is the Xilinx
Platform Studio (XPS), of which we have used the tools that
allow covering the design flow of embedded systems. This
flow consists of the hardware architecture description stage,
the synthesis and implementation of the control circuit, the
development of the software applications, the compilation of
the above mentioned applications and the programming of
the FPGA and the SRAM memory.

The FPGA board controls any X10 receiver module in the
home by means of the computer interface module CM11A
(figure 3a). The CM11A plugs into an outlet and connects to
the RS232 serial port on the FPGA board

The lamp module, shown in figure 3b, is used to control a
lamp through X10 protocol. It is controlled by the remote
CM11A module. It connects the existing lamp in the socket
of this module, which is connected in the socket of the wall.
It is the interface module between the lamp and the socket of
the wall without requiring any additional connection and any
modification in the existing electrical circuit. It offers the
possibility of switch on/off the lamp and varying its
luminosity remotely by means of an X10 controller.

IV. SYSTEM DESIGN

A. Hardware architecture
Figure 4 illustrate the configuration scheme of the system.

In this scheme the controller has been implemented on the
FPGA development board described in the previous section.
This board communicates with the X10 interface module by
means of the RS232 port. This one transmits the address and
commands through the electrical network. The X10 lamp
module that has been address receives the commands and
acts on the device that it has connected.

FPGA

Push buttons

JTAG port

RS232
port 7-segments

displays

1. Set push buttons

2. Transmit to interface
(ON/OFF commands)

3. Transmit to
lamp module

4. Switch ON/OFF lamp
device plugged on module

 a) b)
Fig. 3. a) CM11A X10 computer interface module, b) lamp module

Fig. 4. Communications scheme

The design of the controller has been realized applying a
hardware&software codesign methodology that has allowed
defining an open and flexible architecture. The architecture
is open in the sense that allows incorporating new elements
and it is flexible because it allows to be reconfigured.

The system is constituted by two types of elements: the
hardware components that constitute the circuit programmed
in the FPGA, and the application software that runs on the
hardware and is stored in the system memory. The partition
of the functionality of the system into the hardware and
software components has been realized having in account
the already mentioned of open and flexible architecture. For
it the circuit has been developed with IP (Intellectual
Property) modules. These IP modules allow the reuse and
easy the insertion of new functionality.

 The architecture, which shows in figure 5, is based on the
utilization of the MicroBlaze processor from Xilinx. The
MicroBlaze processor is a soft-core 32 bits RISC
architecture that can be include in Xilinx's FPGA as an IP
module. MicroBlaze has Harvard architecture; this means
separated data and addresses buses. It has several structures
of buses of which we have used the LMB (Local Memory
Bus) and the OPB (Peripheral On-chip Bus). Bus LMB
allows accessing the internal FPGA memory in only a clock
cycle. The disadvantage is in that the size of this memory
(BRAM) is limited to the available resources in the FPGA
device.

Fig. 5. Controller architecture

The processor communicates with the peripheral devices
by an OPB (On-chip Peripheral Bus) IBM's standard bus.
The peripheral ones are mapped in the memory address
space. This means that the inclusion of new peripheral
consists simply of connecting it to the OPB bus and
including it within the memory address space of the
processor. In our application only the three devices shown in
figure 5 have been required. The peripheral devices
correspond to a parallel port (gpio), a serial port (uart) and a
memory controller (emc). The parallel port receives
information of the push-buttons of the board and generates
the signals to the 7-segment displays. The serial port allows
realizing the transmission of information towards the X10
module. The external memory controller facilitates the
transfer of information with the SRAM memory that
contains the application software.

In figure 5 it is possible to observe that the system has
two RAM memory blocks: BRAM and SRAM. BRAM is
the FPGA internal RAM memory whereas the SRAM is the
FPGA external memory module. The employment of both
memories justifies itself due to the fact of the size of the
software application requirements. BRAM module has better
access time (one clock cycle), nevertheless its size is limited.
Block SRAM can be expanded based on the system
requirements. There are three expansion connectors in the
development board to adapt any additional device such as a
memory module.

B. Software application development
The software application has been implemented using

C++ language. The XPS development environment provides
a series of software packages developed in ANSI C that
facilitate the codification of the user's applications
(peripheral drivers, libraries and operating systems) [11].

Figure 6 shows the model-view-controller (MVC) of the
software application describing the classes’ graph. The
pattern has been used in order to separate data and user
interface. In that way it is possible to improve and expand
the application in an easy manner. This model divides the
application in three layers:

MicroBlaze

On-chip Peripheral Bus
OPB

EMC UART GPIOSRAM

BRAM Local Memory Bus

LMB

• View: it is the layer that transmits and receives
information of the end user. In order to include new
services it is necessary to add more classes that
implement the interconnection between the final user
and the devices. Two classes belong to this layer:
DisplayDriverClass: it is the class that shows the
results and information of interest in the 7-segment
display.
ButtonsDriverClass: it is the class that receives the
push-buttons signals and transmits the information to
the controller.

Fig. 6. Model-view-controller.

• Controller: in this layer the information is processed
and transmitted up to the other two layers. For
example, it receives the information of the pressed
button and transmits the orders to the model layer,
which will transmit the command to the target device
through the serial port.
X10Client: this class works as an adapter, reducing
responsibility to the classes of the other two layers and
improving the model of the system. This way a major
independence is obtained between all the classes
facilitating later modifications.

• Model: in this layer the whole application logic is
carried out. It is the one that establish the
communication with the X10 devices through the serial
port.
X10Logic: it is the class that contains all the set of
necessary methods to establish the communication with
the X10 interface through the serial port, among other
functionality, there is the communication protocol of
this technology. Figure 7 shows the code of the typical
interaction between X10 interface and the development
board.

CONCLUSIONS
This communication describes a system capable of

controlling the devices of X10 technology distributed in a
domotics space using an FPGA device. One of the
objectives has been that the system is expandable and
modifiable, so that it is possible in the future to add new
functionalities and services to the end user. This will allow

to incorporate new external devices in order to increase the
functionality and improving the user interface (numeric
keypads, LCD screens, tactile screens, etc). The system
presented in this communication constitutes a development
platform focused on economic solutions and easy managing
in the world of the home automation

Fig. 7. Code example of the X10 transmission

ACKNOWLEDGEMENT
This work was supported in part by the Spanish

Education and Research Council under grants no. TEC2005-
04359/MIC and no. TSI2006-13390-C02-02, and by the
Andalusia Regional Government under grants no. TIC2006-
635 and no. TIC2141.

REFERENCES
[1] Renato Nunes, "Implementing Tiny Embedded Systems with

Networking Capabilities", IADIS International Conference on Applied
Computing 2005, Algarve, Portugal, February 2005.

[2] LonWorks (ANSI/EIA 709.1-A), http://www.echelon.com.
[3] KNX, http://www.knx.org/.
[4] HomePlug, http://www.homeplug.org/home.
[5] R. N. Bucceri, “The Latest Technology in Automated Home Control -

Book System Design Manual Using X-10 & Hardwired Protocols”,
Silent Servant, Inc, 2003.

[6] X10, http://www.x10.com
[7] Universal Powerline Bus, http://www.pcslighting.com/upb/overview.

html.
[8] F. Mateos, V. M. González , R. Poo, M. García, R. Olaiz, “Design and

Development of an Automatic Small-Scale House for Teaching
Domotics”, 31st ASEE/IEEE Frontiers in Education Conference,
Reno, NV-USA, 2001.

[9] X10, CM11A Interface Communication Protocol,
ftp://ftp.x10.com/pub/manuals/cm11a_protocol.txt.

[10] Xilinx, Inc. Spartan-3 Starter Kit Board User Guide,
http://www.xilinx.com/bvdocs/userguides/ug130.pdf.

[11] P. Anderson. “Xilinx Platform Studio Tutorial”. Embedded Systems
Design- Advanced Course Homepage. http://www.cs.lth.se/EDA385/.
2006.

…
//next transmission, it send the address A1
outputBuffer = _HEADER_;//header
while (!XUartLite_Send (&uart, &outputBuffer, 1));

outputBuffer = _DEVICE_ADDRESS;//device address
while (!XUartLite_Send (&uart, &outputBuffer, 1));

while (!XUartLite_Recv (&uart, &inputBuffer, 1));
//check the checksum
if (inputBuffer == ((_HEADER_ + _DEVICE_ADDRESS)&0xff))
{

//checksum ok
//transmit ACK to the board
outputBuffer = _OK_;
while (!XUartLite_Send (&uart, &outputBuffer, 1));

while (!XUartLite_Recv (&uart, &inputBuffer, 1));
for (j=0; j<20000000; j++);//wait for synchronize

if (inputBuffer == 0x55)
 {

//interface ready for the next transmission
 …

Model

Controller

View

DisplayDriverClass

ButtonsDriverClass

X10Logic

X10Client

«uses»

«uses»

«uses»

«uses»

ExternalLibraries

