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Abstract—This paper presents a model of neural network for 
position control of solar panels in multiagent-based control 
systems. This neural network is integrated within agents in order 
to optimize and predict the best positioning of solar panels 
depending on the position of the sun and other variables. The 
agents in this system can cooperate and coordinate to achieve a 
sun tracking system optimized, simple and adaptive. 
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I. INTRODUCTION

In order to improve the efficiency of power generation in 
solar photovoltaic energy plants, it is required to begin with 
improving the tracking accuracy of solar panels. Two main 
elements are necessary to do this: a distributed system to obtain 
environmental information and an adaptive sun tracking 
system. 

Hardware diversity of sensors and actuators required and its 
location in a solar power plant make advanced control systems 
necessary. A distributed intelligent agent architecture provides 
flexible and scalable ways to integrate different sensors and 
actuators.  

In addition to the multi-agent system, we propose a neural 
network model that is able to predict the optimal movement 
patterns, taking all information collected by the multi-agent 
system and the behaviors and results obtained earlier in time. 

Our neural network presents an adaptive two-dimensional 
auto-tracking control method suitable for different weather 
conditions that uses real-time control strategies and control 
parameter auto-optimization methods to realize flexible timing 
tracking and photoelectric tracking control. 

This model not only implies some guidelines on how the 
neural network can be designed, but also defines the 
integration of the elements of our system. The proposed model 
is applied to a control system of a solar power plant, obtaining 
an architecture which enables system agents to solve the 
problem. The agents in this system can cooperate and 
coordinate to achieve the global goal of optimization in energy 
generation. 

This paper is organized as follows: 

Section 2 presents problem domain to be solved to improve 
the energy efficiency of solar panels, while section 3 details the 
basic concepts of the model and the proposed neural network. 
In section 4 integration of the neural network with multi-agent 
system is described and the concluding remarks are found in 
section 5. 

II. PROBLEM DOMAIN

In solar photovoltaic  panel, trackers are used to minimize 
the angle of incidence between the sun insolation and a 
photovoltaic panel [1]. This increases the amount of energy 
produced compared to fixed panels as shown in Figure 1. This 
may result in an increase of 50% of the energy efficiency, 
depending on the environment. 

Unsuitable environments (shades, mountains, weather 
conditions, etc.) may result in decreases for energy efficiency 
achieved with traditional trackers [2][3]. 

Generally, the solar tracking controllers are 
microcontroller-based system which has been designed to 
follow up on two axes to with high precision. The control 
modules works based on the theoretical coordinates of the 
position of the sun, without considering details of the 

Fig. 1. Difference in output energy between fixed panels and tracked 
panels  



environment. In some cases, the systems have a solar sensor 
that works when there is not enough radiation directly and 
includes an auto adjustable function for positioning the solar 
panel. 

In any case, these adjustments are not very precise because 
it does not consider all variables that can affect to the global 
radiation produced by the sun. Some elements that can affect to 
the performance are dynamic, as shades or weather conditions. 
Therefore, an adaptive system that considers these dynamic 
elements and previous behaviours may improve performance. 

In order to create a solar adaptive tracking system based in 
real-time data from environment, devices to obtain 
environmental information and a mechanism to predict 
movements according to information obtained are necessary. 
Data acquisition can be implemented through a multi-agent 
system with sufficient capacity to treat all information 
adequately [4]. 

To achieve an adaptive positioning system, a good solution 
is a neural network problem. A particular type, called recurrent 
neural networks [5], consists of neural networks that include 
parameters defined through the time, allowing these networks 
have a dynamic behaviour or temporarily. This feature means 
that they are able to process time sequences because it can 
remember the relevant history of the sequences partially. 
Consequently, these networks are characterized to allow 
prediction of events or significant patterns because it can 
propagate the information stored in the network to forward in 
time [6]. 

III. NEURAL NETWORK MODEL FOR SOLAR TRACKING

The traditional trackers are based on a theoretical
determination of the orientation, tilt and angle of incidence in a 
solar panel for maximum theoretical performance [7] and it is 
possible that these calculations do not correspond to the final 
circumstances. Furthermore, these methods do not consider 
diffuse radiation and reflected radiation separately. 

There are environments where movement patterns may not 
be optimal. Examples such as special places like the forest, fog 
areas, interior areas and places with complicated shape areas 
can be found. Generally, it is advisable to evaluate the 
performance during long periods of time, such as one year. 

Fixing the movements of the solar panel from a previous 
theoretical study may lead to performance losses. We propose 
use a neural network for adapting positioning moves of solar 
panel, considering real environment. Our model considers 
position with respect to the objects in the environment that can 
affect performance and changes about states theoretically 
expected (clouds, shadows, seasonal variations, etc). 

Our neural network model fixes proper movement pattern 
by learning for a given day of a year, considering climate state, 
time schedule and solar radiation expected. 

A. Scenario for modeling
The modeling scenario has a set of hardware devices for

typical solar energy systems. This system has a two-axis solar 
tracking system in a solar array. With this system it is possible 

to track the sun, allowing solar radiation impinges 
perpendicularly on the solar panel due to movement generated 
for robotic two-axis mechanism: east-west azimuth axis 
(orientation) and top-down zenith axis (tilt). 

The available system (SunTracking [8]) consists of a 
complete set of linear actuators that allows to move panels in 
two axes. It also provides a full hardware and software solution 
that allows to control any motors for solar tracking device, by 
two encoders in azimuth and zenith axes. 

As sensors, there is a pyranometer (also called solarimeter 
or actinometer) which is a sensor designed to measure the solar 
radiation flux density from a field of view of 180 degrees. 
Other available sensors and devices can provide us information 
as Solar Time UTC, azimuth and zenith sun coordinates, day of 
year, temperature, humidity, wind speed, atmospheric pressure 
and weather conditions (sunny, cloudy, rain, etc). 

Finally, it is also possible to obtain a measurement of 
system performance in KWh. 

B. Type of neural network
The model developed is a neural network that can

determine an appropriate movement pattern to maximize 
performance of general system in a particular time of day for a 
concrete year, in the environment in which a solar panel is 
located. 

According to problem characterization, it is appropriate to 
use a recurrent neural network fully connected type. This type 
of network is defined by dynamic behaviour. It allows 
temporal information processing, such as dynamic patterns 
depending on time and consideration of values at previous 
instants of time. 

This network considers the previous position of the solar 
panel regarding previous instants and therefore it predicts the 
next coordinates of movement (which are close). In addition, 
training and output feedback is analyzed by comparing energy 
performance. It adjusts to the movements or output patterns 
that are most suitable. 

To define network correctly, it is necessary to set the input 
and output vectors of the network. 

C. Input Vector Network
Inputs network are values that should consider our neural

network to determine subsequently output patterns. It is 
determined by domain problem to be solved. Our design 
includes all sensor values available, as well as positioning data 
of solar panel at instant "t" given by "Solar UTC Time": 

• Azimuth and Zenith solar panel coordinates

• Solar time UTC

• Azimuth and Zenith sun coordinates

• Day and year

• Solar radiation (Kw/m2)

• Temperature



• Humidity

• Winds speed

• Atmospheric Pressure

• Weather conditions (sunny,cloudy, rain, etc)

• Energy performance (kWh)

Each of these elements can be encoded into binary level
(the set of values that may have) or continuous 0-1. Then the 
number of input neurons is determined. The number of 
elements of the input vector is equal to the total number of 
neurons required by the values shown. 

D. Output Vector Network
As the input vector, it depends on the intended result with

the neural network. In the case of the proposed model, the 
coordinates will be sought on the zenith and azimuth angles to 
be targeted solar panel to maximize the time “t+1” given by 
“solar time UTC + ∆t”, where ∆t will be the interval that 
desired define for testing a new movement. 

The output neurons can be defined with binary values as 
the input vector. 

E. Middle layers / Hidden Layers
There are no theoretical reasons for determining both the

number of middle layers of the network, as the number of 
neurons must have [9]. 

On a practical level, a maximum of two middle layers is 
recommended in studies on neural networks [9], because there 
are no studies indicating the need to use more layers. Most 
problems can be solved with a single layer. General reasons for 
using the lowest number of layers are: 

• Training slows when more hidden layers are used.

• The more number of layers, the more unstable is the
error gradient.

• The more number of layers, the more number of local
minimum it is obtained.

Our design starts using a single layer. In the case we 
observe that the time required in training or in responses is 
very high, and the results are not right, then the network is 
increased up to two hidden layers reducing the number of 
neurons in each layer. 

F. Number of neurons in the hidden layer
When choosing the number of neurons in the hidden layer

composed, we have considered that an excessive number of 
neurons may result in overadjustment (also known as 
overfitting) which is the effect of overtraining the network. 
This makes the learning algorithm be tailored to very specific 
characteristics of the training data that have no causal 
relationship with the intended results. On the other hand, a very 
small number of neurons can lead to the problem is not 
properly turned over the network. 

There are no rules or algorithms that specify theoretically 
and demonstrated the number of neurons that the hidden layers 
should make up. However, there are valid practical rules due to 
its empirical verification.  

Considering the details mentioned, there is a rule called 
pyramidal geometrical rule [10] that allows the number of 
neurons in the hidden layers to be approximated. This will 
distribute pyramidal neurons in decreasing order from the input 
neurons to the output ones. For a three-layer network with one 
hidden layer, this rule is defined by: 

      (1) 

Where n is the number of input neurons, m the number of 
output neurons and h the initial number of neurons in the 
hidden layer place. 

For a network with two hidden layers, the calculation of the 
number of neurons for the middle layers is given by the same 
rule, according to the following formulation: 

  (2) 

  (3) 

     (4) 

Where h1 and h2 are the number of neurons for the first 
and second hidden layer respectively. 

There are other types of rules for treating number of the 
hidden layers of neurons, taking into account the number of 
searched patterns or the number of neurons of the input layer 
[10]. Because these rules are of approximate nature, it was 
decided to use the one described above due to its simplicity, 
and combined with an iterative construction method for 
network growth. 

G. Initialization of the weights
Due to the high number of input connections we decided to

set a low value of weights, following as an approximate rule 
the fraction of the number of total weights to fix. 

H. Learning of the network
The neural network must be trained with a sufficiently large

data set, representative of the problem. In the case of the raised 
problem, a previously trained neural network did not exist 
because we do not know the expected output. The network 
must adapt to the outputs (new positioning of the panel) with 
better energy efficiency. 

During training, the input to the neural network is a 
representation of the current position (along with the 
parameters of the environment) and the desired output is the 
representation of the next position. By having available an 
output to compare (energy efficiency), the learning algorithms 
can be supervised type. 

To train the network under supervision normally required 
some measure of error e[t] to describe the adequacy of the 
output provided by the network to the desired value by 



Fig. 2. Neural Network Model for prediction of movements  of solar panel in CARISMA project.  

adjusting the parameters of the network while trying to 
minimize this error. The neural network model has been 
designed using the quadratic error function [11], defined for 
time “t” as: 

(5) 

Where di[t] is the desired output or target for the i-th output 
neuron at time t and yi[t] is the corresponding output of the 
network. 

Due to the type of network chosen for modeling, the 
learning algorithm used is the backpropagation algorithm. This 
algorithm defines the network, consisting of the backward error 
propagation, i.e. the output layer towards the input one, via the 
middle hidden layers and adjusting the weights of the 
connections in order to reduce such error. 

This learning stage is to obtain the minimum difference 
between the output obtained by the network and the output 
desired by the user. Therefore, this will be supervised training, 
as the user (supervisor) determines the desired output before 
presentation of a given input pattern. 

I. Stop condition of network learning
 A stop condition for training is defined in order to avoid 
network overtraining. This occurs when energy performance 
of the system output exceeding the expected theoretical 

performance. 

To prevent erroneous training, due to temporary conditions 
or unanticipated circumstances, it has been defined the limit 
training as a maximum of 100 cycles, in case outputs do not 
improve the network performance with respect to the one 
initially established. In these cases, the expert system will have 
stored the initial positioning status, which will return the panel. 

J. Neural Network Model
As indicated above, a recurrent neural network as network

topology is selected. Within this a recurrent neural network 
completely on has been chosen, since there is no restriction of 
connectivity and all the input data are time dependent. In the 
same way, each neuron receives as input the activation of other 
neurons and its own activation. 

  (6) 

Where “A” represents the input neurons, “B” the rest of 
neurons and wji are the weights of the connections “j” to “i” 
between neurons. 

As seen in Figure 2, the neural network reads a sequence of 
time and then the network outputs a possible continuation of 
the input sequence. In our case, only two future values are 
predicted, relative to the coordinates of the solar panel 
positioning as noted, the architecture consists of a network 



with an input layer and hidden layer processing elements 
totally interconnected, whose outputs are connected to the 
outputs of the network. The feedback is performed by 
interconnecting the output at time “t+1” to the corresponding 
inputs by delay elements. 

It has been decided in this theoretical model temporarily 
defined and will adjust after empirical training: 

• An input layer consists of two temporary neurons that
serve as temporary input to the two current coordinates
positioning of the solar panel and eleven general input
neurons that make up the environmental status of the
solar panel to the time “t”.

• A hidden layer consisting of five neurons, from the
application of approximate rules previously seen. In any
case, the number of neurons in the hidden layer may
vary according to implementation needs.

• The output layer is composed by only two neurons,
corresponding to the next coordinates of movement
(coordinates of movement in azimuth and zenith “t+1”).
These outputs are connected by feedback to find the
temporary input neurons.

IV. APPLICATION OF MODEL IN AGENTS

The neural network model described is integrated in the 
CARISMA system [12]. CARISMA presents a multiagent 
architecture to obtain an integrated system to supervise solar 
farm infrastructures. This system is able to monitor the 
environment by using distributed sensors and collect the data 
from them. It provides an efficient maintenance and prevention 
in solar farms in order to act over the environment or to do 
recommendation automatically to the telecontrol operators. 

The main actions of the agents are modeled by expert 
systems [4], using facts and rules. These rules represent real 
actions on devices such as cool systems, supply power or 
control position of a solar panel. Also these rules in an agent 
may represent the action required to share knowledge that may 
affect the positioning of the panels with other agents and 
reporting recommendations, faults or alarms in the system. 

In order to provide software agents with the ability of 
identifying behaviour patterns that optimize the performance of 
the solar panels controlled by the system, it is necessary to 
integrate neural network modeled in the system. To achieve 
this inference, the control agents of the system implement a 
neural network that allows them to see patterns of behaviour 
that improve and optimize the overall system capacity to obtain 
solar energy. When the neural network find patterns that 
improve behaviour, the agent communicate it to the expert 
system already implemented in CARISMA. The expert system 
will be responsible for carrying out actions that lead to optimal 
states to the system, such as shown in the figure 3. 

The expert system will provide the necessary information 
to the neural network and serves as a learning element for 
network through feedback. In any case, the expert system is 
responsible for the final decisions made in the system. The 
neural network will have an adaptive control and it will seek 

the best adaptation of the system to optimize performance over 
time. 

The neural network will calculate the optimal movement 
patterns for solar panels to maximize energy production, 
through the analysis of the responses of the system for small 
perturbations generated by the expert system in such patterns 
movement. 

Figure 4 shows the final network model application 
provided and how it should interact with the expert system of 
CARISMA, in order to perform a proper training and get a 
movement pattern for solar panels controlled under certain 
environmental circumstances. The expert system will be 
responsible for determining when it makes use of the neural 
network to determine the next move to make in a given solar 
panel. For this, our expert system will supply data 
environment and current position of panels to the network. 

Additionally, the expert system will be responsible for 
neural network learning, comparing energy efficiency 
obtained from a particular movement. When output power 
energy from system is less due to a movement executed, the 
expert system will report the difference obtained to the neural 
network to adjust weights. If output power is incremented, 
then the expert system will not request new predictions from 
neural network, and it will set suitable weights for future 
requests. 
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Fig. 4. Neural Network integration in CARISMA project 
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Fig. 3. Final model application in CARISMA project 



V. CONCLUSIONS

The sun tracking systems have enabled uses of solar 
photovoltaic systems for complex applications. Compared to 
their traditional fixed-position, solar systems which track the 
changes in the trajectory of sun, generate a significantly higher 
output power. This paper has presented an integration model of 
an inference engine based on neural networks, along with a 
multiagent system, which allows the implementation of an 
adaptive control for tracking the sun.  

Additionally, using our model of neural network in the 
design of a multiagent-based control system, we can obtain 
many benefits, such as adaptive control and simplicity. 
Problems in these control systems are scalability and 
flexibility: our model does not limit the number and types of 
agents and inclusion of new panels is possible, without 
additional cost. 

Future lines of work include the final implementation of the 
model and testing to demonstrate its feasibility. 
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