Simulation and Implementation
of a Neural Network in a Multiagent
System

D. Oviedo, M. C. Romero-Ternero, M. D. Hernandez, A. Carrasco,
F. Sivianes and J. 1. Escudero

Abstract This paper presents the simulation and the implementation of a model
of a neural network applied to a multiagent system by using the Neuroph
framework. This tool enables several tests to be carried out and verify which
structure is the best structure of our neural network for a specific application. In
our case, we simulated the neural network for a sun-tracking control system in a
solar farm. Initial implementation shows good results in performance, thereby
providing an alternative to traditional solar-tracking systems.

Keywords Multiagent system - Neural network - Control systems - Position
control - Solar-tracking - Solar energy - Renewable energy

1 Introduction

Multiagent technology has demonstrated its utility for the implementation of
control systems, where it is necessary to control a distributed hardware platform
[4, 9]. This requires agents to provide not only control capabilities, but also pre-
diction and optimization capabilities.

The topic proposed in this paper refers to the simulations of a neural network
model, whose design and implementation is described in detail in [6]. This model
has been integrated in a multiagent system to support the prediction of the optimal
movement patterns of solar panels for solar tracking.

Our neural network presents an adaptive two-dimensional auto-tracking control
method suitable for a wide range of weather conditions. It utilizes real-time control

D. Oviedo - M. C. Romero-Ternero (X)) - M. D. Herndndez - A. Carrasco
F. Sivianes - J. I. Escudero

Departamento de Tecnologia Electrénica, Universidad de Sevilla,

Avda. Reina Mercedes s/n, 41012, Seville Spain

e-mail: mcromerot@us.es



strategies and control parameter auto-optimization methods to realize flexible
timing tracking and photoelectric tracking control.

This paper is organized as follows: Sect. 2 presents the proposed neural net-
work, while in Sect. 3, the simulations, implementation, and integration of the
neural network with the multiagent system are described. Section 4 shows the tests
performed and the results obtained. Finally, the concluding remarks are drawn in
Sect. 5.

2 Intelligence and Learning Model for Agents

The model developed is a neural network that can determine an appropriate
movement pattern to maximize performance of a general control system at a
particular time of day for a specific year, in the environment in which the solar
panel is located. This network considers the previous position of the solar panel
regarding previous instants, and therefore predicts the coordinates of the sub-
sequent movement (which are close). Furthermore, training and output feedback is
analyzed by comparing energy performance. The network adjusts to the move-
ments or output patterns that are most suitable.

The neural network model described is integrated in the CARISMA system [5].
CARISMA presents a multiagent architecture to obtain an integrated system to
supervise solar farm infrastructures. This system is able to monitor the environ-
ment by collecting data from distributed sensors. It provides both efficient main-
tenance and prevention of failures in solar farms in terms of acting over the
environment or to initialize automatic recommendations to the telecontrol
operators.

In order to provide the software agents with the ability to identify behavior
patterns that optimize the performance of the solar panels controlled by the system,
full integration into the system of our modeled neural network is required. To
achieve this inference, the agents responsible for the overall control of the system
implement a neural network that enables them to determine patterns of behavior
that improve and optimize the overall system capacity to obtain solar energy.
When the neural network finds patterns that improve behavior, the agent reports
them to the expert system already implemented in CARISMA.

The expert system is then responsible for carrying out actions that introduce
optimal states to the system and that serve as a learning element for the network
through feedback.

Figure 1 shows the modeled neural network and how it interacts with the expert
systems included in CARISMA.



Fig. 1 Architecture Neural Network Activation
decision-making control to | Datainput for network
optimize energy efficiency

; -
p POSITION
a /" PREDICTION
{Azimuth and Zenith)
A
Leaming ‘ MNEW

PERFORMANCE

3 Simulations and Implementation Details

To integrate the neural network into the expert system, it is first necessary to
validate the neural network model through simulations and then implement this
model. The following sections describe the various stages and elements that are
necessary to attain a correct final implementation of the system.

3.1 Simulation of Neural Network

The modeled networks should be validated using a set of simulations that helps to
refine certain elements of the neural network. Therefore, simulation phases are
performed prior to the final implementation of the network and its integration into
the CARISMA system.

Regarding the type of neural network, we decided to use a fully connected
multilayer back-propagation network often called a multilayer perceptron (MLP)
[3], which allows time series predictions to be obtained. Feed-forward networks
can be applied directly to problems of this form if the data provided are suitably
pre-processed.

In the normalization of the input data to train the network, theoretical minimum
and maximum data are used depending on the area where the tests are executed
(Seville, Spain, in our case). For example, the temperature parameter remains
within it has been found that under normal conditions, a range from 0 to 45 °C. For
those cases where one of the input parameters lies outside the specified target
range, the system does not use the neural network to calculate the new coordinates.
In this case, the expert system is directly responsible for the decision.



Figure 2 shows the topology for the first network trained. This is a fully con-
nected multilayer network with one input vector of 13 parameters and one output
vector with 2 parameters corresponding to the subsequent azimuth and zenith
coordinates for the solar panels. The input and output vectors are interconnected
by a hidden layer which is composed of three artificial neurons.

The number of neurons in the hidden layer can be increased in accordance with
to the needs of network adjustment. The input values considered in the network
are:

Azimuth and Zenith solar-panel coordinates
Solar time UTC

Azimuth and Zenith sun coordinates

Date

Solar radiation (Kw/m?)

Temperature

Humidity

Wind speed

Atmospheric Pressure

Weather conditions (sunny, cloudy, rainy, etc.)
Energy performance (kWh).

The simulation process is performed in order to determine various parameters
of the network (maximum error, learning rate, momentum, impulse, etc.), to train
the network through a training pattern preset based on theoretical maximum
energy efficiency and to check its behavior in a variety of tests. The number of
iterations required to train the network and to minimize the error are analyzed from
the results of these simulations. The first results for our network, shown in Fig. 2,
were inadequate, since the error was insufficiently low to consider the structure of
this network as valid.

The number of hidden-layer neurons was therefore increased by following
approximation rules [2]. First we tested the network with five neurons in the
hidden layer and then with eight hidden neurons. Tests concluded that the latter
type of network gives the best results for this problem, as shown in Fig. 3.

This network of eight neurons (and an additional “bias” neuron) in the hidden
layer achieves better results in the tests performed, and shows minimal errors in
most cases and a faster learning rate, as shown in Figs. 4 and 5. This neural
network has been set with a maximum error of 0.01, a learning rate of 0.2, and a
momentum of 0.5.

This network is selected and implemented in the CARISMA system, and other
conditions of learning and operating over the time are included, as discussed in the
following section.



Fig. 3 Final topology of the neural network selected through simulation

3.2 Simulation of Neural Network

For the implementation of our neural network, the Neuroph framework [8] is used
since it is the most suitable framework for integration into the CARISMA system.
Neuroph offers a complete solution for creation, simulation, and implementation of
neural networks in Java language. It provides a Java class library for integration
into applications and a GUI tool “easyNeurons” for the creation and training of
neural networks. Additionally, Neuroph is suitable for time-series prediction [7].
From the point of view of implementation, the expert system is responsible for



Iteration: 51 Total Network Error: 0.009645988502358297
1.7
16 b :
15 N
14 \

13
AN
1.2

09 \

0.7 I|
06 ,
0.5

Total Network Error

0.4 \
03 '
0.2
0.1

250 [—
21:24:16.250 21:24:16.500 21:24:16.750 21:24:17.000 21:24:17.250 21:24:17.500 21:24:17.750

Iteration

Fig. 4 Graphical comparison of the number of learning iterations and the total error on the
neural network with eight neurons in the hidden layer (Minimum Test Time)

Iteration: 35 Total Network Error: 0.009404097560099673
1

0.9

0.8

Total Network Error

e
o

o

21:20:21.750 21:20:21.800 21:20:21.850
Iteration

21:20:21.900 21:20:21.950 21

Fig. 5 Graphical comparison of the number of learning iterations and the total error on the
neural network with eight neurons in the hidden layer (Maximum Test Time)



determining when the system makes use of a neural network in order to attain the
subsequent movement for a given solar panel. Therefore, the expert system pro-
vides solar-panel environment data as the current position. Additionally, the expert
system will be responsible for neural network learning, by comparing energy
efficiency obtained from a particular movement. When output power from the
system is less due to an executed movement, then the expert system reports the
difference obtained to the neural network to adjust the weights. If output power is
increased, then the expert system does not request new predictions from the neural
network, and it sets suitable weights for future requests.

From the point of view of code, the creation of the network is encapsulated in
the procedure “initializeNN()”. For network initialization, we have made use of a
temporary directory, where at least the initial training file for the network must be
defined. This training file is a plain text file with fields separated by a semicolon
(;). It contains the input values of the network and the best theoretical output result
to obtain the maximum energy solar performance. This file can be edited with new
data obtained from the network. Its use is obviated if the training option is adopted,
since the network is trained with each output movement, thereby resulting in
increasing performance from previously obtained movements under the same
conditions. The data supplied to the neural network must be normalized with
values ranging from O to 1, as indicated above. This aspect is dynamically
controlled.

In order to make the network available during the operation of CARISMA once
the network is trained, the neural network is stored in the file “myMLPercep-
tron.nnet”, where it is encapsulated in a binary level. This network can be loaded
and launched into the system from any agent. The procedure “execNN()” is called
when the rules are triggered if the performance of the solar panels is inadequate.
This procedure implements the following functionality:

e Launching the neural network for the current data.

e Comparing performance with the theoretical output, with a normal solar-
tracking system, with fixed plates and a log of maximum energy efficiency for
the same conditions.

e Training the network when a good result on the energy performance is
obtained.

e Ensuring that the calculations do not run for nonlogical input values (for
example, at night).

e Collecting times and system performance data.

e Storing returns and positions of the solar panels in a log file.

Finally, it has to be remembered that the network must be able to interact with
the expert system integrated into the agent. Therefore, we implemented rules that
are executed when the current energy efficiency (given by the current position of
the solar panels) is less than the expected theoretical performance, which is
reported by an alarm. In this case, the expert system updates the neural network
using a process called “communicateNN()”.



4 Testing and Experimental Results

We used the PeMMAS system [1] for testing, and internal variables and scripts of
the system for measurement control. With this tool, data on the use of system
resources, flight times of global messages by type of agent, and processing times in
behaviors can be obtained. It may also be used for other external measures of
system agents. The information obtained by PeMMAS agents can be processed to
generate various reports to provide the analysis of the multiagent system.

The set of tests are focused on analyzing the energy efficiency obtained in one
day, based on a history of performance measures obtained on various days of the
year. These measures have three variants: fixed-position solar panels, solar panels
with classic solar tracking (based on the theoretical solar position), and maximum
energy efficiency obtained at various times of the day. The neural network is
trained with the data obtained for panels with a traditional solar-tracking system.
From this training, the neural network is available in the CARISMA system and
runs on each of the agents responsible for controlling a solar panel.

After various tests were performed, we obtained an average of the most sig-
nificant measures for the set of all agents. From the results obtained, as shown in
Table 1, we conclude that the integration of a Neural Network has enabled a slight
increase in the production of energy by the system. This increase has been at an
average of approximately 3 %, compared to that obtained with a traditional solar-
tracking system. The subsequent movements predicted by the neural network are
the same as those expected in over 10 % and close to those expected in more than
25 %. However, a large number of unsuitable movements are also obtained
(approximately 15 %).

These results are derived from historical data training. If no such data were
available, the neural network response would initially be significantly worse and it
would take several cycles of testing under the same conditions to obtain responses
with an increased energy efficiency. Similarly, when the network is trained in real
time, then it provides better results since the weights of the neurons adapt more
appropriately.

Regarding the battery of tests designed to test the impact of using neural
networks on the consumption in terms of processor and disk in the system, the
results are satisfactory but considerable quantities of memory are employed, in
particular if the network is used simultaneously with other types of inference
systems. As shown in Table 1, the execution of the neural network has no
impact on the system, and CPU consumption is less than 0.5 % as a result of the
limited and controlled use by the expert system. However, the neural network is
higher in terms of RAM consumption, and reaches an average consumption of
3 mb.

Additionally, we have also analyzed the response times of expert systems
integrated with a neural network in the agents of our system. As shown in Table 2,
the response times (for inferences) in milliseconds obtained for each type of agent
did not differ from those obtained for the operation of expert systems alone. These



Table 1 Average results obtained by the neural network in predicting movements of a solar
panel for performance optimization

Global measures on the system

LIM_ NUMBER_AGENTS 27 Number of agents in the system

LIM_CAPACITY_PROC 16.78 % % Average of CPU used

LIM_CAPACITY_STORAGE 54.56 % % Average of memory used in the system

Neural network measures

RN_TRAINING 916.6 ms

RN_RESPONSE SE 1374.72 ms

RN_CPU 0.272 % % Average of CPU used in the system

RN_MEM 3079.4 Amount (in KB) of memory used in

the system

RN_QUALITY TRUE 10.60 % Expected resolution rate

RN_QUALITY FALSE 153 % Wrong resolution rate

RN_QUALITY_RESOLUTION 5 % Unexpected resolution rate

RN_ENERGY_EFFICIENCY_ 2.72 % Global energy efficiency rate obtained
GLOBAL

Table 2 Average response
times for the integrated expert

Time for inferences in neural network

system in a CARISMA agent TIME_INFERENCE_AT 990.7 ms
when used in conjunction TIME_INFERENCE_AC 940.7 ms
with a neural network TIME_INFERENCE_AO 1070.02 ms

TIME_INFERENCE_ADS 683.5 ms

measures provided an average of one second per inference. Therefore, it can be
concluded that the use of the neural network does not affect the use of other
systems.

5 Conclusions

We have developed a complete multiagent system responsible for the supervision
of an automated set of solar farms. The agents of this system have been equipped
with artificial intelligence through the combination of expert systems and neural
networks. Once the system has been verified through tests and simulations, the
responses obtained from this system are suitable, and require very little human
intervention.

The integration of the inference engine based on a neural network in an agent
allows the system to optimize the energy efficiency obtained by adjusting the
position of the solar panels to the variables of the particular environment and the
position of the sun. This type of system enables the decision-making agents to
adapt to their environment.



Future lines of work include the optimization of the neural network to improve
the approaches on the movements of the solar panels, considering other environ-
mental parameters. Therefore, one possible improvement would come from the
implementation of a fully connected recurrent neural network, which, according to
theoretical studies, would provide the best results.

Acknowledgements The work described in this paper has been funded by the Consejeria de
Innovacion, Ciencia y Empresas (Junta de Andalucia) with reference number PO8—TIC-03862
(CARISMA Project).

References

1. Carrasco A, Hernandez MD, Sivianes F, Romero-Ternero MC, Oviedo D, Escudero JI (2014)
PeMMAS: a tool that studing the performance of multi-agent systems developed in JADE,
IEEE Transactions on Human-Machine Systems 44(2):180-189

2. Flérez RF, Fernandez JMF (2008) Las Redes Neuronales Artificiales: fundamentos tedricos y
aplicaciones practicas. Netbiblo, Oleiros

3. Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Santa
Fe Institute studies in the sciences of complexity: Lecture notes. Addison-Wesley,
Massachusetts

4. Jennings NR, Bussmann S (2003) Agent-based control systems. IEEE Control Syst Mag
23:61-74

5. Oviedo D, Romero-Ternero MC, Hernandez MD, Carrasco A, Sivianes F, Escudero JI (2010)
Architecture for multiagent-based control systems, vol 79. Springer, Berlin, pp 97-104

6. Oviedo D, Romero-Ternero MC, Carrasco A, Sivianes F, Hernandez MD, Escudero JI (2013)
Multiagent system powered by neural network for positioning control of solar panels: an
optimization for sun tracking systems. In: 39th annual conference of the IEEE industrial
electronics society (IECON 2013), Vienna, 10-13 Nov 2013

7. Paluch M, Jackowska-Strumillo J (2013) Prediction of closing prices on the stock exchange
with the use of artificial neural networks. Image Process Commun 17(4):275-282

8. Sevarac Z, Goloskokovic I, Tait J, Carter-Greaves L, Morgan A (2013) Neuroph. http://
neuroph.sourceforge.net

9. Wang Z, Yang R, Wang L (2010) Multiagent control system with intelligent optimization for
smart and energy-efficient buildings. In: IECON 2010—36th annual conference on IEEE
industrial electronics society, pp 1144, 1149, 7-10 Nov 2010


http://neuroph.sourceforge.net
http://neuroph.sourceforge.net

	36 Simulation and Implementation of a Neural Network in a Multiagent System
	Abstract
	1…Introduction
	2…Intelligence and Learning Model for Agents
	3…Simulations and Implementation Details
	3.1 Simulation of Neural Network
	3.2 Simulation of Neural Network

	4…Testing and Experimental Results
	5…Conclusions
	Acknowledgements
	References


