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ABSTRACT Recent developments in machine learning applications are deeply concerned with the poor
interpretability of most of these techniques. To gain some insights in the process of designing data-based
models it is common to graphically represent the algorithm’s results, either in their final or intermediate
stage. Specially challenging is the task of plotting multiclass classification results as they involve categorical
variables (classes) rather than numeric results. Using the well-known MNIST dataset and a simple neural
network as an example, this paper reviews the existing techniques to visualize classification results, from
those centered on a particular instance or set of instances, to those representing an overall performancemetric.
As classification results are commonly summarized in the form of a confusion matrix, special attention is
paid to its graphical representation. From this analysis, a new visualization tool is derived, which is presented
in two forms: confusion star and confusion gear. The confusion star is centered on the classification errors,
while the confusion gear focuses on the classification hits. The proposed visualization tools are also evaluated
when facing: (i) balanced and imbalanced classifiers issues; (ii) the problem of representing errors with
different orders of magnitude. By using shapes instead of colors to represent the value of each matrix cell,
the new tools significantly improve the readability of the confusion matrices. Furthermore, we show how
the area enclosed by the confusion stars and gears are directly related to standard classification metrics. The
new graphic tools can be also usefully employed to visualize the performances of a sequence of classifiers.

INDEX TERMS Machine learning, classification performance, confusion matrix, data visualization,
confusion star, confusion gear.

I. INTRODUCTION
Machine learning models in general, and deep learning algo-
rithms in particular, are powerful algorithms able to provide
very good results when there is a pattern to be learnt from
available data, but at the cost of operating as a black-box.

On the other hand, having some insights about how they
work is a key issue for several reasons: improving the inter-
pretability and explainability of the models [1], debugging
and improving architectures and algorithms [2], comparing
and selecting results [3], and even for pedagogical pur-
poses [4]. Therefore, a common approach to unveil their
functioning relies on some kind of visualization of their
inner operation and final results e.g., in the computer vision
domain [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Weiping Ding .

The main target audience of these tools is the model
developer community [6], but also technically skilled model
users [7] and even non-experts [8] can benefit of a visual
description.

These users may be interested in the visual representation
of different types of models’ information, such as model
architecture [9], neural network’s weights [10], convolutional
filters’ values [11], neurons’ activation outputs [12] or edges’
backpropagation gradients [13]. However, by far the most
represented information is the model’s predictions either for
a particular instance [14], for a group of instances [15] or for
the overall dataset [16].

Many methods have been described with the aim of visu-
alizing the prediction process. An up-to-date comprehensive
survey of them, structured using the Five W’s and How
questions (Why, Who, What, How, When, and Where), can
be found in [17]. Also a perspective of visual analytics for
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understanding, diagnosing, and refining models is reviewed
in [18]. Additionally, different visualizing tools integrating
several approaches have been developed [19]–[23].

Focusing on how to visualize the results predicted by
machine learning algorithms, different approaches should be
considered depending on the type of problem addressed. The
information to be represented (prediction results) is quali-
tatively different for tasks such as regression, classification,
clustering, reinforcement learning, etc. This paper addresses
the issue of visualizing the results obtained by multiclass
classification algorithms, since this is one of the most fre-
quent tasks in machine learning applications (for instance,
around 75% of the datasets in the well-known University of
California Irvine Machine Learning Repository [24] contain
classification problems).

In most cases, the performance of a classifier is summa-
rized by a single metric (accuracy, precision, etc.), but ‘‘it
is important to understand both what a classification metric
expresses and what it hides’’ [25]. For this reason, a classi-
fication metric can also be disaggregated as a set of values
with the purpose of gaining better insight into the classifier’s
results.

As for the level of disaggregation to be used in visualizing
classification results, three approaches are considered in the
paper:

• Low-detailed results, using a single-valued metric for
the classification of the whole dataset.

• Medium-detailed results, where the classification of the
whole dataset is summarized by a small set of values.

• High-detailed results, representing classification scores
for a single instance or a set of instances in the dataset.

Although the paper briefly examines how to represent low
and high-detailed classification results, its main focus is on
how to visualize them at a medium level of detail, which is
commonly described by its multiclass confusion matrix [26].

The main contributions of this research can be summarized
as follows:

• Two new approaches to visualize the results of a multi-
class classifier are proposed, namely the confusion star
and confusion gear graphics.

• Their use as an intuitive guideline to understand the
classification behavior is explored.

• Their application to imbalanced datasets is considered.
• Their role to compare different classifiers is highlighted,
as well as to understand the influence of classifier’s
hyperparameters.

• The relationships between the shape of these graphs and
common classification metrics are derived.

The paper is organized as follows. Section II describes
the structure of the dataset used in the research, defines the
classification scoring procedure and formalizes the con-
cept of confusion matrix. Then, in section III, several
techniques to visualize classification scores and multiclass
confusionmatrices are reviewed. The extension of these ideas
is addressed in section IV, where the confusion star and

confusion gear concepts are presented. Later, in section V
these new tools are discussed, tackling issues such as the
impact of imbalanced datasets, the inner and outer areas of the
graphics, the use of logarithmic scale and the visualization of
evolving classifiers by means of a sequence of the new graph-
ics. Finally, the main findings of the research are presented in
the conclusion section.

II. METHODOLOGY
A. DATASET
Throughout this research the MNIST (Modified National
Institute of Standards and Technology) dataset [27] has been
used as the primary dataset. It contains 70,000 images, each
of them representing a handwritten digit (0 to 9). The dataset
is split into a 60,000 images subset that is used to train
the classifier (training dataset) and a 10,000 images subset
employed for generalization purposes (testing dataset). In this
case there are 10 classes, one for each digit.

This dataset has been widely used as a reference to analyze
different classification algorithms. Our goal in this paper is
not to obtain a better classifier but, given the results of any of
them, to explore how to represent its confusion matrix.

As a first example, a classifier implemented as a very
simple neural network has been considered, with only an
8-neurons hidden layer and a sigmoid as activation function.
The output layer contains 10 nodes (one for each class) with a
softmax activation function. Such a network is trained during
just 5 epochs, and its generalization results are evaluated on
the testing dataset. These test results are used in the following
to show different visualization methods.

This classifier is advisedly simple for the purpose of
obtaining low performance: in this case, differences among
the considered visualization techniques can be more eas-
ily appreciated. By increasing the number of hidden layers,
the number of nodes per layer, and the number of training
epochs, much better classification results can be obtained.
As instance, using convolutional neural networks, excellent
results (99.8% accuracy) have been reported [28].

In the final part of the paper, it is discussed the evolution
of the classification performance as a function of the number
of training instances. In this case the MNIST dataset has also
been used, now raising the number of neurons in the hidden
layer up to 128-neurons and training the neural networks
during 100 epochs.

To show the ability of confusion stars and gears to visu-
alize classification results in problems with a high number
of classes, a second dataset, the CIFAR-100, has also been
considered [29]. This dataset consists of 60000, 32×32 color
images in 100 classes, with 600 images per class, where
50000 images (83%) are used for training and 10000 for
test (17%). A 6-layer Convolutional Neural Network (CNN)
classifier has been employed, according to the code in [30].
This is not a very powerful classifier as it shows an accuracy
of about 40%, while the state of the art classifiers for this
problem reach figures over 96% [31]. However this moderate
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accuracy is quite convenient to depict confusion stars and
gears with many classes.

Finally, to show the impact of imbalanced datasets on
confusion stars and gears, a reduced version of the Abalone
dataset is employed. This dataset, available in [24], derives
from a non-machine-learning study [32] and contains phys-
ical measurements (height, several lengths, diameter, sex)
of the abalone mollusk exemplars, along with the number
of ‘‘rings’’ present in the shell. The number of rings is
proportional to the age of the mollusk. The purpose is to
classify each observation in its age class. Certain classes
in the original dataset contains very few instances (some
classes with one or no elements) making unaffordable any
prediction. To overcome this problem a reduced dataset has
been obtained by selecting only 10 classes, from class (age)
4 to 13, containing 3670 instances which represents the 88%
of the total population. The resulting dataset contains the
same number of classes (10) than the MNIST problem but
they are highly imbalanced, which is quite convenient for the
sake of comparison. A simple multiclass logistic regression
has been used as classifier.

B. CLASSIFICATION SCORE MATRIX
Let us consider a statistical population P that contains a set of
elements, usually in a large and potentially infinite number.
In this population n elements are randomly sampled, obtain-
ing a dataset D = {d1, d2, . . . , dn}, where di represents the
i-th element. Let also be a set of classes2 = {θ1, θ2, . . . , θC }

where C is the number of classes, and θj represents the j-th
class. A certain element d ∈ D is defined by a pair 〈8, θ〉
formed by a vector 8 = [ϕ1, ϕ2, . . . , ϕF ] that contains the F
features that define the element, and the class θ to which the
element belongs to. Let us call P8 = {81,82, . . . ,8n} the
set containing the feature vectors 8 of the population P.

A classifying algorithmA is defined as a function from the
population P toRC (the set of real numbers of dimension C),
which can be expressed as A : P → RC . Therefore, each
element belonging to P is associated to a scoring vector 9 =

[ψ1, ψ2, . . . , ψC ], that is, a score for each class in 2. If the
scores can be interpreted as probabilities, the algorithm is a
probabilistic classifier. Otherwise, if scores are binary values
(0,1) the algorithm is a hard classifier.

A decision ruleR is defined as a function which associates
a scoring vector 9, defined in RC , in an estimation of the
class θ̂ ∈ 2.

Finally, a classifier C is defined as an ordered pair of func-
tions 〈A,R〉 indicating that it first applies the classification

algorithm A, and then the decision rule R. So, C : P8
A
−→

RC R
−→ 2. Considering not the whole dataset but each

single element, a classifier can be described as two sequential

transformations, 8
A
−→ 9

R
−→ θ̂ , where θ̂ is the class

estimate.
Therefore, the result obtained applying the classifier

C to an element in the dataset D is a scoring vector
[ψ1, ψ2, . . . , ψC ], and a class estimation θ̂ . To measure the

classifier performance, the actual class of the element must
also be included. Then, the performance of a classifier, oper-
ating on a dataset with n instances, can be expressed by the
score matrix (SM), with SM ∈ Rn×(C+2), given by

SM ≡


ψ11 ψ12 . . . ψ1C θ̂1 θ1

ψ21 ψ22 . . . ψ2C θ̂2 θ2

...
...

. . .
...

...
...

ψn1 ψn2 . . . ψnC θ̂n θn

 . (1)

This matrix contains the information about the perfor-
mance of the classifier at itsmaximum level of disaggregation.

C. CONFUSION MATRIX
In many situations, the classifier performance is analyzed
not considering the scores associated to each class, but just
comparing the estimated and the actual class for each instance
in the dataset. So, by discarding the first C columns of the
score matrix, the more compact estimation matrix (EM) is
obtained

EM ≡


θ̂1 θ1

θ̂2 θ2

...
...

θ̂n θn

 . (2)

The estimation matrix EM is has a smaller dimension (less
columns) than the score matrix SM , but it still has a high
level of disaggregation, since it contains information for each
instance in the dataset. Therefore, it is common to summarize
it using the confusion matrix (CM) defined as

CM ≡


m11 m12 . . . m1C

m21 m22 . . . m2C

...
...

. . .
...

mC1 mC2 . . . mCC

 , (3)

where mij represents the number of instances of class θi
estimated by the classifier as belonging to the class θ̂j. The
results obtained classifying the MNIST dataset with the neu-
ral network previously described can be summarized in the
confusionmatrix shown in TABLE 1. Last column also shows
that there are a similar number of instances in each class,
which means that classes are quite balanced.

In the definition of the confusion matrix, is usual to
describe mij as a fraction of the total number of instances mi
belonging to the class θi. By calling this ratio λij ≡ mij/mi,
then mij can be expressed as mij = λij ·mi, and the confusion
matrix can be rewritten as

CM =


λ11m1 λ12m1 . . . λ1Cm1

λ21m2 λ22m2 . . . λ2Cm2

...
...

. . .
...

λC1mC λC2mC . . . λCCmC

=3 ◦M .

(4)
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TABLE 1. Confusion matrix obtained classifying the MNIST dataset with a very simple neural network.

TABLE 2. Confusion matrix for a multiclass classification.

The symbol ◦ represents the element-wise multiplication
(also called Hadamard product), 3 is the unit confusion
matrix expressed by,

3 ≡


λ11 λ12 . . . λ1C

λ21 λ22 . . . λ2C

...
...

. . .
...

λC1 λC2 . . . λCC

 , (5)

andM is the matrix defined by

M ≡


m1 m1 . . . m1

m2 m2 . . . m2

...
...

. . .
...

mC mC . . . mC

 . (6)

TABLE 2 summarizes the main elements considered in the
definition of the confusion matrix, where gj is the number of
instances estimated as belonging to the j-th class.

III. VISUALIZING CLASSIFICATION RESULTS
A. CLASSIFICATION SCORES OF INSTANCES
Fully detailed classification results regarding the i-th instance
correspond to the i-th row of the score matrix (1)

defined by

SM i ≡
[
ψi1 ψi2 . . . ψiC θ̂i θi

]
. (7)

The classification scores for the first three instances in the
MNIST testing dataset can be depicted as in Fig. 1 (in colors
blue, orange and green respectively).

FIGURE 1. Classification scores for the first three instances in the MNIST
testing dataset. (Filled dots) correctly classified instances. (Empty dots)
not correctly classified instances.

In this classifier the scores are generated by the softmax
activation function of the 10-neurons output layer, so they
are in the range [0, 1], sum up to 1 and, therefore, they can
be interpreted as probabilities. For example, the first instance
(represented by a blue line) has a (0.05, 0.07, 0.12, . . .) prob-
ability of belonging to the class (0, 1, 2, . . .). Belonging to
class 7 obtains the highest probability (0.34), so this is the
class estimated by the classifier. In this case, the instance
is classified correctly, which is indicated using filled dots.
For the second instance (represented by an orange line),
belonging to class 0 obtains the highest probability (0.26).
In this case, this is an error as the actual class is 2 which is
indicated using empty dots.
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This type of representation only has meaning for a single
instance or for a very reduced number of them. In order to
depict classification scores for many instances a scatter polar
plot has been proposed [33] as it is shown in Fig. 2 for every
instance in the MNIST testing dataset.

FIGURE 2. Polar representation of the classification scores for the MNIST
testing dataset.

Each class is represented by a certain angle ϕj, which for
the j-th class is defined by

ϕj =
2π (j− 1)

C
. (8)

The classification result for the i-th instance is depicted as a
dot in a position defined by its vector

Eri =
C∑
j=1

Erij =
C∑
j=1

ψij 6 ϕj, (9)

where Erij is a vector of module ψij and phase ϕj.

B. CLASSIFICATION SCORES OF CLASSES
A partial perspective of the score matrix may consider not
every instance in the dataset, but only those belonging to a
certain class. In this case, the scoring results of the instances
belonging to the j-th class are defined by a slice of the
score matrix SM (j)

≡ {SM i} ,∀i|θi = j. As the level of
disaggregation of this matrix is still very high, it is commonly
summarized using some statistics for each column (mean
score value, standard deviation, density function, etc.).

Fig. 3 depicts one of these summaries, here in the form of a
boxplot. The i-th subplot considers themi instances belonging
to the i-th class and the j-th box indicates the distribution
of the values ψij,∀i|di ∈ θj, that is the scores of elements
of the i-th class that are being estimated as belonging to the
j-th class.

The instances belonging to class 1, for example, are
estimated as belonging to class 1 with a probability dis-
tributed as it is shown in the second box of the second

plot, clearly outperforming the remaining probability dis-
tributions. Then, very good classification results should be
expected for instances belonging to class 1.

Conversely, instances belonging to class 2 (third plot) have
a probability of being correctly classified as it is shown in
the third box. This distribution is only slightly better than
the ones corresponding to the estimated classes 1 and 7,
so many classification errors should be expected for instances
belonging to class 2.

C. REPRESENTATION OF THE CONFUSION MATRIX
Let us now focus on how to represent the classification results
using a medium level of detail, that is, based on its confusion
matrix. The most common way to depict a certain multiclass
confusion matrix is straightforwardly drawing it as a C × C
colored grid where each cell has a color scaled according to its
value. Sometimes the cell also contains a text with its numeric
value, as it shown in Fig. 4.

In case of an imbalanced dataset, it is better to represent
the unit confusion matrix, commonly expressed by the per-
centage values, as it is depicted in Fig. 5.

The confusion matrix or the unit confusion matrix can be
alternatively represented as in Fig. 6 where, for each actual
class, a set ofC stacked bars are drawn. The height of each bar
in a certain stack (actual class) is proportional to the number
(or ratio) of instances estimated as belonging to each class,
that is, corresponding to the values of a row in the confusion
matrix. A similar stacked bar approach is used in [34].

D. REPRESENTATION OF BINARY CONFUSION MATRICES
Sometimes it is worth to assess the classification results of
one class versus all the remaining ones (OvA binary classifi-
cation). So, let us consider the instances belonging to the i-th
class which will be denoted as the ‘‘positive’’ (P) class. The
remaining instances belong to different classes which will
be collectively denoted as the ‘‘negative’’ (N) class. In this
way, the number of instances correctly classified as positives
(TP: True Positives) is TP = mii. Similarly, the number
of instances erroneously classified as positives (FN : False
Negatives) is

FN = mi − mii =

 C∑
k=1
k 6=i

mik

− mii. (10)

The number of elements not belonging to the i-th class (that
is, belonging to the negative class) which are erroneously
classified (FP: False Positives) is

FP =

 C∑
k=1
k 6=i

mki

− mii. (11)

Finally, the number of elements not belonging to the
i-th class (that is, belonging to the negative class) which are
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FIGURE 3. Statistical distribution of the classification scores (probabilities) for the instances in the MNIST testing dataset belonging to a
certain class.

FIGURE 4. Straightforward colored grid representation of the confusion
matrix corresponding to the classification of the MNIST testing dataset.

correctly classified (TN : True Negatives) is

TN = mN − FP = m−
C∑
k=1
k 6=i

mki. (12)

Considering these results, the binary matrices correspond-
ing to every class can be represented as it is shown in Fig. 7.
Alternatively, they can be represented using stacked bar plots,
as it is depicted in Fig. 8.

Binary classification results can also be analyzed using the
receiver operating characteristic (ROC) curve [35]. Convert-
ing the classification scores for an instance into its estimated
class requires a decision rule R which, in the binary case,
is usually a threshold τ . If the score of belonging to the
positive class ψiP is greater than the threshold, the instance is
estimated as positive; otherwise as negative. So, the elements
of the binary confusion matrix depend on τ , and also their
relatedmetrics. Specifically, the True Positive Rate (TPR) and

FIGURE 5. Straightforward colored grid representation of the unit
confusion matrix corresponding to the classification of the MNIST testing
dataset.

FIGURE 6. Stacked bar representation of the unit confusion matrix
corresponding to the classification of the MNIST testing dataset.

the False Positive Rate (FPR) are defined as

TPR (τ ) ≡
TP (τ )
mP
;FPR (τ ) ≡ 1−

TN (τ )
mN

. (13)
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FIGURE 7. Straightforward representation of the unit binary confusion matrices corresponding to the classification of the MNIST
testing dataset.

FIGURE 8. Stacked bar representation of the unit binary confusion matrices corresponding to the classification of the MNIST
testing dataset.

FIGURE 9. ROC curves corresponding to the OvA binary classification of
the MNIST testing dataset.

The ROC is built as a parametric curve in τ , with FPR (τ )
in the horizontal and TPR (τ ) in the vertical axis. The result-
ing ROC curves for the 10 binary classifiers are depicted in
Fig. 9.

E. ALTERNATIVE REPRESENTIONS OF THE
CONFUSION MATRIX
Some authors have proposed alternative representation for the
confusion matrix such as, for instance, in [14] where a chord

FIGURE 10. Chord diagram representation of the confusion matrix
corresponding to the classification of the MNIST testing dataset.

diagram, called by the authors confusion wheel, is used. This
plot is depicted in Fig. 10 where each class corresponds to
a circular sector with a size proportional to the number of
instances belonging to that class. Later a chord is drawn start-
ing at the actual class sector and ending at the estimated class
sector. The width of the chord at each side is proportional to
the number of instances belonging to that class classified as
belonging to the other side’s class. The color of the chord is
that of its widest side.

VOLUME 10, 2022 1665



A. Luque et al.: Visualizing Classification Results: Confusion Star and Confusion Gear

FIGURE 11. Sankey diagram representation of the confusion matrix corresponding to the classification of the MNIST
testing dataset.

FIGURE 12. MDS transformation of the confusion matrix corresponding
to the classification of the MNIST testing dataset.

Also in [36] it is proposed to represent the confusionmatrix
using a Sankey diagram as in Fig. 11. In the upper part each
class (origin) is represented by a rectangle with a width pro-
portional to the number of instances belonging to that class.
In the lower part, the estimated classes (destinations) are
drawn with a width proportional to the number of instances
predicted as belonging to that class. The ribbons drawn in
the middle represent the instance belonging to the upper side
class but classified as belonging to the lower side class.

In [37] the confusion matrix is conceived as a similarity
matrix between classes. Then, it is transformed in its oppo-
site, that is, a dissimilarity or distance matrix. Finally this
matrix is represented in a two-dimensional plane using the
multidimensional scaling (MDS) technique.

The result is shown in Fig. 12 where each class is repre-
sented by a point in the new 2D plane. The closer a pair of
classes, the more similar they are and, therefore, the more
difficult is to separate them. For example, classes 4 and 9 are
very close in the MDS plane, which means that it is very dif-
ficult to separate them and so a high number of classification
errors should be expected.

Along with the individual representations described above,
it is also common to find visual representations of the classi-
fier results that combine several of the preceding graphs.

FIGURE 13. Linear representation of the confusion matrix corresponding
to the classification of the MNIST testing dataset.

Although these more sophisticated graphics may seem
visually very appealing, they do not necessarily provide
additional information compared to the more conventional
representations. Therefore, in the following section, a new
graphical representation is proposed.

IV. BEYOND CONFUSION MATRIX
A. LINEAR REPRESENTATION OF THE CONFUSION MATRIX
Let us consider the mi instances belonging to the i-th class.
The results of their classification are summarized in the
i-th row of the confusion matrix, CM i ≡

[
mi1 mi2 . . . miC

]
,

wheremij represents the number of instances belonging to the
i-th class, estimated as belonging to the j-th class.

Then, it is possible to represent the confusion matrix as a
sequence of C lines, each of them corresponding to a row
CM i. Every line is defined by C values, corresponding to
each mij elements. The result is depicted in Fig. 13. A similar
approach is used in [38].

In a good classifier most instances are correctly estimated
as belonging to its actual class, so mii ≈ mi;mij ≈ 0,∀j 6= i.
That is, a single very high value escorted by the remaining
very low values. This important imbalance in the values of
each row is clearly seen in the plot and it makes difficult its
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interpretation. This is also the reason why such graphic is not
commonly used to represent the confusion matrix.

To overcome the issues raised in the previous represen-
tation, the CM i containing the classification results corre-
sponding to the i-th class is transformed into a new vector
EM i ≡

[
ei1 ei2 . . . eiC

]
, where its elements are defined

as eii = mi − mii and eij = mij,∀j 6= i. Then, for a
perfect classification, eij = 0,∀j. The matrix EM = {eij}
is denominated the error matrix.

The i-th row of this matrix can also be formulated in terms
of the ratio over the total number of instances belonging to the
i-th class, EM i =

[
εi1mi εi2mi . . . εiCmi

]
, where the ratio

εij = eij/mi. The matrix E = {εij} is denominated the unit
error matrix and can be represented as a sequence of C lines,
as it is shown in Fig. 14.

FIGURE 14. Linear representation of the unit error matrix corresponding
to the classification of the MNIST testing dataset.

In the previous linear representation (Fig. 14) an abnor-
mally high value is observed in each line, corresponding to
the element eii, that is, the number of instances belonging to
the i-th class erroneously classified as belonging to any other
class.

To explain these peaks let us first remind that the C ele-
ments of the i-th row in the confusion matrix are mutually
dependent havingC−1 degrees of freedom, that is, they obey
the equation

C∑
j=1

mij = mii +
∑
j6=i

mij = mi. (14)

Then, the number of hits (correct classifications) for the i-th
class is

mii = mi −
∑
j6=i

mij. (15)

Recalling the definition of the elements of the error matrix,
its diagonal elements can be written as

eii = mi − mii =
∑
j6=i

mij =
∑
j6=i

eij (16)

FIGURE 15. Boxplot containing the distribution of the values for
eij , ∀j 6= i . The mean value ēij (in blue) and the eii (in green) are also
depicted. All the error values are expressed in %.

The term eij counts the number of instances belonging to
the i-th class, erroneously classified as belonging to the j-th
class. Calling ēij its mean value ,∀j 6= i, it can be written
that eii = (C − 1) · ēij. Then, in the MNIST example (with
C = 10), the value of eii will be 9 times higher than the mean
of the remaining eij. This is the reason why a peak appears
in the linear representation of Fig. 14. The distribution of
the classification errors for each class is depicted in Fig. 15,
where it is clearly shown that the value of eii (in green) is
much higher (9 times) than the value of ēij (in blue).

Considering the C − 1 degrees of freedom in the rows of
the error matrix, any of them can be omitted without losing
information. Then, removing the element eii is a convenient
decision as it eliminates the peaks in the plot, as it is depicted
in Fig. 16.

FIGURE 16. Linear representation without redundancies of the unit error
matrix corresponding to the classification of the MNIST testing dataset.

It must be noted that the horizontal axis does not indi-
cate the estimated class but an index to this class once
the redundant element has been removed, that is, the value
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corresponding to the same class. Then, for instance, in the
green line (actual class 2), the index corresponds to the esti-
mated classes 0, 1, 3, 4, . . . , 9, a sequence where the class 2
has been omitted. More formally, for the i-th actual class (the
row in the matrix) and the j-th estimated class (column), the
index k of the estimated class is defined by the expression{

k = j, ∀j < i
k = j− 1, ∀j > i.

(17)

FIGURE 17. Linear representation without redundancies of the unit error
matrix corresponding to the classification of the MNIST testing dataset
(actual class 2).

B. STEP REPRESENTATION OF THE ERROR MATRIX
In the linear representation without redundancies of the unit
error matrix (Fig. 16) let us focus on a particular class,
for instance, class 2 as this is the class obtaining the worst
classification results. The row of the matrix corresponding to
this class can be represented as in Fig. 17.

Recalling that the row values in the error matrix are
eij = mij,∀j 6= i, the sum of this values is∑

j6=i

eij = eii = mi − mii. (18)

As eij = εijmi, this equation can be rewritten as∑
j6=i

εij =
1
mi

∑
j6=i

eij =
1
mi
(mi − mii) = 1−

mii
mi
, (19)

which is the sum of the values in Fig. 17.
The term mii/mi is usually denominated the True Positive

Rate of the i-th class (TPRi), also known as Sensitivity or
Recall. Its complementary, that is 1− TPRi, it is called False
Negative Rate (FNRi) or Miss Rate. Then it can be said that
the sum of values in Fig. 17 is∑

j6=i

εij = FNRi. (20)

To visualize this value as the area under the line in Fig. 17,
it is better to transform the linear representation of the error

FIGURE 18. Step representation without redundancies of the unit error
matrix corresponding to the classification of the MNIST testing dataset
(actual class 2). The dashed green line is the equivalent linear
representation. The dashed blue line is the cumulative area.

matrix in a step representation, as it is depicted in Fig. 18.
There, each non-redundant value of the error matrix for the
i-th class is represented as a step of unit width. The linear
equivalent representation is also drawn as a dashed line.

Considering the unit width of each step, the area under the
step line is

Ai =
∑
j6=i

Aij =
∑
j6=i

(1 · εij) =
∑
j6=i

εij = FNRi. (21)

The cumulative values of these areas are also drawn in the
graphic (dashed blue line).

C. POLAR REPRESENTATION OF THE ERROR MATRIX
The visualization of the error matrix row for class 2 (linearly
represented in Fig. 17), can be redrawn in a radial shape. For
this purpose,C−1 radii are sketched, each one corresponding
to a non-redundant element of the i-th row in the error matrix.
The k-th non-redundant element is represented by a line at an
angle (respect to the horizontal)

ϕk =
2πk
C − 1

. (22)

Then the angular width corresponding to each class is

1ϕ =
2π

C − 1
. (23)

The result of this plot is depicted in Fig. 19. It must be noted
again that the labels in the outermost circle do not indicate
the estimated class but the indices to the estimated class.

To make the resulting area meaningful, it is better to
transform the radial representation of the error matrix into
a representation by arcs, as shown in Fig. 20. In this plot,
which can be denominated the sectorial or pie representation,
each non-redundant value of the error matrix for the i-th
class is represented by a circular sector of constant angular
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FIGURE 19. Radial representation without redundancies of the unit error
matrix corresponding to the classification of the MNIST testing dataset
(actual class 2).

width, 1ϕ. The dashed line represents the equivalent radial
representation. The area inside the resulting plot is

Ai =
∑
j6=i

Aij =
∑
j6=i

(
1ϕ · εij

)
=

∑
j6=i

(
2π

C − 1
· εij

)
=

2π
C − 1

∑
j6=i

εij =
2π

C − 1
FNRi. (24)

It can be seen that this area is proportional to the miss rate.

D. CONFUSION STAR
In the radial (Fig. 19) and sectorial (Fig. 20) plots discussed
in the previous subsection, the representation of a single
row of the error matrix have been addressed. To extend this
visualization to the whole matrix, one plot for each actual
class can be drawn, using different colors to distinguish them.
The resulting graphic is depicted in Fig. 21.

FIGURE 20. Sectorial representation without redundancies of the unit
error matrix corresponding to the classification of the MNIST testing
dataset (actual class 2). The dashed line is the equivalent radial
representation.

FIGURE 21. Sectorial representation without redundancies of the unit
error matrix corresponding to the classification of the MNIST testing
dataset. Each color represents the results for an actual class (row of the
error matrix).

Reading this plot is not an easy task as the C lines are
overlapped. An alternative to improve its readability is to
divide the circle in C regions, each one corresponding to an
actual class (a row of the error matrix). Then, each region is
again divided into C − 1 sectors, one for each column once
the redundant eii element is removed.

If the C regions have the same size a balanced represen-
tation is obtained where the angular separation between two
radii is

1ϕ =
2π

C · (C − 1)
. (25)

The so obtained star-like result is depicted in Fig. 22.

FIGURE 22. Balanced confusion star corresponding to the classification
of the MNIST testing dataset.

This shape justifies naming this representation as the con-
fusion star. It must be noted that the gray labels in the
outermost circle do not indicate the estimated classes but the
indices to these classes once the redundant elements eii have
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been removed. In [39] a similar although simpler polygonal
solution is proposed with the name of cobweb.

E. CONFUSION GEAR
The confusion star has been defined based on the error matrix.
An alternative election is to use the classification hits instead
of the errors. So, the classification results of the instances
belonging to the i-th class, summarized in the i-th row of
the confusion matrix CM i, are now transformed in the vector
HM i ≡

[
wi1 wi2 . . . wiC

]
, whose elements are defined as

wii = mii and wij = mi − mij,∀j 6= i. For a perfect
classification wij = mi,∀j. The matrix HM = {wij} is called
the hit matrix of the classifier.

The i-th row of this matrix can also be formulated in terms
of the ratio over the total number of instances belonging to
the i-th class, HM i =

[
ψi1mi ψi2mi . . . ψiCmi

]
, where the

ratio ψij = wij/mi. The matrix 9 = {ψij} is called the unit
hit matrix.

To represent this matrix, a procedure similar to that used in
the representation of the error matrix is followed: the circle is
divided into C regions (one for class) and then each region is
again divided into C − 1 sectors, one for each column once
the redundant wii element is removed. If the C regions have
the same size, a balanced representation of the hit matrix is
obtained as in Fig. 23. The resemblance of this graph to a gear
is used to refer to it as the confusion gear.

Recalling that the row values in the hit matrix are wij =
mi − mij,∀j 6= i, the sum of these values is∑

j6=i

wij =
∑
j6=i

mi − mij = (C − 1)mi −
∑
j6=i

mij. (26)

Considering that

C∑
j=1

mij = mii +
∑
j6=i

mij = mi, (27)

then ∑
j6=i

mij = mi − mii, (28)

and substituting this result in (26), it is obtained that∑
j6=i

wij = (C − 2)mi + mii. (29)

As ψij = wij/mi, this equation can be rewritten as∑
j6=i

ψij =
1
mi

∑
j6=i

wij = (C − 2)+
mii
mi
. (30)

Recalling that the termmii/mi is the True Positive Rate of the
i-th class (TPRi), (30) can finally be expressed as∑

j6=i

ψij = C − 2+ TPRi. (31)

FIGURE 23. Balanced confusion gear corresponding to the classification
of the MNIST testing dataset.

V. DISCUSSION
A. IMBALANCED CONFUSION STAR AND GEAR
To obtain the balanced confusion star (Fig. 22) and gear
(Fig. 23), the circle was divided into C equal-sized regions.
A different imbalanced approach is also possible using
regions whose sizes are proportional to the number of
instances belonging to each class. The region corresponding
to the i-th class spans an angle of

βi = 2π
mi
m
, (32)

and the angular separation between two radii is

1ϕi =
2πmi

m (C − 1)
. (33)

As the classes in theMNIST dataset are barely imbalanced,
the reduced Abalone dataset is used in this case. The balanced
confusion star is depicted in Fig. 24, while the corresponding
imbalanced version is shown in Fig. 25.

FIGURE 24. Balanced confusion star corresponding to the classification
of the reduced abalone dataset.
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FIGURE 25. Imbalanced confusion star corresponding to the classification
of the reduced abalone dataset.

In the imbalanced star it can be noted that, for example,
the region corresponding to class 9 (with 138 instances)
is remarkably wider than that corresponding to class 4
(with 11 instances).

B. AREAS OF THE CONFUSION STAR AND GEAR
Intuitively it can be seen that the area enclosed by the confu-
sion star is a metric of the classifier’s performance: the larger
the area, the worse the classifier. The opposite statement can
be affirmed for the confusion gear: the larger the area, the
better the classifier. So, analyzing these areas can be useful
as their use as alternative classification metrics.

Let us consider a balanced confusion star where the
enclosed area is the sum of the area of each sector Aij, that
is,

A =
C∑
i=1

∑
j6=i

Aij

 = C∑
i=1

∑
j6=i

(
1ϕ · εij

) . (34)

Recalling (25)

A =
C∑
i=1

∑
j6=i

(
2π

C · (C − 1)
· εij

) . (35)

A =
C∑
i=1

 2π
C · (C − 1)

∑
j6=i

εij

 . (36)

Considering (20)

A =
2π

(C − 1)
·
1
C

C∑
i=1

FNRi =
2π

C − 1
FNR. (37)

The ratio of this area to the total area of the circle is called
the Internal Area Ratio (IAR) and is defined as

IAR ≡
A
2π
=

FNR
C − 1

, (38)

that is, a value proportional to the multiclass miss rate (FNR).
For binary classification (C = 2), IAR = FNR.

Focusing on the area outside the confusion star, an analo-
gous External Area Ratio (EAR) can be defined as

EAR ≡ 1− IAR = 1−
FNR
C − 1

=
C − 1− FNR

C − 1
. (39)

Recalling that FNR = 1− TPR it can be written that

EAR =
C − 1− (1− TPR)

C − 1
=
C − 2+ TPR

C − 1
. (40)

Considering now the imbalanced confusion star, the
enclosed area is

A =
C∑
i=1

∑
j6=i

Aij

 = C∑
i=1

∑
j6=i

(
1ϕi · εij

) . (41)

Recalling (33)

A =
C∑
i=1

∑
j6=i

(
2πmi

m (C − 1)
· εij

) . (42)

A =
C∑
i=1

 2π
m (C − 1)

∑
j6=i

miεij

 . (43)

Since eij = miεij, this equation can be rewritten as

A =
2π

m (C − 1)

C∑
i=1

∑
j6=i

eij. (44)

Recalling (18)

A =
2π

C − 1
·
1
m

C∑
i=1

(mi − mii) . (45)

A =
2π

C − 1

(
1
m

C∑
i=1

mi −
1
m

C∑
i=1

mii

)
. (46)

Since
C∑
i=1

mi = m,

A =
2π

C − 1

(
1−

1
m

C∑
i=1

mii

)
. (47)

Two of the most common classification performance met-
rics are the accuracy, defined as

ACC ≡
1
m

C∑
i=1

mii, (48)

and the error rate ER ≡ 1− ACC . Substituting these expres-
sions in (47) yields

A =
2π

C − 1
(1− ACC) =

2π
C − 1

ER. (49)

The Internal Area Ratio (IAR) is then

IAR ≡
A
2π
=

ER
C − 1

, (50)

that is, a value proportional to the multiclass error rate (ER).
For binary classification (C = 2), IAR = ER.
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FIGURE 26. Relationship between the internal area ratio (IAR) and the accuracy (ACC) for the imbalanced confusion gear:
linear dependency for a single dataset (left) and nonlinear relation for different datasets (variable number of classes, right).

TABLE 3. Summary of areas: Internal and external area ratios for the
confusion star and gear.

Regarding now the confusion gear, similar expressions can
be derived for its internal and external areas. All these results
are summarized in TABLE 3. From the previous results it
can be seen that the areas in the confusion star and gear, are
directly related to classical performance metrics. For exam-
ple, the imbalanced confusion gear has an internal area lin-
early proportional to the accuracy (ACC), while the external
area is linearly proportional to the error rate. So these areas
can be considered a visual representation of the classification
performance.

However, the relation among areas and classical metrics
has to be carefully considered. While this relation is lin-
ear for a certain dataset (a constant number of classes C),
it becomes nonlinear if the classification performance is ana-
lyzed through different datasets. The relationship between
the IAR and the ACC for the imbalanced confusion gear is
depicted in Fig. 26, both for a single dataset (left) and for
different datasets (right).

C. LOGARITHMIC CONFUSION STAR
Both the balanced (Fig. 22) and the imbalanced (Fig. 24)
confusion stars do not properly visualize the values of the
error matrix when they are very small. To overcome this prob-
lem and to accommodate in a single graphic very different
error values, the length of the radii are made proportional

FIGURE 27. Balanced confusion star corresponding to the classification
of the MNIST testing dataset (logarithmic scale). The radii values 0.1, 1,
10 and 100, correspond to percentage of errors in logarithmic scale.

to the logarithm of the errors. The result obtained using this
procedure is depicted in Fig. 27.

In this graphic the center of the circle does not correspond
to a null error but to an arbitrarily chosen small value (0.01 in
the graphic).

In general, hit matrices do not have very small values
(usually greater than 50%), so the use of the logarithmic scale
is not required.

D. CONFUSION STARS FOR MANY CLASSES
As the number of classes increases, any graphic representa-
tion of the confusion matrix becomes less clear. For instance,
the colored grid corresponding to the classification of the
CIFAR-100 dataset is shown in Fig. 28. In that graphic is
very difficult to identify in which classes the classifier is
underperforming and should be improved.
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FIGURE 28. Colored grid corresponding to the classification of the
CIFAR-100 dataset.

FIGURE 29. Confusion star corresponding to the classification of the
CIFAR-100 dataset.

If the classifier performance is visualized using the confu-
sion star, the result is depicted in Fig. 29. In this plot is easier
to identify that, for example, the classifier is having problems
to correctly identify instances of class 47 and 52. Therefore,
although the confusion star becomes less clear as the number
classes increases, it is a better representation than the classical
colored grid.

E. SEQUENCE OF CONFUSION STARS
Following the evolution of a certain feature or metric is a
common task in science and engineering [40]. In the field of
classification algorithms there are some applications where
it is convenient to visualize the performance, not of a sin-
gle classifier, but of a sequence of classifiers, comparing
their results depending on the value of a certain parameter
or hyperparameter. Even some tools has been proposed to
visualize the evolution of the classification process either at
the instance level [36] or the confusion matrix level [41].

FIGURE 30. Learning curve of the MNIST dataset using a neural network
with a single 128-neurons hidden layer.

Also the confusion stars and gears can be used for this
purpose. To show how it can be done let us consider again the
MNIST dataset and the same neural network classifier with a
single hidden layer and a sigmoid as the activation function.
For this analysis the number of neurons in the hidden layer
is increased from 8 to 128 and the number of training epochs
rises from 5 to 100. The objective of these improvements is
to obtain a wider range of classification performances.

To determine the impact of the number of training instances
on the classification performance, a variable number of
instances to train the network are used, observing the accu-
racy of the classification in each case. The result is usually
known as the learning curve, depicted in Fig. 30.
This representation properly summarizes the performance

of a classifier in a single metric, the accuracy in this example.
However, it is possible to exploit the descriptive power of the
confusion star for a better and more detailed insight of the
evolution of the classification performance. Indeed, each dot
in the learning curve has a corresponding confusion matrix
that can be properly visualized as a confusion star.

Let us consider, for example, the significant increasing in
the accuracy occurring around 500 training instances. While
the learning curve does not detail what this improvement
is due to or how it is distributed in each of the classes,
an analysis of the confusion stars in accuracy, before and after
the jump, can shed more light on the question. In Fig. 31,
the confusion stars corresponding to a point with 502 sam-
ples (before the jump, accuracy of 38%) and another point
with 610 samples (after the jump, accuracy of 67%) are
shown. Quite important improvements (smaller errors) can
be observed in, for example, the 0 classified as a 2, the
2 classified as a 1, and so on. In other words, the represen-
tation of the confusion matrix not only informs us of the
overall improvement of the classifier, but also of how this
improvement is distributed.

A similar representation can also be obtained using the
confusion gear.
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FIGURE 31. Confusion stars (in logarithmic scale) corresponding to a pair of points before and after the
first jump in the learning curve: 502 instances (left; accuracy of 38.13%) and 610 instances
(right; accuracy of 67.23%).

FIGURE 32. Sequence of logarithmic confusion stars corresponding to several point of the learning curve.

The application of the confusion stars to compare two
points of the learning curve can be extended to a sequence
of points, drawing a grid of stars as it is shown in Fig. 32.
In that graphic, which resembles the concept of as small
multiple [42], can be seen that, for example, the problems
classifying instances of classes 4, 8 and 9 that shows the
classifiers trained with up to 1000 training instances, are
mostly solved once the 3000 instances barrier is overcome.
From this point on, a smooth and continuous improvement of
the classification results is obtained. The same information
can be obtained analyzing the corresponding confusion gears.

Representing a sequence of confusion matrices by a grid of
stars has an obvious limitation of space: the more matrices to

be represented, the smaller is the size of each star. To tackle
this problem, the sequence of confusion matrices can be rep-
resented generating a movie where each frame corresponds
to a single confusion matrix. An example of this video can be
seen in the online version of the paper (see also appendix).
In Fig. 33, an example of a frame of the movie is shown.

F. SUMMARY OF VISUALIZATION METHODS
Through the paper, up to 13 methods for visualizing clas-
sification performance have been described. Some of them
focus on classification scores of single instances while others
are interested on how the classifiers behave for the instances
of certain classes. On the other hand, some visualization
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TABLE 4. Summary of visualization methods.

FIGURE 33. Frame of the movie generated to visualize the learning
process: learning curve drawn up to 1000 training instances (right), and
its corresponding confusion star in logarithmic scale (left).

methods are designed primarily for two classes (binary clas-
sification) while others can represent multiple classes.

Visualization methods can be featured by how they repre-
sent the different classes (actual or estimated) and the classi-
fication performance. Some of them use color to convey the
required information while others use geometric elements for
this purpose: X and/or Y axis position in rectangular plots,

radial and/or angular position in polar plots, length and/or
width of graphical elements, etc.

A summary of the visualization methods described in the
paper is shown in TABLE 4.

VI. CONCLUSION
This paper has reviewed several methods to visualize classifi-
cation results at different levels of detail: from those centered
on how a particular instance or set of instances are classified,
to those that summarize the classification performance in a
single metric.

A particular interest has been devoted to classification
results which are summarized in the form of a confusion
matrix, presenting the main procedures to visualize it from
the straightforward row-column matrix representation, with
colors indicating the value of each matrix cell, to more com-
plex and sophisticated graphics.

From this analysis, a new way of representing the informa-
tion conveyed by confusion matrices is proposed in the form
of a confusion star (focusing on the errors) or a confusion
gear (centered on the hits). The new visualization tool can be
employed to represent the original and possibly imbalanced
confusion matrix, or the balanced unit version of that matrix.
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The new tool successfully represents multiclass classifi-
cation results in the form of a radial plot. The traditional
way to represent confusionmatrix uses colors (and eventually
texts) to indicate the number of instances belonging to an
actual class that are classified to an estimated class. Instead,
confusion stars and gears use shapes to convey that informa-
tion. Changing colors by shapes significantly improves the
readability of the proposed graphics.

An additional property of the confusion stars and gears is
that the enclosed area provides information about the overall
classification performance. The relation of these areas to
standard classification metrics has also been derived.

Finally, it has also been shown that the new graphic tools
can usefully be employed to visualize the performances of a
sequence of classifiers.

APPENDIX
Supplementary materials can be found in the on line ver-
sion of the paper or they and can also be downloaded from
https://github.com/amalialuque/confusionstar. They contain:

1) Three Excel files with the confusionmatrices described
in Section II.A.

2) An Excel file with the sequence of confusion matrices
described in Section V.E.

3) A video file (in Graphics Interchange Format, GIF,
format) visualizing the learning process described in
Section V.E.

4) A Jupyter notebook, providing an implementation of
the functions required to plot a confusion matrix as a
confusion star (or confusion gears); and to generate a
video file visualizing a sequence of confusion matrices
in the form of confusion stars (or confusion gears).

Additionally, the algorithm that converts a confusion matrix
into a confusion star plot can be found as supplementary
material to the paper.
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