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to group objects into clusters so that each group contains objects that are more similar to
each other than to objects in other clusters. The evaluation of a clustering solution is a task
carried out through the application of validity indices. These indices measure the quality
of the solution and can be classified as either internal that calculate the quality of the
solution through the data of the clusters, or as external indices that measure the quality
by means of external information such as the class. Generally, indices from the literature
determine their optimal result through graphical representation, whose results could be
imprecisely interpreted. The aim of this paper is to present a new external validity index
based on the chi-squared statistical test named Chi Index, which presents accurate results

that require no further interpretation. Chi Index was analyzed using the clustering results
of 3 clustering methods in 47 public datasets. Results indicate a better hit rate and a lower
percentage of error against 15 external validity indices from the literature.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Clustering is one of the many techniques in data mining. Its goal is to partition unlabelled data into clusters where
instances within the same cluster are similar and instances grouped in other clusters are dissimilar to said clusters [1]. This
technique has been applied in many fields, such as biological sciences [2], medicine [3], energy [4], chemical [5].

There are numerous clustering methods, and in general, each method produces a different clustering solution. In certain
cases, the same method with different parameters could result in different solutions. The evaluation of the results is one of
the most important issues in cluster analysis. Measuring the quality of a clustering solution is as important as the clustering
method itself [6]. There exist clustering validity indices (CVI) that measure the quality of the solution, and these CVIs have
commonly been used in the literature [7-13].

These measures could be classified into either internal or external CVIs. Internal CVIs are based on how the instances
are distributed across the clusters by using the data by itself. When there is no external information, these kinds of indices
present the only option available for the evaluation of the clustering solution because they depend on certain properties
of the results, such as the compactness of the clusters or the separation between them. Compactness of clusters could be
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Fig. 1. Results of the CVIs from the literature for k = 2 to 10 number of clusters for zoo dataset whose optimal number of clusters is 7.

defined as the mean distance of separation between the instances within a cluster. Separation by itself is defined as the
distance between the instances of different clusters. These indices seek a high level of compactness within each cluster and
a considerable gap between clusters [14].

On the other hand, external indices use external information, such as class labels, to measure the quality of a clustering
solution. These kinds of indices verify the quality of the clustering result by comparing it with the ground truth partition. In
this case, the indices know in advance the optimal number of clusters for a dataset since ground truth holds this information
[15]. This paper focuses on these external CVIs. Generally, CVIs from the literature determine their optimal result with a local
minimum, a local maximum, or by following the elbow method [16-18], and the results could be imprecisely interpreted.

The purpose of this paper is to present an innovative external CVI based on the chi-squared statistical test, henceforth
named Chi Index, which presents the results accurately without the need for interpretation. The effectiveness of the new
index has been compared with 15 indices from the literature using 47 public datasets and 3 clustering methods from Spark
MLIib [19] which made it possible to use this index in big data environments.

The remainder of this paper is organized as follows. Section 2 discusses the literature of external CVIs. In Section 3, the
proposed new index is defined. Section 4.3 presents the experimental setup, the methodology followed and the results. The
paper ends with the conclusions and suggested future work in Section 5.

2. External indices

An external index evaluates a clustering result C by comparing it against the ground truth partition G. A taxonomy
of external indices could be established that depends on the criterion of how the clustering result and the ground truth
partition are compared [20]. These indices can be classified into set matching, pair-counting, and information theory.

- Set matching is the category which assumes that the instance label of every cluster has corresponding instances in said
cluster. Indices from the literature based on set matching include those known as purity [21], F-measure [22], Criterion H
[23], CSI [24], PSI [20], and Goodman-Kruskal [25].

« The criterion known as pair-counting is based on the comparison between the number of instances with the same label
and the cluster result. This category includes the Rand index [26], the adjusted Rand index [27], Jaccard |28], Fowlkes-
Mallows [29], Hubert Statistic [30], and Minkowski score [31].

- Indices based on information theory, such as entropy [21], variation of information [32], and mutual information [33], have
also been applied in the literature.

A list of the equations of these indices is given in Table 1. As mentioned above, the results that show these indices
need to be interpreted since each index indicates the optimal number following the rules of the local maximum, the local
minimum, or the “elbow method”. Figs. 1 and 2 illustrate two examples of the results for the CVIs from the literature
for zoo and gesture datasets from the UCI repository whose optimal number of clusters is 7 and 5, respectively. In Fig. 1,
it could be said that the CVIs follow a pattern, whereby the majority indicate point out the optimal number of clusters
to be 7 with a local maximum, although Goodman-Kruskal indicates the optimal by following the elbow method. This
figure shows that most of the CVIs also have a local maximum at 9, and this could be misleading in the cases when the
optimal number of clusters remains unknown in advance. Fig. 2 corresponds to a dataset whose optimal number of clusters
is 4; however, no index clearly shows the solution. The F-Measure, Jaccard, Fowlkes—-Mallows, and Hubert indices, which
indicate the optimal number with maximum values, all have a local maximum not only at 5 but also at 8. Furthermore, the
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Table 1

Equations of external clustering validity indices from the literature equations.

Preliminaries

Total elements in the dataset
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Pair-counting
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Information Theory

Entropy [42]
Variation of Information [24]

Mutual Information [2]
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Table 2

Three different distribution examples with 3 classes (A, B, C) and 3 clusters (1, 2, 3).

(a) Contingency table where chi-squared is

(b) Contingency table where chi-squared

(c) Contingency table in which the distribution of

0. reaches its maximum value. the instances could be found on a real scenario.
Cluster A B C Cluster A B C Cluster A B C
1 2 2 2 1 6 0 0 1 3 3 0
2 1 1 1 2 0 0 3 2 0 3 0
3 3 3 3 3 0 9 0 3 0 0 9
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Fig. 2. Results of the CVIs from the literature for k =2 to 10 number of clusters for knowledge dataset whose optimal number of clusters is 4.

Goodman-Kruskal index, which reaches its optimal number of clusters at the minimum value, has a low local minimum at
5 and at 8. Additionally, the Rand Index, following the elbow method, marks the optimal number at 5. In summary, CVIs
indices can be misleading due to the interpretation of its results.

In recent years, several studies that propose new external indices for clustering validation have been published in the
literature.

A new pair-counting index, which is based on an intuitive probabilistic approach, is employed to compare solutions that
may have a certain degree of overlap in [34]. This index was tested using four artificial datasets with 6 classes and 4 real
datasets from the UCI repository [35].

A new index was also presented in [36], but in this case, it is based on Max-Min distance between data points and
prior information. This external index could be classified in the category of set matching. The performance of this index was
compared with set matching and pair-counting indices using 6 artificial datasets and two real datasets also from the UCI
repository.

The authors of the work presented in [37], proposed a new index based on an ensemble of supervised classifiers. We
may classify this index as a pair-counting index. Fifty real datasets from the UCI repository were used for the experiments
and the results were compared with several internal indices.

A new pair-counting index for analytical comparisons was presented in [20]. It applies a correction for chance and nor-
malizes for each cluster separately. The experiments were carried out with artificial datasets with 3 classes and 6000 in-
stances in each dataset. This new index obtained better results than other external CVIs such as purity, adjusted rand index,
and mutual information.

In [10], other authors suggested a new set-matching index based on the conception of a degree of freedom that measures
the decision interval between two classes. This index measures the quality of the clustering by comparing it with internal
and set matching external indices. Fourteen real datasets were used to test the performance of the index.

Most of these clustering validation techniques are verified by comparing the clustering results with CVIs from the lit-
erature and by using synthetic datasets. This work strives to provide a reliable, and accurate CVI based on the chi-squared
statistical test as the basis for clustering analysis.

3. Proposed external clustering validity index based on the chi-squared test
3.1. Chi-squared

The Pearson chi-squared statistical test is a method that determines whether there exists a significant difference between
the expected values and the observed values in a distribution between two variables [38]. The following equation is applied
to verify this correlation:

xzzi . (my —Ey)”
ij

— (1)
where r is the number of rows, ¢ is the number of columns, n; is the observed value and E; is the expected value. E; is
given by
ng -n;

n

Ej= (2)
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Table 3
Contingency tables of Table 2¢ expressed in terms of relative frequencies.
(a) By relative frequencies per row. (b) By relative frequencies per column.
# A B C # A B C
1 50%  50% 0% 100% 1 100%  50% 0%
2 0% 100% 0% 100% 2 0% 50% 0%
3 0% 0% 100%  100% 3 0% 0% 100%

100%  100%  100%

where n is the total number of instances.

The x?2 value is employed to determine the suitability of the value through the significant interval. In this way, x?2
approaches to zero when the observed value resembles the expected value. Therefore, if the observed values are similar to
the mean, x?2 indicates that there is no dependence between the two variables that are being analysed.

3.2. Motivation

External validity clustering indices measure the quality of the clustering result by focusing on a ground truth. Our Chi
Index may be considered a set-matching measure since it matches the clusters, and measures the similarity between the
clustering and the ground truth, which is given by the maximum value that Chi Index could reach. In addition, the Chi Index
is normalized in order to be influenced neither by the number of clusters nor the number of classes. The strategy of the Chi
Index is, in general terms, to set the instances of the same class in separate clusters in such a way that the instances which
belong to the same class are grouped together as much as possible. In addition, the Chi Index aims to define each cluster by
a single class as far as possible. Therefore, the Chi Index looks for the clustering solution that, on the one hand, separates
the classes into clusters, and, on the other hand, splits the clusters so that each one can be identified by a class.

The chi-squared test measures the difference between the expected frequencies and the observed frequencies in a dis-
tribution. The lower the chi-squared value, the more similar the expected values are to the observed values, that is, if the
observed values of the distribution are closer to the mean, then the chi-squared value approaches zero.

Table 2 presents 3 contingency matrices for a distribution with 3 classes (A, B, C) and 3 clusters (1, 2, 3). The values in
Table 2a are the same for all the clusters within the classes; in this case, the chi-squared value is 0. The Chi Index seeks
exactly the opposite scenario, where the clusters are formed by only one class and where each class is only presented in
one cluster, as illustrated in Table 2b. Table 2c presents a distribution where cluster 1 is formed of instances of classes A
and B, cluster 2 is composed of instances of only class B, and cluster 3 is consisted of instances from class C.

In order to ensure that each class is only presented in one cluster and each cluster has only one class, the values of the
contingency matrix have to be expressed in relative terms. To this end, the absolute frequency contingency table has to be
transformed into 2 contingency matrices, one for the relative frequencies per row, and the other for the relative frequencies
per column. Hence, in the first contingency matrix, the sum of the rows is 100%, and in the second contingency matrix, the
sum of the columns is also 100%.

Taking Table 2c as an example, Table 3a and b are built transforming the absolute frequencies into relative frequencies.
As mentioned before, the tables are expressed in relative terms to the total of rows and columns.

In this way, Table 3a indicates that cluster 1 is evenly split between classes A and B, cluster 2 is composed of instances
from class 2, and cluster 3 has instances only from class 3. Alternatively, Table 3b shows that the instances from class A are
only in the cluster 1, the instances from class B are evenly split between clusters 1 and 2, and the instances from class C
are only in cluster 3.

In addition, the Chi Index has an accurate result that needs no interpretation. If we analysed the results for the Chi
Index iterating over the number of clusters k, we would obtain two curves, one for each contingency matrix. In general, the
clusters tend to become more specialized as the number of clusters increases, that is, there is a higher percentage of points
of the same class in each cluster which will increase the chi-squared value for the matrix per row. On the other hand, when
the records of each class are distributed across a greater number of clusters, then the value of the chi-square per column
will tend to decrease. Our goal is to simultaneously maximize both values by encouraging their tendency to diverge. The
first value where both series are cut off (or the distance between them is minimized as we cannot be sure wheter they will
be crossed) sets the optimal number of clusters in our proposal. Henceforth, the Chi Index identifies the optimal solution
as the minimum difference between the chi-squared values of the curves, thereby rendering it unnecessary to interpret the
result thanks to its accuracy.

3.3. Chi Index toy example

Fig. 3 illustrates the spatial distribution of the instances of our toy example dataset with 24 instances and 3 classes. Each
dot represents an instance and its colour defines the class to which it belongs.

Before applying a clustering method to this dataset, the number of clusters has to be previously determined. Fig. 4 shows
the clustering solution from k = 2 to 4. It is difficult to determine which clustering solution is the best at a glance.
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(a) Solution for k = 2. (b) Solution for k = 3. (c) Solution for & — 4.

Fig. 4. Clustering solution representation for k = 2 to 4.

To this end, an index that measures the quality of each clustering solution and selects the best one is required. The Chi
Index measures the quality of the clustering based on the chi-squared test.

If we focus on the toy example, Fig. 4a represents the clustering solution for k = 2. This figure shows that cluster 1 has 2
instances from the red class, 8 green instances, and 6 blue instances, while cluster 2 has 6 red instances, 2 greens instances,
and none from blue class. This information is shown in a contingency table in Table 4a, where the clusters are represented
by rows, and the classes red, green, and blue are R, G, and B respectively. This table could be analysed in two ways: by
rows, where we can conclude that cluster 1 is mainly composed of green instances, but it also has red and blue instances.
However, cluster 2 is only composed of red and green instances.; by columns, where blue instances are only in cluster 1,
red and green instances are distributed in both clusters.

This analysis is illustrated in Table 4d, where the relative frequency of the instances are expressed in relation to the total
of rows (left-side) and columns (right-side).

A complete representation of each clustering solutions from k = 2 to 4 is presented in Table 4 with a pair of tables: the
contingency table with the absolute frequency, and the contingency tables with relative values by rows and by columns.

Once we have the contingency tables with the relative values, we need to obtain the chi-square value of these tables for
each iteration. In our toy example, the Chi Index has been calculated for the clustering solutions with k = 2 to 4. The goal
is to maximize the values of the Chi Index in both tables and minimize the difference between them. Thus, the Chi Index
result will ensure that the observed and expected values differ as much as possible, thereby keeping the solution with the
highest percentage of classes in each cluster. Eqs. (3) and (4) detail how the chi square value by row and by column are
calculated respectively for k = 2.

13-8)" (50-2) (37-%)° (75-%8) (25-2)° (0-%)°
xfowk=z=( 882) 2 752) i 372) W 882) 4 752) 2! 372) =89.01 3)
2 2 2 2 2 2

)2
2 =139.40 (4)

25-25)° (80— 25)*  (100- %)’ (715-%)° (20-%)" (0-%
xcommnk:f( @3) A @3) M @3) M %3) A $3) M -

3 3 3 3 3 3

Table 5 shows the Chi Index results for our toy example. Chi Index reaches its maximum value at k = 3, therefore,
we may conclude that the optimal number of clusters that achieved the best clustering solution with this class is with 3
clusters. It should be highlighted that the solution is reached by taking the maximum value of all the solutions because it
is the one that achieve the largest value of chi values with both components, and also achieved the minimum difference
between them.
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Table 4

Toy example contingency tables in which clusters are represented by the rows, and the classes are represented by R (red), G (green), and
B(blue). The tables on the left are the contingency tables in absolute values, while tables on the right belongs to the contingency tables

with relative values taking as total the sum of the rows (left-side) and the sum of the columns (right-side).

# R G B
# R G B 110 2 5|7
#|R G B 110 2 6] 8 214 1 015
112 8 6116 216 2 0] 8 312 1 0] 3
216 2 0] 8 312 6 0] 8 412 6 119
8§ 10 6|24 8 10 6 |24 8 10 6 |24
(a) k=2. (b) k= 3. (c) k=4.
By row By column
#| R G B # R G B
1] 13% 50% 37% | 100% 1 25%  80% 100% | 205%
2 | % 25% 0% | 100% 2 %  20% 0% | 95%
8% 5% 37% | 200% 100% 100% 100% | 300%
(d) Relative contingency tables for k = 2.
By row By column
#| R G B # R G B
1 0%  26% 75% | 100% 1 0%  20% 100% | 120%
2| % 25% 0% | 100% 2 %%  20% 0% | 95%
3122%  6™% 11% | 100% 3 25%  60% 0% | 85%
97% 117% 86% | 300% 100% 100% 100% | 300%
(e) Relative contingency tables for k = 3.
By row By column
# R G B # R G B
1 0% 29% 71% | 100% 1 0%  20%  83% | 103%
2 80%  20% 0% | 100% 2 50%  10% 0% | 60%
31 67% 33% 0% | 100% 3 25% 10% 0% | 35%
4 22%  67% 11% | 100% 4 25%  60% 17% | 102%
169% 149% 82% | 400% 100% 100% 100% | 300%

(f) Relative contingency tables for k = 4.

3.4. Chi Index definition

The Chi Index is defined

Table 5
Chi index solutions for k = 2 to 4.

k XTZOW sznlumn szuwmax Xczalumnmax Chi Index (k)
2 89.01 13940 200 300 0.890
3 27750 29938 600 600 0.925
4 30405 23721 800 600 0.760

as:

chiindex (k) = rownorm (k) + COlnorm (k) — [T0Wnorm (k) — COlnorm (k)|

where

TOWnorm (k ) = 2
TOWmax

Xiow (K)
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and n; is the number of elements from the cluster i in the class j, n;. is the total number of elements in cluster i, n ;
corresponds to the total number of elements in class j, and n is the total of elements in the dataset.

5 _J100-r-(r-1) r=c

TOWnmax = {100.r~ (c-1) r>c (12)
5 _J100-c-(r—-1) r=<c
Xcolumnypg, = {]00 c-(c—-1) r>c (13)

where r and c are the number of rows and columns respectively.
Chi index takes a value in [0, 2], where 0 is given by the worst clustering solution, and 2 is the best value that Chi Index
can achieve. Hence, the optimal k is given by:

k* = argmax chiindex (k) (14)
k

4. Experimental results

This section describes the experimental study carried out with the aim of testing the proposed Chi Index over a variety
of artificial datasets, and 47 public datasets in terms of certain benchmark evaluation criteria.

This section is composed of Section 4.1 that includes the experiments with the synthetic datasets. Section 4.2 de-
fines the experimental design. Section 4.3 presents the results of the experiments carried out with the public datasets.
Section 4.3.1 includes a statistical analysis to test the effectiveness of our proposed index for the public datasets. Finally, a
discussion of the results is included in Section 4.3.2.

4.1. Chi Index validation

This section includes experimental results for artificial datasets to evaluate the behaviour of Chi Index on diverse cluster-
ing solutions based on the work published in [20]. In this case, clustering solutions are generated and compared with the
ground truth (G). The results include the 15 CVIs from the state-of-art (Section 2) and our proposed Chi Index. Figs. 5-8 are
composed of four subfigures:

« Subfigure (a) is a graphic representation of the generated clustering solutions (S1, S2, S3, ...) with G.

- Subfigures (b,c,d) are plots of the CVI results for each of the solutions. The y-axis represents the similarity in percentage,
while the x-axis depends on a particular feature of each dataset. Detailed explanations are presented in their respective
paragraphs.

The similarity is defined as the affinity measured with the percentage of a clustering solution S, compared with the
ground truth G. It is expressed in relative terms to the best solution that could be found in the interval of the study. Its
value lies in the range [0,1], whereby 0 indicates the worst result, and 1 indicates the solution that perfectly fits G.

Fig. 5 shows the results for clustering solutions with random partitions. The generated solutions go from 1 class up to
10. Fig. 5a shows the representation of G and the different clustering solutions from 1 class (S1) up to 5 classes (S5). In
Figs. 5b-d, it is worth noting that the Chi Index, entropy, mutual information, adjusted rand index, Hubert, and PSI had its
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Fig. 5. Results for random generated clustering solution from k = 1 to 10 number of clusters.

values at zero. Mutual Information index (Fig. 5d) and the Rand Index (Fig. 5c), could imply that the optimal number is 3
because their curves converge. In addition, PSI had a higher value at 3, that may indicate that is the better solution, but it
was with a value under 0.1.

Fig. 6 shows the results for clustering solutions where the instances of the first cluster are increased in each dataset until
completion. In Fig. 6a, S1 has the same distribution as G, and hence this is the best solution for all the indices. Figs. 6b-d
show the distribution of the CVIs in these datasets. The x-axis represents the percentage of the instances of the first cluster,
which ranges from 33% to 100%. It can be observed that all the indices presents a similar behaviour. Their best values are
in the dataset that is equal to G and these values decrease until the last dataset whose all instances belong to cluster 1. We
find that the Chi Index marks its optimal solution in S1 in a similar way than the rest of the indices, but Chi Index descends
more linear than the rest of its competitors.

Fig. 7 shows the results for the solutions where the central cluster (in blue) is increased. Fig. 7a shows how the central
cluster is increased on each solution where S1 is identical to G. The results are similar to the previous ones. Figs. 7b-d
show that the indices behave similarly, since the best solution is S1, and these indices decrease until the central cluster
fills the whole dataset. This result arises from the fact that our index is comparing the distribution of the points across
the clusters and, when the dataset is composed of only 1 cluster, the index reaches the lowest value compared with the
remaining solutions. We had a comparable situation for the indices of Mutual Information and Entropy (Fig. 7b), Variation
of information (Fig. 7c), PSI, and Minkowski (Fig. 7d). It also should be highlighted that Chi Index reached similar results
than PSI in this clustering solution.

Fig. 8 displays the results of the indices for solutions where the number of incorrect instance labels regularly increases.
As seen in Fig. 8a, S1 is also identical to G, and it can be observed that on each iteration some of the instances are incorrectly
labelled and then this continues until all the instances are incorrectly labelled. Figs. 8b-d show that the Chi Index behaves
in a similar way to the rest of the indices during the different datasets. The curves of the indices generally decreases from
1 until 0 in the dataset whose label are 100% incorrect labelled. As it can be seen, the Chi Index and PSI has a near linear
since they begin in 1 and decrease to 0. In the case of the F-Measure, the purity, the CSI, and the CH, they start in 1 but
they finish at 0.4. The rest of the indices also obtain a similarity of zero in the last dataset but do not describe a near linear
behaviour.
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Fig. 6. Results for generated clustering solution where the first cluster increases in each dataset until it fills the whole dataset.

4.2. Experimental design

To generate the clustering solutions, 3 clustering methods from Spark MLIib [19] were applied: k-means, bisecting k-
means, and Gaussian mixture.

Each dataset, described in Section 4.2.1, was executed with each of these 3 clustering methods. In addition, these clus-
tering methods require the number of clusters (k) into which the dataset is going to be partitioned. The k value was set in
the range of [D; — 10, D; + 10], where Dy, is the correct number of clusters of each dataset and k > 1. The number of classes
of the datasets was considered as the optimal number of clusters in the same way as carried out in [6,10,20,34,37,39]. With
this configuration, we obtained a total of 2820 clustering solutions to test the CVIs. Each clustering solution was compared
with the ground truth partition and was then evaluated by the 15 external CVIs described in Section 2. Our new proposed
index was also applied in order to compare the results.

4.2.1. Datasets

Table 6 presents the datasets used for the experiments and provides the following attributes for each dataset: name;
number of classes to be used as the optimal number of clusters; number of features; and the number of instances. All
these datasets were downloaded from the UCI machine-learning repository [35]. Note that due to the size of some of the
datasets, such as airlines, higgs, poker, and susy, this could be considered big data. It should be borne in mind that all these
datasets included the class information but were not involved in the clustering process. Class information was used in only
the clustering analysis stage.

4.2.2. Validity index effectiveness

The effectiveness of a CVI measures its capacity to achieve the most coinciding matches while taking a benchmark from
different clustering solutions into account. A clustering algorithm and different datasets with a ground truth solution are
required in this process. The first step involces applying the clustering algorithm to the datasets and obtaining the multiple
solutions. The second step evaluates the solutions with the CVIs. The third step compares the CVI results and selects the
one with the highest score.
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Fig. 7. Results for generated clustering solution where the central clusters are increasing step by step until the dataset is completed.

The effectiveness of a CVI depends on how often it takes the correct clustering result in accordance with the chosen
criterion. Therefore, the effectiveness is given by counting how many times the index has hit the correct number of clusters.
The benchmark employed to make the comparison between the indices includes the following values:

 Average number of hits: this value is given by the mean of the number of times that the index correctly predicted the
optimal number of clusters per dataset.

« Average squared error: this is calculated as the average of the squared distances between the prediction of the index I;
and the correct number n;:

Yo ddm)?

E _ ien 1
rror — (15)

where n is the total number of datasets.

4.2.3. Statistical test

Finally, a statistical framework was applied to test the performance of the indices for the public datasets. The non-
parametric Friedman test and Holm post-hoc procedure were chosen to statistically validate the significant differences in the
mean ranks of the corresponding p-values reached. This statistical analysis was carried out using the open-source platform
StatService [40].

The Friedman test is a non-parametric statistical test that evaluates the differences between more than two related
sample means [41]. In our case, the related samples were the CVIs to be compared. The lower the p-value, the better the
position in the ranking in the Friedman test.

Average ranks for each index provide an objective comparison. The Friedman test could check whether the average ranks
were significantly different from the mean rank expected under the null hypothesis. After checking that the measured av-
erage ranks are significantly different with an o = 0.05, and provided that the Friedman test rejected the null hypothesis,
then a post-hoc test could proceed to evaluate the relative performance of the studied CVIs against a control index (that
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Fig. 8. Results for generated clustering solution where the number of incorrectly labelled objects increase proportionally between the clusters.

with the best average rank) thereby avoiding any family-wise errors. This task will be carried out with the Holm step-down
procedure by testing hypotheses sequentially ordered in terms of their significance [42].

4.3. Experimental results

This section presents the results obtained with the public datasets. Fig. 9a shows the average number of hits for each
CVI in ascending order. It should be highlighted that the Chi Index achieves the highest rate of hits (58%) with a significant
margin with its competitors. Indices from the literature had similar rates of hits, ranging from 43% in the case of the F-
Measure to 36% for Mutual Information.

On the other hand, Fig. 9b presents the average squared error per index. It is worth noting that the Chi Index obtained the
lowest percentage of error. This means that the Chi Index hits the optimal number of clusters most of the times and,when
it is in error, it is still not far from the solution.

Fig. 10 presents the heatmaps of the distances to the optimal number of clusters of each CVI (rows) for each dataset
(columns) represented by the numbers given in Table 6. In these figures, hits are highlighted in green and the farthest
results from the solution are graded from white to red. Fig. 10a-c correspond to the results for the k-means, the bisecting
k-means and Gaussian mixture methods, respectively.

As can be observed, the Chi Index had a higher rate of green cells than the rest of the CVIs. Although in certain datasets
no CVI hit the correct number of clusters, in these cases, the Chi Index remained closer to the solution than its competitors.

Fig. 11 illustrates the results of Chi Index for two datasets, zoo and knowledge, whose optimal number of clusters are
7 and 4, respectively. Fig. 11a shows how both curves are crossed at k = 7. Moreover, Fig. 11b presents the results for the
dataset that has 4 clusters. As can be observed, the curves for the Chi Index by rows and by columns are cut off between
k =4 and k = 5. These results need no interpretation because the solution is given directly by the index.

4.3.1. Statistical analysis

The Friedman test rankings for every CVI are shown in Table 7a. The ranking was carried out with the results shown
in Fig. 10. As previously indicated, the best result for a ranking was 1 and the worst was the last position. As the ranking
shows, the Chi Index was in the first position with 6.415. The next index in the ranking was the PSI with a difference of more



J-M. Luna-Romera, M. Martinez-Ballesteros and J. Garcia-Gutiérrez et al./Information Sciences 487 (2019) 1-17 13

HITS
70%
60%
50%
40%
30%
20%
10%
0%
NS @ QO & N ST T NS S N
S S FFNFTFTSF C TSP
& & & & &9 L
&V NS Q SR &
N < <L & &
&L S SR
PR &L O &
> % & S
2 &
R

(a) Average number of hits by CVIL.

ERROR
12

10

& 2N & N S o
S ¢ ¢ & & RO &L O S PG A S
S & & E N X 3
s S Q¢ & G & ¢ &L
L @ R\ & & & 9 «©Q
4§ S 3& §@ (§S
é§b 69 S &S
S & &
&

(b) Average squared error distance by CVL.

Fig. 9. Benchmark results for the public datasets.

than 1 point with respect to the Chi Index. From this index onwards there are only 0.5 points of difference, and hence, we
may conclude that there is a dissimilarity between chi and the indices from the literature. The lowest value for the ranking
was 6.415, and the rest ranged from 7.109 to 9.517. Such high values were presented because there were numerous ties in
the results, and, in these cases, Friedman establishes the average of the sum of the ranking values of all the competitors.
Therefore, for the dataset where all the indices hit the optimal number, Friedman set the ranking at 8.

The statistic for Friedman was 54.694, distributed according to a chi-squared distribution with 15 degrees of freedom.
The p-value for Friedman was 0.000, which is lower than 0.05. Therefore, significant differences do exist and it rejected the
null hypothesis that they all behaved in a similar way with a level of significance of o = 0.05.

A post-hoc test has been performed in pairs to verify that our proposed Chi Index is significantly different from the other
indices.

Table 7b shows the p-values, z-value and oy, using the Chi Index as the control method since it obtained the best
ranking. As can be observed, the null hypothesis is rejected for all the competitors’ CVIs where the p — value remains lower
than the oyy,. The null hypothesis was rejected by all the competitors but PSI, whose p-value (0.219) was higher than
its ayem (0.050). Therefore, it may be concluded that the Chi Index generated the best results since it obtained the best
average ranking, and that it was significantly different to all the competitors 'CVIs but PSI.

4.3.2. Discussion

The results of the experimental analysis for the public datasets from the UCI repository show that our proposed external
index improves the rate of hits by almost 16% (Fig. 9a) with respect to the CVIs from the literature but just 2% from PSI.
In addition, in the case of not being able to hit the correct number of clusters, our index obtained a rate of 3 points lower
than the CVIs from the literature (Fig. 9b). Chi Index obtained similar rates of hits than PSI, but in case of error, its error is
much lower. Our proposed index improves the results based on Friedman’s test (Table 7a).

According to the heatmaps from Fig. 10, it can be stated that the Chi Index produced promising results since it hit the
optimal number of clusters for most of the datasets and on the according when it failed, its error was not far from the
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Fig. 10. Heatmaps of the distances to the optimal number of clusters of each CVI (rows) for each dataset (columns) represented by the number given in
Table 6.
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Fig. 11. Representation of the Chi Index for k =2 to 10 for two real datasets.

optimal. It is also interesting to note that there were several datasets in which none of the indices hit the optimal number
of clusters. However, in numerous of datasets, it was only the Chi Index which hit the optimal number of clusters.

If we analyse the rate of hits and errors per clustering method, then the Chi Index obtained the best values. For k-means,
the Chi Index and the PSI attained 60% hits, and 3.49 and 3.98 points of error respectively. The third in the ranking was
the CH index with 49% hits and 5.68 points of error. Bisecting k-means results show that the Chi Index had the highest rate
of hits with 64%, while the second mark was obtained by several indices with 49%. The Chi Index had 3.11 points of error
and the next in the ranking was the Rand index with 4.32. Finally, the Gaussian mixture had similar results. The PSI index
had 53% hits and 8.00 points of error, and in the second position was the Chi Index with 51% hits and 3.53 points of error.
K-means and bisecting k-means obtained similar results while Gaussian mixture solutions obtained a lower rate of hits and
a higher error.
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Table 6

Dataset description.
# Dataset Classes Features Instances
1 airlines 2 7 539,383
2 bankmarketing 2 16 45,228
3 banknote 2 4 1372
4 biodeg 2 41 1055
5 breast cancer wisconsin 2 9 699
6 breast-tissue 6 9 106
7 car 4 6 1728
8 cloud 4 10 1024
9 column_2C 2 6 310
10 column_3C 3 6 310
1 diabetes 2 20 768
12 ecoli 8 7 336
13 electricity 2 8 45,312
14 faults 2 27 1941
15 forest type mapping 4 27 523
16  gesture phase dataset 5 32 9873
17 glass 6 9 214
18 haberman 2 3 306
19 higgs 2 28 11,000,000
20  iris 3 4 150
21 kddcup99 2 41 494,020
22 knowledge 4 5 403
23 leaf 36 14 340
24 letter 26 16 20,000
25 movement 15 90 360
26 optdigits 10 64 5620
27 ozone 2 72 2534
28 pendigits 10 16 10,992
29 poker 10 10 829,202
30 relax 2 13 182
31 satimage 7 36 6435
32 seeds 3 7 210
33 segment 7 19 2310
34  spambase 2 57 4601
35 spectrometer 4 100 531
36  susy 2 12 5,000,000
37 urban land cover 9 147 675
38  vehicle 4 18 846
39  vowel 1 10 990
40  waveform-1 3 21 5000
41 waveform-2 3 40 5000
42 wholesale 2 7 440
43 wine 3 13 178
44 wine quality red 6 11 1599
45 wine quality white 7 11 4898
46  yeast 10 8 1484
47  zoo 7 17 101

It is also interesting to note that the Chi Index illustrates the optimal clustering solution in an easy and concise way.
Some of the solutions of indices in the literature need to be interpreted by following the elbow method or looking for a
minimum or a maximum. The Chi Index points out the optimal solution in the intersection of the described curves.

5. Conclusions

In this paper, an innovative external CVI implemented in Spark has been proposed for its application in datasets re-
gardless of their size. The proposed Chi Index is based on the chi-squared statistic test. In addition, we have shown the

differences between our proposal and the indices from the literature.

The experimental study indicates that our external index is very competitive. Its effectiveness in public datasets with dif-
ferent sizes has been tested while varying the number of clusters, features, and the number of instances. The main achieve-

ments include the following:

+ An external CVI based on the chi-squared statistic test is given.
» Our index allowed us to estimate the optimal number of clusters based on the class of the dataset.
- Chi-index results are clear to read and require no further interpretation.
» The proposed index is equipped to work with datasets that may be considered as Big Data.



16 J:M. Luna-Romera, M. Martinez-Ballesteros and J. Garcia-Gutiérrez et al./ Information Sciences 487 (2019) 1-17

Table 7
Statistical results.

(a) Sorted mean ranking for Friedman’s test.  (b) Post-hoc analysis using Holm procedure and the Chi Index as the control index.

CVI Ranking CVI p z O Holm
Chi Index 6.415 CSI 0.0000 5.490 0.0033
PSI 7.109 Variation of Information  0.0000 4.792 0.0036
CH 8.151 Purity 0.0000 4.543 0.0038
Adjusted Rand Index 8.383 Mutual Information 0.0000 4.493 0.0042
F-Measure 8.415 Entropy 0.0000 4.462 0.0045
Rand Index 8.489 Jaccard 0.0000 4219 0.0050
Minkowski 8.545

Hubert 8.640 Fowlkes-Mallows 0.0000 4187 0.0056
Goodman-Kruskal 8.753 Goodman-Kruskal 0.0000 4137 0.0063
Fowlkes-Mallows 8.781 Hubert 0.0001 3.938 0.0071
Jaccard 8.799 Minkowski 0.0002 3.770 0.083
Entropy 8.936 Rand Index 0.0002 3.670 0.0100
Mutual Information 8.954 F-Measure 0.0004 3.539 0.0125
Purity 8.982 Adjusted Rand Index 0.0005 3.486 0.0167
Variation of Information  9.123 CH 0.0021 3.486 0.0250
CSI 9.517 PSI 0.2197 1.227 0.0500

- The size of the dataset does not directly influence the effectiveness of the index.

+ The software of this contribution can be found as a spark-package at http://spark-packages.org/package/josemarialuna/
ExternalValidity.

» The source code of the Chi Index and the other indices from the literature can be found at https://github.com/
josemarialuna/ExternalValidity.

We are currently applying this Chi Index in a clustering analysis with employment data and promising results have been
attained. The Chi Index is also being applied on electrical data in collaboration with a Spanish electricity company. As future
work, it would be interesting to extend the application of the index to include multi-label datasets.
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