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A B S T R A C T

Breast cancer is the most frequent cancer in women and the second most frequent overall after lung cancer. 
Although the 5-year survival rate of breast cancer is relatively high, recurrence is also common which often 
involves metastasis with its consequent threat for patients. DNA methylation-derived databases have become an 
interesting primary source for supervised knowledge extraction regarding breast cancer. Unfortunately, the study 
of DNA methylation involves the processing of hundreds of thousands of features for every patient. DNA 
methylation is featured by High Dimension Low Sample Size which has shown well-known issues regarding 
feature selection and generation. Autoencoders (AEs) appear as a specific technique for conducting nonlinear 
feature fusion. Our main objective in this work is to design a procedure to summarize DNA methylation by taking 
advantage of AEs. Our proposal is able to generate new features from the values of CpG sites of patients with and 
without recurrence. Then, a limited set of relevant genes to characterize breast cancer recurrence is proposed by 
the application of survival analysis and a pondered ranking of genes according to the distribution of their CpG 
sites. To test our proposal we have selected a dataset from The Cancer Genome Atlas data portal and an AE with a 
single-hidden layer. The literature and enrichment analysis (based on genomic context and functional annota-
tion) conducted regarding the genes obtained with our experiment confirmed that all of these genes were related 
to breast cancer recurrence.   

1. Introduction

Breast cancer is the most frequent cancer in women [1] and the
second most frequent overall after lung cancer (over two million new 
cases of lung cancer were diagnosed in 2018 [2]). Although the 5-year 
survival rate of breast cancer is relatively high, recurrence is also com-
mon (at approximately 20% to 30%, depending on the initial stage) 
which often involves metastasis. One of the major challenges in breast 
cancer management includes the classification of patients into correct 
risk groups after initial diagnosis for their most appropriate treatment 
and follow-up (including risk of recurrence). Risk classification is 
especially important for the improvement of the monitoring of patients, 
quality care, and use of medical resources. 

Furthermore, DNA methylation-derived databases have become an 
interesting primary source for supervised knowledge extraction 

regarding breast cancer [3]. DNA methylation is a well-known data 
source which shows the functioning of the genome. Alterations in DNA 
methylation have revealed its significant role in tumorigenesis and 
tumour-suppression [4]. Unfortunately, the study of DNA methylation 
involves the processing of hundreds of thousands of features for each 
patient in the study. Thus, feature selection constitutes a key factor not 
only in the attainment of knowledge from such a vast pod of medical 
data [5] but also of improvements in techniques to speed up analysis [6]. 

Machine learning has been profusely applied to tackle the issue of 
breast cancer prognosis [7–11]. Recently, neural networks have started 
to play a major role in the extraction of knowledge from genetic data-
bases [12]. Within neural networks, autoencoders (AEs) appear as a 
specific technique for conducting nonlinear feature fusion [13] with a 
double-fold strategy: feature selection and noise reduction. AEs have 
been applied to breast cancer to improve patients’ pathological 
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• An innovative proposal based on AEs to preprocess DNA methylation
and generate autoencoded features to characterise breast cancer
recurrence;

• a comparative study regarding how the use of autoencoded feature
generation could improve recurrence prediction from DNA methyl-
ation data;

• an enrichment and literature analysis to provide insights into how
the AEs are related to genes regarding breast cancer recurrence and
their similarity with their level of importance reported in the breast
cancer literature.

The remainder of this paper is organised as follows. Section 2 de-
scribes the experimental data used in this work and the methodology 
applied. Section 3 shows the results achieved. Section 4 discusses the 
main findings, provides the study of the literature and the enrichment 
analysis performed regarding the results. Finally, Section 5 is devoted to 
a summary of the conclusions and the discussion of future lines of 
research. 

2. Material and methods

2.1. Data description 

The data used in this study was downloaded from TCGA data portal 
[30]. We selected the two types of invasive breast cancer provided by 
TCGA: ductal (the most common type) [31] and lobular carcinoma [32]. 
Specifically, the profiles of the platform named Illumina Infinium 
Human DNA Methylation 450 (HumanMethylation450) were selected. 
HumanMethylation450 provides the methylation status of more than 
450,000 CpG sites contained in the human genome [33] for each patient. 

In particular, this platform provides the following information on 
each tissue: methylation value (which is known as beta value (β)), gene 
symbol, chromosome, and genomic coordinates [6]. The β estimates the 
methylation level using a ratio of intensities between methylated and 
unmethylated alleles, which provides values between 0 (unmethylated) 
and 1 (fully methylated) [4]. 

In order to obtain clinical information reported by the TCGA data 
portal, we focused on the follow-up file (version 4.0) that presented 
information regarding the monitorization of the health of these patients 
who participated in a clinical study for a period of time. This file pro-
vided interesting fields, such as those specified in Table 1. Further in-
formation can be found at https://docs.cancergenomicscloud.org/doc 
s/tcga-metadata. 

2.2. Data preprocessing 

The hazard of recurrence has been shown higher during the first five 
years after diagnosis [34]. Prediction of patients who would suffer from 
recurrence in advance could lead to a more effective treatment. With 
this in mind, we set up our experimental framework which finished with 
a survival analysis. Unfortunately, an inherent feature that distinguishes 
survival analysis from other areas in statistics is that survival data (and 
TCGA data was not an exception) are usually censored. Censoring hap-
pens when incomplete information is available about the survival time 
of some individuals. To overcome such limitation, we planned a study 
following a type I censoring design. Type I implies a study in which 
every patient is under observation for a specified period (in our case, five 
years) or until failure (recurrence). So initially, we focused on the 749 
patients included in the HumanMethylation450 platform as stated 
before, but after applying type I restrictions, data was reduced to 99 
cases. The following paragraphs detail the preprocessing pipeline car-
ried out. 

The TCGA provides several tissue samples for each case according to 
sample type (solid tumour, solid tissue normal, etc.), the portion in a 

Table 1 
Follow-up file description.  

Property Description 

Case ID Patient identifier 

New tumuor event 
Boolean value which denotes whether 
a neoplasm developed after the initial 
treatment had finished (YES or NO)  

Days to new tumour event 
Number of days to the date of recurrence 
after initial treatment has finished 
(if new tumour event is YES)  

Vital status Dead or Alive  

Days to last follow-up 
Number of days from the date of last 
follow-up to the date of initial pathologic 
diagnosis (if vital status is Alive)  

Days to death 
Number of days from the date of the 
initial pathological diagnosis to the date 
of death (if vital status is Dead)  

signatures [14], predict their survival [15–17], identify cancer subtypes 
[18,19], and select precise reference of samples normal tissue for cancer 
research [20]. 

Regarding the use of AEs to deal with DNA methylation, Wang et al. 
[21] recently explored the application of variational AEs on lung cancer 
DNA methylation data. A later logistic regression classifier, trained with 
the encoded latent features, was able to accurately classify cancer sub-
types. Visakh et al. [22] also proposed an innovative alignment method 
that made use of AEs to find functionally consistent and topologically 
sound alignments of epigenetic signatures from pathway networks. 
Later, those epigenetic signatures were applied to characterise several 
types and subtypes of breast, lung, colorectal, and prostate cancer. 
Similarly, Wang et al. [23] developed software named “DeepMethyl” 
based on stacked denoising AEs to predict the methylation state of DNA 
using features inferred from three-dimensional genome topology and 
DNA sequence patterns. They used the experimental data from immor-
talised myelogenous leukaemia and healthy lymphoblastoid cell lines to 
train the learning models and assess prediction performance. Moon and 
Nakai [24] proposed an integrative analysis of gene expression and DNA 
methylation using normalisation and unsupervised feature extraction by 
AEs to identify candidate biomarkers of renal-cell carcinoma. Chaudh-
ary et al. [25] used AEs on DNA methylation, RNA sequencing, and 
microRNAs sequencing to identify survival subgroups of hepatocellular 
carcinoma (HCC). 

On the other hand, the literature related to the processing of DNA 
methylation by AEs on breast cancer recurrence is, to the best of our 
knowledge, scarce although results do exist regarding breast cancer 
survival prediction, such as those reported by Kim et al. [26]. The au-
thors extracted a single pathway profile matrix out of the gene expres-
sion and DNA methylation data by following a random path over an 
integrated graph. They then applied a denoising AE to the pathway 
profile to further identify significant features and genes for the valida-
tion in a survival prediction task for breast cancer patients. 

DNA methylation databases are characterised by having a high 
dimensionality with few cases (patients). Such High Dimension Low 
Sample Size (HDLSS) databases have very well-known issues regarding 
feature selection and generation, especially when Principal Components 
and other similar techniques are applied [27,28]. In this context, AEs 
could take advantage of their capacity to reduce the dimensionality 
while maintaining prediction accuracy [29]. 

With all the previous in mind, the aim of this work is to develop a 
framework to process DNA methylation to extract meaningful infor-
mation from relevant genes regarding breast cancer recurrence. Our 
proposal has been tested on a dataset from The Cancer Genome Atlas 
(TCGA) data portal. This and the rest of the main scientific contributions 
of this paper can be summarised as follows:  

https://docs.cancergenomicscloud.org/docs/tcga-metadata
https://docs.cancergenomicscloud.org/docs/tcga-metadata
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• Cases with recurrence (REC as YES):
–TREC was the number of days to new tumour event if it was less
than or equal to 1825;
–otherwise, TREC was initialised at 1825 and REC changed to
NO.

• Cases with no recurrence (REC as NO):
–TREC was equal to 1825 (since all of them were filtered to be
followed up within at least five years).

In order to perform our experiments, we built a large dataset 
composed of the beta values provided for each CpG site of the methyl-
ation files of every case under study. Every case under study had 
485,577 CpG sites. We had to process as many files as cases which 
entailed building a single file and then transposing the data to attain a 
dataset for a suitable analysis (i.e., cases as rows and CpG sites as col-
umns). The resulting dataset contained a large number of missing CpG 
sites for many patients. Therefore, the dataset was filtered excluding the 
features (CpG sites) with null values or incomplete information for at 
least one case to avoid non-real and doubtful information in the con-
ducted analysis. Additionally, a class (REC variable) and TREC column 
were added to every case for a later survival analysis. Big Data tech-
nologies such as Apache Spark [35] were employed to manage this large 
amount of data and to prevent efficiency and memory issues. The final 
dataset resulted in 383,919 CpG sites as features and 99 cases as in-
stances and was structured as shown in Table 2. Furthermore, a mapping 
file that related each CpG site of the methylation dataset with the cor-
responding gene symbol was created to help in the analysis of the 
results. 

2.3. Experimental framework 

As can be observed in Fig. 1, the experimental framework was 
divided into two branches. In the upper branch, machine learning 
classification algorithms were applied to the original data after a feature 
selection (FS) based on False Positive Rate (this dataset is called Original 
from now on), Original and autoencoded features together (Orig-
inal +AE), Original followed by a Best-K FS (Original + FS) where K was 
the number of patients, and finally, Original +AE followed by Best-K FS 
(Original +AE + FS). Then, we evaluated the obtained models 

comparing the accuracy (see Section 2.3.2). 
In the second branch, an AE from the complete dataset was devel-

oped. Then, we applied survival analysis to the nodes (autoencoded 
features or hidden units in the AEs) to select only the most significant 
ones. The weights of these nodes were subsequently analysed with the 
aim of calculating the genes with the highest importance in the AEs 
(Section 2.3.3). The same methodology was also applied without 
filtering the nodes by the survival analysis and all nodes were thus 
considered in the weight analysis stage to study the importance of 
feature selection after autoencoding. In the following sections, each of 
the branches is described in detail. 

2.3.1. Autoencoders 
An autoencoder (AE) is defined as an artificial neural network with a 

symmetric structure, whose middle layers encode the input data, and 
aim to build a version of its input onto the output layer. This kind of 
artificial neural network includes a mechanism which avoids using a 
direct copy of the data along with the network [13]. 

Before generating the AE, several preprocessing steps were carried 
out on the dataset (see feature selection described in Section 2.3.2 for 
branch 1.A in Fig. 1). In any case, a normalisation step was always done. 
The data processing in this methodology was carried out with the scikit- 
learn library [36]. 

The AEs were developed and executed by using the Keras library 
[37]. Keras is an open-source neural network library written in Python, 
which is capable of running on top of Tensorflow [38]. The AEs were 
established by Keras library and configured with a single hidden layer. 
Layers in Keras framework for deep neural networks are mainly 
controlled by three parameters: number of hidden units, batch size, and 
number of training epochs. Batch size and number of epochs were set up 
by default with values in the intervals 5–10 and 100–400, respectively, 
and fixed by trial and error. For the case of the number of hidden units 
M, an optimisation procedure selected the best value from 5 to 325 (the 
maximum size our hardware allowed). This procedure calculated the 
mean square error (loss function) when autoencoders were trained (only 
on training sets excluding test folds in the case of a validation procedure) 
and then selected the best value for the experiments according to the 
“elbow method” [39]. 

Moreover, Rectified Linear Units (ReLU) were used as a nonlinear 
activation function because its output values range in the interval [0,1]
which are suitable values for survival analysis, and have also obtained 
promising results in other studies in the literature [40]. 

To avoid overfitting issues, an early-stopping condition was intro-
duced in the training phase of the AEs. To this end, 30% of the training 
set was kept aside to validate learning (validation set). The early- 
stopping condition stopped the training when it did not produce an 
improvement in the validation set in three consecutive epochs, acting as 
a regularisation method to avoid overfitting. 

All the experimentation was carried out on an Intel machine, spe-
cifically Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz with 12 cores, 
64 GB of RAM, and a NVIDIA GeForce Titan Xp Pascal 12 GB GDDR5X 
GPU and a NVIDIA Geforce RTX 2080 Ti 11 GB GDDR6 GPU. The source 
code together with the various experiments performed in this study can 
be found in [41]. 

2.3.2. Machine learning classification techniques 
As mentioned in Section 1, one of the main objectives of this work is 

to generate autoencoded features to improve the prediction of breast 
cancer recurrence. To this end, eight classification algorithms from the 
scikit-learn library (version 0.22.1, https://scikit-learn.org/stable/wh 
ats_new/v0.22.html#version-0-22-1) with default parameters (see a 
deeper description about the classifiers in [42]) were selected to test 
their performance. 

Four types of techniques were used: decision trees (Decision-
TreeClassifier, GradientBoostingClassifier, and RandomForestClassifier 
implementations in scikit-learn), support vector machines (SVC and 

Table 2 
Structure of the input dataset containing the CpG sites for each case under study.  

Case ID cg00000029 …  cg00000905 TREC REC 

TCGA-E2-A2P5 0.12020339 …  0.08950129 597 YES 
TCGA-LL-A73Z 0.31853254 …  0.88396413 192 YES 
TCGA-A2-A0CR 0.441742832 …  0.04866762 1825 NO 
…  …  …  …  …  …   

sequence, and analyte codes (DNA, RNA, etc.), among others. Further 
information can be found at https://gdc.cancer.gov/resources-tcga-use 
rs/tcga-code-tables. From the 749 patients, we filtered those cases that 
contained DNA methylation files, their sample type was a solid tumour 
(01 code) and the analyte code corresponds to DNA (D code). Not all 
cases provided DNA Methylation files of the same portions, hence, we 
selected the portion that was presented in the highest number of cases 
(11 code) to maximise the set of cases under study. Furthermore, we 
especially focused on 5-year survival for analysis and therefore we were 
interested in cases treated for a period of time they was either greater 
than or equal to five years (1825 days) without recurrence, or was less 
than 5 years with recurrence. After filtering TCGA with Human-
Methylation450 in accordance with the previous conditions, the final set 
of cases was reduced to 99 cases. For every case, two new variables, REC 
(recurrence) and TREC (time to recurrence) were calculated according 
to the follow-up information as follows:  

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables
https://scikit-learn.org/stable/whats_new/v0.22.html#version-0-22-1
https://scikit-learn.org/stable/whats_new/v0.22.html#version-0-22-1
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NuSVC), meta-learning classifiers (AdaBoostClassifier and Gra-
dientBoostingClassifier), Bayesian classifiers (GaussianNB) and the k- 
nearest neighbours algorithm (KNearestNeighbors) as lazy/instance- 
based classifier. 

A stratified multi-repeated (concretely, ten times to reduce risk of 
bias by random seed selection) five-fold cross-validation procedure 
based on accuracy as goodness measure was also applied to evaluate the 
results of every classifier and to prevent overfitting. 

Several algorithms require FS to obtain better results. Such algo-
rithms, according to the Hughes effect, could degrade their performance 
if the number of features increases in the context of a limited number of 
instances. Moreover, FS increases parsimony in the models and thus 
reduces the risk of overfitting or generating artefacts that cannot be 
applied in real environments [43]. 

For the comparison of machine learning techniques, a FS was firstly 
conducted in order to reduce dimensionality to the most-significant CpG 
sites. For this purpose, we used the widespread False Positive Rate (FPR) 
test, which selected CpG sites that passed a significance test according to 
ANOVA F-value between label/feature with a confidence level of 95%. 
FPR correction applied to each pairwise comparison is a common 
technique to reduce feature space in medicine [44]. This helped us speed 
up the development of the compared machine learning models. At the 
same time, the number of inputs was also reduced, which significantly 
decreases the computational burden to train the AEs. SelectFpr from 
scikit-learn with default parameters was responsible for this first level of 
FS. 

The compared classification algorithms were also executed with and 
without a second level of FS. Namely, after applying the SelectKBest 

algorithm from the scikit-learn library. This is one of the easiest uni-
variate feature selectors to use in scikit-learn, which provides a fast 
feature ranking and selection according to the best scores regarding a 
specific metric (in our case, ANOVA F-value). For the experiments, we 
fixed the number of features to select as many as the number of training 
instances. This aims to reduce the risk of overfitting whilst maintaining a 
sufficient number of representative features from the complete feature 
space. 

With all the previous in mind, cross-validation results from the 
different algorithms were taken from the original data after a FPR-based 
FS (Original), Original plus autoencoded features (Original +AE), 
Original followed by a Best-K FS (Original + FS) and finally, Orig-
inal +AE followed by Best-K FS (Original +AE + FS). Then, to study the 
global differences between the use of AEs or not, we aggregated the 
statistics for every classifier and test in the cross-validation in two cat-
egories: the best result for a classifier when AEs (maximum between 
Original +AE and Original +AE + FS) were applied and when not 
(maximum between Original and Original + FS). Finally, we studied the 
differences between both distributions and statistically validated them 
by the use of a Wilcoxon signed-rank test [45]. 

2.3.3. Gene-weight methodology 
This section describes the gene weight analysis performed to 

discover how AEs consider CpG sites according to whether they belong 
to specific genes. Thus, it is possible to calculate the weights for a gene in 
a set of autoencoded features and study the gene relevance in a later 
biological analysis. 

Fig. 1. Experimental framework applied in this work. AEs are applied to the given input dataset (arrow 0). Several machine learning algorithms are executed on 
cross-validated AE outputs (arrow 1.A) and their results are compared (arrow 1.B). The AE output obtained from the complete dataset is studied through a statistical 
survival analysis to select the significant hidden nodes of the AE (arrow 2.A). The weight analysis uses the weights of CpG sites in significant nodes to calculate the 
relevance of the genes associated and select the most significant ones (arrow 2.B). A literature and enrichment analysis is performed to study the biological rele-
vance, genomic context and functional annotation of the set of genes obtained (arrow 2.C). Steps 2-6 correspond to the ones performed in the gene-weight 
methodology process described in Section 2.3.3 and Process outline outline 1. 
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1: Input REP: number of AE executions, n: number of CpG sites, p: number of 
patients, dataset: values of n CpG sites for p patients, G: number of genes to 
select, CpGSites: names of CpG sites included in dataset.  

2: Output S: selection of commons genes in REP.  
3: ————————————— 
4: genes ⟵ geneSymbols(CpGsites)  
5: S ⟵ genes
6: for t⟵1 to REP do  
7: //Step 1 
8: hiddenNodes ⟵ AEApplication(dataset)  
9: //Step 2 
10: significantNodes ⟵ survivalAnalysis(hiddenNodes)  
11: q ⟵ |significantNodes|
12: //Step 3 
13: for l⟵1 to q do  
14:  Zl ⟵ selectWeigthsInAE(CpGsites, significantNodesl)  
15: end for 
16: for g ∈ genes do  
17:  CpGSitesg ⟵ CpGSitesByGene(g)  
18:  Rl ⟵ ∅
19:  for l ⟵ 1 to q do  
20:   Wl

g ⟵ sumWeights(CpGSitesg,Zl)  
21:   // Step 4 
22:   Rl

g ⟵ Wl
g / |CpGSitesg|

23:   Rl ⟵ Rl + {Rl
g}

24:  end for 
25: end for 
26: for l ⟵ 1 to q do  
27:  sl ⟵ bestGenesSelection(Rl, G)  
28: end for 
29: // Step 5 
30: St ⟵ s1

31: for l ⟵ 2 to q do  
32:  St ⟵ St ∩ sl

33: end for 
34: S = S ∩ St

35: end for 
36: return S   

The proposed analysis is carried out by applying a methodology 
composed of six steps depicted as an activity diagram in Fig. 2. As can be 
observed, the actions of the diagram are processed sequentially and each 
action corresponds to a step of the proposed methodology. 

Table 3 defines the main symbols related with the variables involved 
in the equations of the different steps of the proposed methodology. 
Furthermore, the index used for each one is presented. Process outline 
outline 1 summarises the steps performed in the gene-weight method-
ology which are described below. 

(1) Step 1–AE application: As mentioned in Section 2.2, the pro-
cessed data contained a total of 383,919 features (one for each
CpG site). This amount of features constitutes a serious issue since
it cannot be processed by using traditional techniques. As can be
seen in Fig. 3, in order to reduce the dimensionality of the data,
the step 1 of the proposed methodology is the application of the
AE (Line 7: Process outline outline 1).

Let x ∈ Rn be the input composed of the CpG sites values for p 

patients. This forms a matrix with size p × n of values, each of 
them hereinafter referred to as xk

i , where k = 1…p and i = 1…n. 
The AE is applied with a single hidden layer to the data of the 
aforementioned matrix. Given d as a distance function in Rn, an 
AE built for m nodes is given by functions f and g with the 
following properties: 

⎧
⎨

⎩

f : Rn→Rm, where zj = fj(x) = RELU

(
∑n

i=1
wijxi

)

g : Rm→Rn, where y = g(z)

(1)  

f and g will be obtained through an optimisation process that 
minimises d(x, y). Thus, each node j of the intermediate layer is 
characterised by a value zj. 

In this case, for each patient k = 1…p, the following output is 
formed: 

zk
j = fj(xk) = RELU(

∑n

i=1
wijxk

i ) (2)  

It should be taken into account that AEs randomly initialise the 
weights wij of the hidden units, which are updated iteratively during 
the training process through the backpropagation mechanism [13]. 
Therefore, the AE needs to be executed REP times in order to prevent 
the results from becoming biased (Line 6: Process outline outline 1). 
The number of executions of the AE is fixed (REP = 10) as a trade-off 
between a sufficiently large number of AEs to reduce bias and a 

Fig. 2. Activity diagram that shows the complete process of the proposed methodology to analyse gene-weight significance in AEs.  

Table 3 
Definitions of the main symbols related with variables and their indexes.  

Symbol Definition Index 

n  Number of CpG sites as input data i  
p  Number of patients k  
M  Number of hidden nodes or units j  
q  Number of significant hidden output nodes in survival analysis l  

xk
i  Input value of CpG site i for patient k   

xi Vector composed of the xk
i values, where k = 1…p   

wij Weight associated to the CpG site i for the hidden node j   

zk
j  Hidden AE output value of node j for the values of patient k   

Wg
l  

Sum of the weights of the CpG sites associated with a gene g   
for the hidden node l   

Cg Number of CpG sites associated to the gene g   

Rl
g Importance of a gene g in the node l (ratio between Wl

g and Cg)   

G  Number of genes with the highest Rl
g

qt Number of significant nodes in the tth AE execution   

sl Set of the G genes selected with greater score Rl
g

S  
Intersection between the sets of genes associated to the 
significant  
nodes in all the AEs executions  

AEt AE execution number t   
REP  Number of total executions of AEs   

Process outline 1. Steps performed in Gene-weight methodology
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affordable training time (which is of several minutes per AE). We 
develop REP AEs to later analyse their nodes (hidden units), as can be 
seen in the next steps, reducing bias due to random selection of initial 
weights in the AEs. Thus, the nodes can be combined to analyse the 
most influencing genes. To this end, we just add the weights asso-
ciated to every CpG site involved in an AE feature, extract the gene 
each CpG site belongs to and finally obtain the mean weight of each 
gene in the features of the REP AEs.  
(2) Step 2–Survival analysis: This step is devoted to supplying

survival analysis to the autoencoded dataset obtained in the AE
executions from the step 1. The survival analysis discovers which
nodes of the AE as independent variables are significant (Line 8:
Process outline outline 1) by taking into account the REC variable
(recurrence class) and the TREC variable (time from diagnosis to
a new tumour appearance) as dependent variables. Specifically,
for each AE, we calculate every hidden node output variable.
Thus, the following vector Zj = [z1

j ,…, zp
j ] is obtained applying

Eq. (2) where j = 1…M and p is the number of patients.
We apply a 5-year survival analysis to each Zj and assume that q

variables were significant (Line 9: Process outline outline 1) in
the survival analysis of the M variables. To simplify the notation
in the next steps and taking into account that the nodes (and the
corresponding weights) of the AE can be reordered without
change in the transformation, we suppose that the significant
variables are the first q in Zl where l = 1…q.

Survival analysis was carried out by a Cox Regression [46]
implemented in JavaStat software. In order to translate contin-
uous biomarkers into clinical decisions, it is often necessary to
binarise parameters [14] and so we did. There is no standard
method to find an optimal binarization, therefore, we take
advantage of the ReLU output (>= 0) and the autoencoded
datasets are binarised as follows: a parameter value is 0 if the
node/autoencoded feature provides the value 0 (non-activated
according to the ReLU activation function); otherwise, it was 1.

Finally, a node was considered significant if the Cox Regression 
reports a p-value less than or equal to an α = 0.05. 

Fig. 3 also summarises the step 2. The methodology starts by 
applying an AE to the input dataset. Once the encoded data is 
generated, survival analysis is applied, and the significant nodes 
(Z1, …, Zq) are obtained by considering the aforementioned 
analysis. Note that this step is repeated REP times, once for each 
AE execution, and hence REP sets of significant nodes are ob-
tained at the end of this step.  

(3) Step 3–CpG site weight calculation: The weights of the CpG
sites of every significant node of the AEs are selected in this step.
That is, only the weights of those CpG sites which are included in
the significant nodes by the survival analysis were taken into
account (Line 11: Process outline outline 1). Fig. 4 shows how the
weights of the significant nodes are calculated from the AE so-
lution. As can be seen, each significant node has a list of weights
associated where a weight corresponds to a CpG site of the input
dataset.

For each of the q nodes and n CpG sites, we obtain the weights
wil, where i = 1…n and l = 1…q, which measure the relationship
of the CpG sites with each significant node in the survival anal-
ysis. Next, we sum the weights in absolute value of the CpG sites
that correspond to the same gene, and obtain a value for each
gene (Lines 13–17: Process outline outline 1). It should be noted
that each value of the CpG sites is represented by the variable xi.

In this step, the gene symbols associated with each CpG site
involved in the significant nodes are extracted by taking into
account the mapping file that relates them (described in Section
2.2). For each node l = 1…q such that xi is in gene g, we calculate
the following:

Wl
g =

∑

{i|xi∈g}

|wil| (3)   

Fig. 3. Steps 1 and 2 – Application of AE to the input dataset followed by survival analysis to discover the significant nodes.  

Fig. 4. Step 3 – Calculation of the weights of the significant nodes (hidden units) from an AE.  
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Rl
g =

Wl
g

Cg
(4)  

Rl
g gives a measure of the importance of a gene g in the node l of the 

AE. Rj
g is only influenced by the weight of the gene and not by the 

total number of apparitions of CpG sites belonging to g. 
For each significant node l in an AE we define the set sl as the G 

genes with the highest Rl
g (Lines 22–24: Process outline outline 1). 

Note that G is a parameter of the experimental framework which 
could vary by increasing or decreasing the number of genes consid-
ered relevant. 
(5) Step 5–Intersection between the best genes of all the signif-

icant nodes: The subsequent step is devoted to calculating the
intersection S between the sets of genes associated to the signif-
icant nodes in all the AEs (Lines 25–29: Process outline outline 1).
Thus, let t=1…REPbe thedifferent executionsof anAE andj=1…q_t
be the significant nodes of the tth AE, we calculate S as follows:

S =
⋂REP

t=1

⋂qt

l=1
sl (5)    

(6) Step 6–Literature and Enrichment analysis: Finally, the last
step of the proposed methodology involves performing a sys-
tematic review of the literature using the well-known PubMed
[47] system included within the resources provided by The Na-
tional Center for Biotechnology Information (NCBI). This step
analyses the similarity between the significant genes in the
autoencoded features and the relevant genes in the literature
regarding breast cancer recurrence. Furthermore, this step also
aims at reporting an enrichment analysis of the significant genes
found according to genomic context based on information
retrieved from NCBI, functional annotation in the context of the
Gene Ontology (GO), and pairwise connections linking genes,
among others. To this end, several web-interfaces, such as String
database [48], GeneMANIA [49] or Database for Annotation,
Visualization, and Integrated Discovery (DAVID) tools [50] were
queried.

As stated above, when increasing the value of G, the number of 
selected genes is also increased. In our experimentation, we 
repeat the steps 4–6 with the following values G = 1000, 2000,
3000, 4000, 5000. Each different value give rise to a set of 
different genes. 

3. Results

3.1. Comparison of machine learning classification techniques and study 
of the importance of feature selection 

In this section, the results of the classification algorithms are shown 
as described in Section 2.3. 

Regarding the autoencoded data, loss function to calculate M in our 
experimental comparison is represented in Fig. 5. In general, there was a 
noteworthy change of trend when the number of hidden units was 100 
and therefore M was fixed. 

Table 4 presents the results obtained in the eight classification al-
gorithms described in Section 2.3.2 by using the default parameters 
provided by the scikit-learn library. This table shows the accuracy of 
each classifier. The results are in four columns (Original, Original + FS, 
Original +AE and Original +AE + FS). The results also appear aggre-
gated in two calculated categories: the best result for the classifier when 
an autoencoder was not applied (Non-AE column) and the best result for 
the classifier when autoencoded features were included in the classifi-
cation (AE column). 

Fig. 6 provides the distribution of results for the categories Non-AE 
and AE throughout the 400 training-test experiments (8 classifiers ×
5 folds × 10 repetitions). We used those results to statistically validate 

the reported differences. As we said, we applied a Wilcoxon signed-rank 
test on the 400 results. According to the software StatService [51], the 
statistic for Wilconxon was 56605.5 with 1 and 398 degrees of freedom, 
and with a p-value less than 0.0001. With this p-value, the null hy-
pothesis (i.e., no significant differences between both distributions exist) 
can be rejected. AE distribution reported a mean accuracy of 0.68 with a 
standard deviation of 0.09, whilst Non-AE only reached a mean accuracy 
of 0.63 with a higher standard deviation of 0.11. With these results, it 
could be possible to conclude that AEs statistically improved the results 
of the classifiers under study. 

3.2. Gene-weight analysis 

This section provides the outcomes of the gene-weight analysis after 
the methodology proposed in Section 2.3.3 has been applied to the re-
sults obtained in the REP executions of the AE performed. 

Table 5 shows the number of significant nodes obtained by each AE 
execution which is identified in row ID by AEt, ∀ t ∈ [1, REP]. It should 
be noted that only six AEs obtained significant nodes when survival 
analysis was applied with α = 0.05. 

As mentioned in Section 2.3.3, a set of sets of the best genes (genes 
with the highest ratio of weights) that are common among all the sig-
nificant nodes of all the AE executions is obtained after applying the 
gene-weight methodology to the input dataset. 

Table 6 shows the set of genes selected according to the different 
values of G. It should be taken into account that the genes selected for 
G = 1000 are a subset of those obtained for G = 2000, and so on. That is, 
the most restrictive set of genes is given for G = 1000 and is present in 
the sets of the rest of the G values. The set of genes for G = 5000 is the 
largest since it includes all those obtained for the rest of the G values. 
Thus, ranking 1 denotes the genes that are in the final set for all the G 
values tested, and are therefore the most relevant among the significant 
genes. Ranking 2 includes the genes present for G >= 2000, and so on 
until ranking 5 in which there are only the genes selected for G = 5000. 
Additionally, several references from the literature of the last ten years 

Fig. 5. Mean loss function on the training sets (in the procedure of multi- 
repeated five-fold cross-validation) according to the number of hidden units 
in the hidden layer of the AE. In red, the selected value in the experimental 
comparison. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

(4) Step 4–Selection of the best genes by node: In this step, the 
ratio of weights for every gene, defined in Eq. (4), is calculated 
for every significant node (Lines 18–19: Process outline outline 
1). Each significant node has a list of weights associated to every 
gene obtained in the step 3. From this point onwards, only the 
best G genes (with the highest ratio of weights) of each 
significant node are taken into account.

For each gene g the number of CpG sites xi belonging to g is 
calculated as Cg = #{xi|xi ∈ g} and the ratio of each gene is 
defined by Eq. (4). 
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that relate each gene with breast cancer are also included. 
Fig. 7 shows the distribution of the genes related to the CpG sites 

with the highest number of apparitions in the input dataset. This figure 
shows that most of the genes associated to CpG sites in the input dataset 
remain unknown. As can be observed, PTPRN2 is the most repeated 
gene, followed by PRDM16, MAD1L1, TNXB, and RPTOR. The other 
genes appear fewer times and the number of repetitions decreases 
gradually, however they still represent around the 40% of the total 
number of CpG sites. 

Fig. 8 shows similar results to Table 6 via a heatmap. This figure 
shows the AE executions ID with significant nodes along the x-axis (AE1, 
AE2, AE3, AE8, AE9, AE10), and the gene symbols along the y-axis. The 
heatmap values are given by the mean of the weights of the best genes 
normalised by the AEs, and in this manner, the results of the proposed 
methodology are shown in a plot. Moreover, the heatmap includes the 
results of applying the average linkage clustering both to the AEs and to 
the genes, by using the Euclidean distance. The cluster which contains 
the subfamilies of the Protocadherin gamma and beta is highlighted for 
later discussion. 

We also provide the results given by the gene-weight analysis 
methodology but without filtering any nodes of the AEs and thus 
assuming that all nodes are to be taken into account. 

The genes with the highest ratio of weights of the AEs were PTPRN2 

(the only gene that appeared in the set of the best 2000 genes), and 
MAD1L1, PRDM16, RPTOR, and TNXB (only in the set of 5000). Table 6 
highlights (in bold) those genes that are in common to all the nodes of all 
AE executions. 

Fig. 9 shows the normalised average ratio of weights of the genes 
(only PTPRN2, MAD1L1, PRDM16, RPTOR, and TNXB) and selects the 
significant nodes (the five upper nodes) denoted as Autoencoded- 
Filtered Selection (AFS), and the same genes while taking into account 
all the nodes from the AEs (the five bottom nodes) represented as Non- 
Autoencoded-Filtered Selection (Non-AFS). 

3.3. Enrichment analysis 

This section presents the results obtained through the enrichment 
analysis conducted to the set of genes found by the proposed method-
ology (Table 6) based on genomic context and functional annotation. 

First, we collected data from NCBI regarding the chromosome, 
chromosomal region and position of each identified gene in our study as 
can be observed in Table 7. Then, we queried several web-interfaces 
related to gene lists analysis using available genomics and proteomics 
data as stated in the step 6 of Section 2.3.3. In particular, we applied the 
String database [48], that provides a method to compute the enrichment 
analysis for a variety of classification systems such as the Gene Ontology 
(GO). 

The enrichment itself is computed using a Fisher’s exact test followed 
by a correction for multiple testing. Table 8 presents the functional 
enrichment analysis of the GO Biological Process, Molecular Function 
and Cellular Component, respectively. Table 8 includes the GO terms 
found, their descriptions and the false discovery rate (FDR) obtained. We 
report the results that reached an FDR < 0.05 significance threshold 
when conducting GO term analysis. 

Our set of genes was also queried into DAVID tool [50] in order to 
detect more functional annotations and we applied the GeneMANIA tool 
[49] to discover pairwise connections linking the genes. Although the
latter was able to find other genes related to a set of input genes, we
focused our analysis only in the gene-set obtained by our methodology.
Fig. 10 displays the gene interaction network reported according to
protein and genetic interactions, pathways, co-expression, co-localiza-
tion, and protein domain similarity. It can be noted that most of the
discovered interactions are based on co-localisation similarities.

4. Discussion

As can be observed in Table 4, AEs could generally improve the re-
sults of the set of classifiers under study. Only two classifiers obtained 
better results for Non-AE data. This could indicate that they took 

Table 4 
Mean results of the accuracy obtained by the classification algorithms from the original dataset, original and feature selection, original plus autoencoded features and 
feature-selected original plus autoencoded features in ten repetitions of five-fold cross-validation results with different random seeds next to the best result when 
autoencoding was and was not used. In bold, the best values.  

Classifier Original Original + FS Original + AE Original + AE + FS Non-AE AE 

SVC 0.646 0.651 0.675 0.653 0.651 0.675 
KNearestNeighbors 0.671 0.660 0.657 0.659 0.671 0.659 
NuSVC 0.643 0.650 0.669 0.647 0.650 0.669 
DecisionTreeClassifier 0.621 0.627 0.633 0.620 0.627 0.633 
RandomForestClassifier 0.668 0.669 0.666 0.687 0.669 0.687 
GradientBoosting 0.639 0.647 0.638 0.651 0.647 0.651 
AdaBoost 0.645 0.639 0.641 0.632 0.645 0.641 
GaussianNB 0.511 0.613 0.511 0.614 0.613 0.614  

Fig. 6. Distribution of results obtained for Non-AE and AE results in the 
experimentation. 

Table 5 
Number of significant nodes obtained by each AE execution.  

ID AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10

# Nodes 2 3 1 0 0 0 0 3 1 2  
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advantage of the original CpG sites (firstly selected based on FPR tests) 
and the later inclusion of more features (autoencoded ones) degraded 
their performance. Since those classifiers were kNN (which is sensible to 
a higher number of features due to the curse of dimensionality) and 
AdaBoost (which could have more difficulties to find better subsets of 
features with a higher number of features) the former conclusion could 
be reasonable. On the other hand, the global distribution in our results 
seen in Fig. 6 proved an improvement when AE features were included 
in the modelling. This statement was confirmed by a Wilcoxon signed- 
rank test, suggesting that AEs should be taken into account in future 

studies for DNA Methylation analysis with classification purposes 
(specially regarding breast cancer recurrence) by machine learning 
modelling. 

AEs feature generation also seems to be relatively independent on 
random initialisation as can be seen in Fig. 8. Note that regardless of the 
AE analysed, there exists a pattern (highlighted in yellow) regarding all 
the genes from the subfamilies of the Protocadherin gamma (PCDHGA 
[1-8]) and Protocadherin beta (PCDHGB[1-4]). This pattern could 
demonstrate that AEs do not provide artifact behaviour but do keep 
relationships among genes relatively stable. However, the initial random 
selection of weights still exerts an impact on the results as can be seen in 
the remaining genes, and should be taken into account in future 
research. 

Differences in the results were detected when feature selection was 
carried out in certain classification methods whilst most methods pre-
sented no significant change. This finding may be due to the fact that the 
latter classification algorithms do include an internal feature selection/ 
weighting process. In our experimentation, default parameters were 
used, and thus the results should be taken with caution since most of the 
classifiers could reach higher levels of accuracy with a proper 
parameterisation. 

Fig. 9 outlines feature selection based on survival analysis could 
provide an important step to take full advantage of AEs since feature- 
selected genes provide a higher entropy which could potentially lead 
to a better performance of the classifiers (since information in the fea-
tures is higher). On the other hand, non-selected features provide genes 
with homogeneous weights which could lead to a worse separability and 
therefore errors in classification. Again, more research is needed to 
confirm this point. 

4.1. Literature analysis 

We carried out an analysis of the most heavily weighted genes (ac-
cording to the weights associated to their CpG sites) formed part of the 
autoencoded features generated by the AEs used in this work (see 
Table 6). A literature search provided previous knowledge regarding its 
correlation with prognosis in breast cancer. The genes analysed seem to 
fall into five categories:  

• Confirmed recurrence biomarker. PTPRN2 is proposed as an
upregulator in highly metastatic cancer cells [52] and their increased
expression is associated with human metastatic relapse. TNXB is
involved in signalling pathways relating to TP53 (a well-known
biomarker in breast and other cancers) which leads to preventing
apoptosis and metastasis [58]. AGO2 mRNA expression is correlated

Rank Gene Symbol Ref. 

1 PTPRN2 [52] 
2 PRDM16 [54] 
3 ATP11A –  

MAD1L1 [57]  
TNXB [58]  
TSNARE1 – 

4 EIF2B5 [61]  
GABBR1 [63]  
HDAC4 [65]  
MCF2L [66]  
PCDHGA[1-8] [68]  
PCDHGB[1-4] [68]  
PSMB9 [71]  
SHANK2 –  
SNHG14 [72]  
TBCD [73]  

Rank Gene Symbol Ref. 

5 AGO2 [53]  
C7orf50 [55]  
CAMTA1 [56]  
CASZ1 –  
CBFA2T3 [59]  
FIP1L1 [60]  
PARD3 [62]  
PRKCZ [64]  
RASA3 –  
RPTOR [67]  
SDK1 [69]  
SMOC2 [70]  
SORCS2 –  
TBC1D16 –  

Fig. 7. Percentage of known vs. unknown genes (only the most important genes according to Table 6) related to CpG sites selected by the significant autoen-
coded features. 

Table 6 
The best genes obtained in the gene-weight methodology proposed. The ranking 
for the genes in the significant nodes in the AEs is shown. In addition, references 
in the literature in the last ten years which directly relates them to breast cancer 
are presented. Those common genes to all the nodes (i.e., without filtering non- 
significant nodes) are highlighted in bold.  
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Fig. 8. Heatmap and hierarchical clustering applied both to the best genes normalised by AE (represented in the y-axis) and to the AEs (x-axis). The cluster which 
contains the subfamilies of the Protocadherin gamma (PCDHGA[1-8]) and Protocadherin beta (PCDHGB[1-4]) is highlighted in yellow. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Heatmap of the best genes of the AEs without filtering the significant nodes, and the same genes in the results of the significant nodes. The AEs are rep-
resented along the x-axis, and the genes are shown along the y-axis. 
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with reduced relapse-free survival in human breast cancer [53], and 
C7orf50 as a heritable DNA methylation mark (associated with 
breast cancer in multiple-case families) was proved to be associated 
with a higher risk in the general population (Melbourne Collabora-
tive Cohort Study) [55]. Recent work [56] also demonstrated that 
CAMTA1 expression promoted cell viability and migration/invasion 
and was therefore a potential innovative therapeutic target for 
treatment. Rossett et al. [59] provided the first demonstration that 
loss of CBFA2T3 function in the nucleolus of breast epithelial cells 
could induce morphological and molecular changes typical of cancer 
initiation. Upregulation of EIF2B5 was also associated with breast 

Gene Chromosome Chromosomal 
Region 

Position 

PRDM16 1 1p36.32 NC_000001.11 
(3069203..3438621) 

CAMTA1 1 1p36.31-p36.23 NC_000001.11 
(6785324..7769706) 

CASZ1 1 1p36.22 NC_000001.11 
(10636604..10796650, 
complement) 

PRKCZ 1 1p36.33 NC_000001.11 
(2050411..2185399) 

HDAC4 2 2q37.3 NC_000002.12 
(239048168..239401649, 
complement) 

EIF2B5 3 3q27.1 NC_000003.12 
(184135023..184145311) 

FIP1L1 4 4q12 NC_000004.12 
(53377641..53462583) 

SORCS2 4 4q12 NC_000004.12 
(7192538..7742828) 

PCDHGA1 5 5q31.3 NC_000005.10 
(141330685..141512979) 

PCDHGA2 5 5q31.3 NC_000005.10 
(141338760..141512975) 

PCDHGA3 5 5q31.3 NC_000005.10 
(141343829..141512975) 

PCDHGA4 5 5q31.3 NC_000005.10 
(141355021..141512975) 

PCDHGA5 5 5q31.3 NC_000005.10 
(141364331..141512979) 

PCDHGA6 5 5q31.3 NC_000005.10 
(141373891..141512975) 

PCDHGA7 5 5q31.3 NC_000005.10 
(141382742..141512975) 

PCDHGA8 5 5q31.3 NC_000005.10 
(141391916..141512979) 

PCDHGB1 5 5q31.3 NC_000005.10 
(141350261..141512979) 

PCDHGB2 5 5q31.3 NC_000005.10 
(141360136..141512979) 

PCDHGB3 5 5q31.3 NC_000005.10 
(141370242..141512975) 

PCDHGB4 5 5q31.3 NC_000005.10 
(141387698..141512975) 

TNXB 6 6p21.33-p21.32 NC_000006.12 
(32041153..32109338, 
complement 

GABBR1 6 6p22.1 NC_000006.12 
(29602228..29633183, 
complement) 

PSMB9 6 6p21.32 NC_000006.12 
(32854192..32859851) 

SMOC2 6 6q27 NC_000006.12 
(168441153..168667992) 

PTPRN2 7 7q36.3 NC_000007.14 
(157539052..158587823) 

MAD1L1 7 7p22.3 NC_000007.14 
(1815795..2232945, 
complement) 

C7ORF50 7 7p22.3 NC_000007.14 
(977964..1138325, complement) 

SDK1 7 7p22.2 NC_000007.14 
(3301252..4269000) 

TSNARE1 8 8q24.3 NC_000008.11 
(142212080..142403291, 
complement) 

AGO2 8 8q24.3 NC_000008.11 
(140520156..140642406, 
complement) 

PARD3 10 10p11.22- 
p11.21 

NC_000010.11 
(34109560..34815325, 
complement) 

SHANK2 11 11q13.3-q13.4 NC_000011.10 
(70467854..71252724, 
complement)  

Table 7 (continued ) 

Gene Chromosome Chromosomal 
Region 

Position 

ATP11A 13 13q34 NC_000013.11 
(112690034..112887168) 

MCF2L 13 13q34 NC_000013.11 
(112894378..113099742) 

RASA3 13 13q34 NC_000013.11 
(113977783..114132623, 
complement) 

SNHG14 15 15q11.2 NC_000015.10 
(24823608..25419462) 

CBFA2T3́ 16́ 16q24.3 NC_000016.10 
(88874858..88977207, 
complement) 

RPTOR 17 17q25.3 NC_000017.11 
(80544838..80966368) 

TBCD 17 17q25.3 NC_000017.11 
(82752048..82945914) 

TBC1D16 17 17q25.3 NC_000017.11 
(79932343..80035875, 
complement)  

Table 8 
Biological process, molecular function and cellular component go-terms signif-
icantly enriched.  

Term ID Term description FDR 

Biological process GO-terms 
GO:0007156 Homophilic cell adhesion via plasma membrane 

adhesion molecules 
8.81e− 15 

GO:0007399 Nervous system development 3.35e− 08 
GO:0007155 Cell adhesion 1.13e− 07 
GO:0007267 Cell–cell signaling 1.73e− 06 
GO:0048731 System development 5.11e− 05 
GO:0007275 Multicellular organism development 0.00011 
GO:0023052 Signaling 0.0016 
GO:0007154 Cell communication 0.0021 
GO:0032501 Multicellular organismal process 0.0071 
GO:0030812 Negative regulation of nucleotide catabolic process 0.0286 
GO:0045820 Negative regulation of glycolytic process 0.0286 
GO:0051198 Negative regulation of coenzyme metabolic process 0.0286 
GO:2001170 Negative regulation of ATP biosynthetic process 0.0355  

Molecular function GO-terms 
GO:0005509 Calcium ion binding 1.44e− 07 
GO:0046872 Metal ion binding 0.00076 
GO:0043167 Ion binding 0.0050  

Cellular component GO-terms 
GO:0031226 Intrinsic component of plasma membrane 3.54e− 05 
GO:0044459 Plasma membrane part 3.54e− 05 
GO:0005887 Integral component of plasma membrane 7.91e− 05 
GO:0071944 Cell periphery 0.0015 
GO:0005886 Plasma membrane 0.0034 
GO:0033267 Axon part 0.0232 
GO:0030054 Cell junction 0.0249 
GO:0044425 Membrane part 0.0267 
GO:0005923 Bicellular tight junction 0.0419 
GO:0043005 Neuron projection 0.0419 
GO:0150034 Distal axon 0.0419  

Table 7 
Genomic positions of the identified genes in our study.  



12

cancer [61] and PARD3 was reported as a regulator of signalling 
pathways relevant to invasive breast cancer [62]. FIP1L1 has been 
reported as a candidate synthetic lethal interaction associated with 
RB1 defects which lead to the origin of triple-negative breast cancer 
[60]. PRKCZ mediates epidermal growth factor (EGF)-stimulated 
chemotactic signalling pathways which is a key factor in the process 
of tumour development and metastasis [64]. MCF2L (also known as 
DBS) regulates cell motility in tumour-derived, human breast 
epithelial cells [66]. The protocadherin family (PCDHGA and 
PCDHGB) frequently acts as tumour suppressor genes [74,75] and 
their inactivation through promoter methylation is closely correlated 
with tumour development. Downregulation of SMOC2 was also 
associated with advanced tumour stage in breast cancer [70], and the 
expression of immunoproteasome genes such as PSMB9 was associ-
ated with longer survival [71]. Finally, TBCD has recently been re-
ported as an SLC27A4-correlated gene associated with poor 
prognosis in breast cancer [73].  

• Possible recurrence factor. Although no breast cancer reference
has been found regarding CASZ1, it proved to be bound to the
nucleosome remodelling and histone deacetylase complex [76]
which was linked directly to breast cancer oncogenesis and specif-
ically with TWIST [77] (a very well-known breast cancer biomarker
[14]). Along the same lines, RASA3 has recently been reported as a
critical regulator of Rap1 in endothelial cells [78]. Active Rap1 (as
well as the endothelium in general) plays an important role in breast
cancer tumour invasion and metastasis [79]. The AEs in this work
could have used RASA3 due to its relation with Rap1. Additionally,
SDK1 has been identified as a breast cancer heritability gene [69].
Although most cancer heritability genes are mostly tumour sup-
pressors and control cell proliferation, invasion, and metastasis, the

SDK1 function remains unknown regarding breast cancer. An asso-
ciation of serum IGF-I and IGFBP-3 concentrations with breast cancer 
risk, particularly for women with a later diagnosis of cancer, was 
established in the 1980s [80]. Since SORCS2 is highly associated to 
both molecules [81], its AEs selection appears fully justified. A 
hypomethylation event that reactivates TBC1D16 was reported to be 
a characteristic feature of the metastatic cascade [82]. Finally, 
SHANK2 interacts with the actin-binding protein cortactin which, 
when it is overexpressed, has been implicated in the progression of 
tumours [83].  

• Obesity-related biomarkers. Obesity has been established as a risk
factor for cancer incidence and cancer-related mortality [84].
However, the absence of brown adipose tissue has recently been
found to be a possible risk factor for breast cancer recurrence [85].
Moreover, a recent therapy proposal suggests the use of a combina-
tion of drugs to force post-mitotic adipogenesis [86]. PRDM16 is a
well-known master regulator of brown adipocyte differentiation
[54], and therefore its presence could provide an important tool for
prognosis. Moreover, GABBR1 is present in the top 32 most highly
significantly differentially expressed genes that associate obesity
with triple-negative breast cancer in premenopausal women [63].
Furthermore, the fact that higher levels of PTPRN2 have been found
in children with obesity [87] could lead to a future line of research
into the relationship between early-age obesity and cancer recur-
rence in future patients.

• Chemotherapeutic drug inhibitors. Over the last several decades,
farnesyltransferase inhibitors (FTIs) have been used as anti-cancer
agents [88]. Unfortunately, an increased expression of ATP11a
[89] indicates the resistance to FTIs in Bcr/Abl-positive lympho-
blastic leukemia. Our results suggest similar results regarding breast

Fig. 10. Genes interaction network (GeneMANIA).  
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4.2. Enrichment analysis 

This section provides the main findings discovered after performing 
the enrichment analysis based on genomic context and functional 
annotation previously described. 

From the list of identified genes regulated by CpG methylation, 
whose genomic positions and chromosomal features were shown in 
Table 7, we found four genes located in chromosomes 1, 6 and 7, and 
three in chromosomes 13 and 17 (Fig. 11). In chromosomes 1, 7, 13 and 

17, the genes are located in distal or telomeric regions, whilst in chro-
mosome 6, three of the genes are located at the central region of p-arm 
and the other at the distal region of q-arm. This distribution is inter-
esting because it has been described that deletions in chromosomal 1 p- 
arm are usual in cancer [94–96]. Additionally, other genes located on 
the chromosomal region 1p36 have been previously found to be meth-
ylated in breast cancer, suggesting the bona fide of our found genes [97]. 
Additionally, the 5q31.3 region, that includes the protocadherin gene 
cluster PCDHA, B and G, the first two also found in our study, is usually 
silenced in cancer [98]. Regarding the chromosomal region 6p21, its 
hypomethylation has been described as better prognostic in epithelial 
ovarian cancer [99], suggesting that methylation of genes in this region 
could favour the appearance of metastases. Also, methylation of genes 
from chromosomal region 17q25 has been connected with a higher risk 
of cancer development [100,101]. In chromosomal region 13q34, other 
genes have been also found methylated, like SOX1 [102]. 

Additionally, as can be observed in Table 8, the found GO-terms 
significantly enriched were: 13 for biological process, 3 for molecular 
function, 11 for cellular component. Due to the regulation established by 
CpG methylation, it is probable that all genes obtained in Table 6 would 
be downregulated. This result suggests that, from the list of significant 
GO terms obtained, cell adhesion is modified in tumour cells, a typical 
event in metastasis. Thus, methylation of genes connected to cell 
adhesion, like cadherins (PCDHGA[1-4] and PCDHGA[5-8]), can 
diminish cell adhesion properties. 

Finally, and according to the analysis conducted through DAVID 
tool, we identified an enrichment term with p-value <0.05 named R- 
HSA-2173791 that belongs to the Reactome Pathway category. This 
term is a TGF-beta receptor signalling in EMT (epithelial to mesen-
chymal transition). In normal cells and in the early stages of cancer 
development, signalling by TGF-beta plays a tumour-suppressive role. 
However, in advanced cancers, TGF-beta signaling promotes metastasis 

Fig. 11. Subset of genes grouped by chromosomal locations (chromosomes are not at the same scale for easy viewing).  

L.
cancer patients although no reference in the literature has been 
found to directly confirm this finding. On the other hand, MAD1L1 is 
associated with poor prognosis and insensitivity to taxol treatment in 
breast cancer [57]. Another important gene that seems to fit in this 
category is HDAC4. Downregulation of HDAC4 has proved to lead to 
the acquisition of tamoxifen resistance (for patients with estrogen-
receptor-positive tumours, treatment with tamoxifen is the gold 
standard) [65]. Sic You et al. [67] suggest that RPTOR mediates, at 
least partially, the resistance to epidermal growth factor receptor 
inhibition (a common target for chemotherapeutic treatments) in 
triple-negative breast cancer cells. Along the same lines, SNHG14 
was found to be upregulated in resistant cells against trastuzumab 
(an inhibitor used in the treatment of advanced HER2-positive breast 
cancer) when compared with breast cancer cells before treatment 
[72].
• Probable pesticide exposure indicator. Diazinon remains one of 

the most widely used insecticides in the U.S. for household as well as 
for agricultural pest control. It is also suspected to be a carcinogen
[90] and has been related to breast and ovarian cancer [91,92]. 

Taking into account that TCGA data was obtained in the U.S., it is no 
wonder that TSNARE1 was selected since it was highlighted as a gene 
with unknown functions related with Diazinon exposure [93]. 
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• Limited data. The results presented in this paper were obtained
from TCGA after a rigorous filtering to study similar cases (5-year
follow-up, primary tumour, ductal and lobular cancer, etc.).
Although this number of instances is comparable to the sizes used in
other studies, it still constitutes a limitation since we cannot state
that this set of patients is sufficiently large to conclude that
autoencoding could reach similar results in any other dataset.

• Lack of parameterisation and dependence of initial random se-
lection of weights. AEs are neural networks with a minimal set of
parameters (such as activation units) or other regularisation pa-
rameters (such as weight decay terms on hidden unit weights). None
of these parameters have been taken into account in this study, and
default parameterisation provided by the selected implementation
has been used. Furthermore, bias due to random initial selection of
weights was partially controlled but could still have influenced the
results.

Default parameterisation has also been applied to the classifiers
tested, which could have hampered their performance. In the future,
a proper optimisation procedure should be established for the clas-
sifiers and the autoencoders also.

• A limited set of competitors. In this study, a limited set of machine
learning techniques have been taken into account. There exist many
other related options that have not been covered in our experimen-
tation. In the future, we should provide insights into other machine
learning techniques. Moreover, results of techniques that could deal
with DNA methylation directly should especially be taken into ac-
count and their result should be duly reported.

• Limited validation of results. Fig. 7 provides a global view of the
most important genes in the AEs. As can be seen, there exists a large
set of weights related to CpG sites with no associated gene symbols.
Those hitherto “unknown” CpG sites could provide new hints about
breast cancer recurrence.

• Lack of data fusion. Related to the limitation outlined above, the
data in this study is limited to DNA methylation data. However, other
sources of data exist which could complete such types of data (e.g.,
RNA sequences from TCGA) to enrich our conclusions with a mul-
tiomic approach.

5. Conclusions

In this paper, we proposed a methodology to handle HDLSS datasets
of DNA methylation based on the use of AEs and survival analysis. In 
particular, this process was applied to extract meaningful information 
based on relevant genes regarding breast cancer recurrence. A study was 
also provided on the relationship between autoencoded features learnt 
by AEs and the genetic knowledge regarding breast cancer in the 
literature. 

The most heavily weighted genes in the autoencoded features 
developed by the AEs were all related to the literature on breast cancer 
and could be classified into five categories (confirmed-recurrence bio-
markers, probable-recurrence biomarkers, obesity-related biomarkers, 
chemotherapeutic inhibitors, and probable pesticide exposure in-
dicators). The enrichment analysis conducted based on genomic context 
and functional annotation revealed that the proposed methodology 
characterised the underlying information, discovering relevant genes for 
the problem under study and agreeing with prior biological knowledge. 
Functional annotation enrichment analysis found several enriched terms 
and linked connections between the genes, being an additional result 
that validates our methodology. Altogether, AEs could be used to find 
significant genes not only in breast cancer recurrence, but in other dis-
eases, using a similar approach. 

Although the results confirmed that autoencoding could select 
meaningful information from DNA methylation, further research is 
needed to verify this finding. The limited set of patients under study, the 
influence of a default parameterisation and initial selection of weights, 
and its effects on a larger set of machine learning techniques should be 
taken into account in future work. Furthermore, additional and prefer-
ably multiomic data should be used in future work in order to confirm 
the results in this study. Finally, CpG sites with unknown gene symbols 
outlined by the AEs should be studied in order to explore AE skills for the 
discovery of a new epigenetic signature related to recurrence in breast 
cancer. 
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