
Roller: A novel approach to
web information extraction

Patricia Jiménez and Rafael Corchuelo

University of Sevilla, ETSI Informática
Avda. Reina Mercedes, s/n, Sevilla E-41012, Spain

{patriciajimenez, corchu}@us.es

Abstract. The research regarding web information extraction focuses
on learning rules to extract some selected information from web docu-
ments. Many proposals are ad-hoc and cannot benefit from the advances
in machine learning; furthermore, they are likely to fade away as the Web
evolves and their intrinsic assumptions are not satisfied. Some authors
have explored transforming web documents into relational data and then
using techniques that got inspiration from inductive logic programming.
In theory, such proposals should be easier to adapt as the Web evolves
because they build on catalogues of features that can be adapted with-
out changing the proposals themselves. Unfortunately, they are difficult
to scale as the number of documents or features increases. In the gen-
eral field of machine learning, there are propositio-relational proposals
that attempt to provide effective and efficient means to learn from re-
lational data using propositional techniques, but they have seldom been
explored regarding web information extraction. In this article, we present
a new proposal called Roller: it relies on a search procedure that uses
a dynamic flattening technique to explore the context of the nodes that
provide the information to be extracted; it is configured with an open
catalogue of features, so that it can adapt to the evolution of the Web; it
also requires a base learner and a rule scorer, which helps it benefit from
the continuous advances in machine learning. Our experiments confirm
that it outperforms other state-of-the-art proposals in terms of effective-
ness and that it is very competitive in terms of efficiency; we have also
confirmed that our conclusions are solid from a statistical point of view.

Keywords: Web information extraction; knowledge and data engineering; soft-
ware information systems; propositio-relational learning; dynamic flattening.

1 Introduction

The Web is an enormous, growing source of information that is provided by a
variety of web sites. Most of them are intended for human consumption and many
of them do not provide any means to extract their information automatically,
which makes it difficult to feed automated business processes [5, 46]. This has
triggered significant interest in automating web information extraction [11, 52,
56, 62].

Our focus is on supervised rule-based information extractors that work on
semi-structured web documents. They rely on a generic algorithm that executes
extraction rules that are learnt from annotated documents that are provided by
a user. The documents are written in HTML and the information of interest
is buried into formatting tags that specify how to render it in list, tabular, or
other such regular formats. The documents must be annotated, which means
that a user must have labelled the pieces of text or the nodes to be extracted; a
machine learner is then applied to learn a rule that generalises the annotations
and is expected to work as accurately as possible on new unseen documents.

Most existing proposals build on ad-hoc machine-learning techniques that
were specifically tailored to the problem of extracting web information [1, 2, 10,
12–14, 32, 34, 38, 44, 49, 50, 53, 55, 58, 61]. This makes it difficult to adapt them
as the Web evolves because the features of the documents on which they rely
and the techniques used to analyse them are built-in. This, in turn, implies that
they cannot easily benefit from the many advances in machine learning. This
has made web information extraction quite an active research field for years.

A few authors have explored representing documents as relational data [8,
9, 20, 24, 35, 59], that is, as collections of vectors that represent the attribu-
tive features of the pieces of text or the nodes to be extracted, e.g., HTML tag,
rendering co-ordinates, or ratio of letters, plus a number of relational features
that help establish a neighbourhood around each vector, e.g., right token, left
sibling, or parent node. They all have devised proposals that got inspiration from
inductive logic programming, that is, they learn first-order rules that constraint
the attributive features of the information to be extracted as well as the attribu-
tive features of the context that can be reached by means of relational features.
These proposals can learn very expressive rules that are very effective [37], but
the learning process is usually costly and degrades as the number of examples
or features increases [7, 8, 23, 24, 48].

In the general field of machine learning, there are a number of so-called
propositio-relational proposals [40] that can deal with relational data using ex-
isting propositional techniques, that is, techniques that were originally designed
to work on attributive features only. Unfortunately, such proposals have seldom
been explored regarding learning information extraction rules; the only excep-
tion is the work by Sleiman and Corchuelo [57], who introduced an approach
that combines automata and neural networks.

In this article, we introduce Roller, which is a proposal to learn web informa-
tion extraction rules. Our contributions to the field are the following: we have
devised a new propositio-relational technique that relies on a search procedure
that uses a dynamic flattening technique to explore the context of the nodes
that provide the information to be extracted; it needs to be configured with an
open catalogue of features, which helps it adapt as the Web evolves, plus a base
learner and a rule scorer, which helps it leverage the continuous advances in
the general field of machine learning. We have conducted an extensive experi-
mental analysis that proves that our proposal outperforms other state-of-the-art
proposals regarding effectiveness; regarding efficiency, our results prove that it

is comparable to the best ones. The conclusions that we have drawn from our
experimental analysis have been confirmed using standard statistical hypothesis
tests in the literature.

The rest of the article is organised as follows: Section 2 describes the details of
our proposal; Section 3 reports on how we have configured it so that it can achieve
its best results; then, the results of our experimental analysis are presented in
Section 4; Section 5 presents the related work and a detailed comparison with
our proposal; Section 6 summarises our conclusions. Appendices A and B report,
respectively, on our experimentation environment and the performance measures
that we have used.

2 Description of our proposal

In this section, we describe Roller, which is our proposal to learn rules that
can be used to extract information from semi-structured web documents. Such
documents are written in HTML and can then be naturally represented as DOM
nodes. For the sake of brevity, we use terms document and node to refer to the
previous concepts, since there are not any ambiguities.

Our proposal works on a set of documents and an annotation. The documents
provide examples of how the information to extract is encoded and the annota-
tion assigns each of their nodes to a slot that classifies the information that it
provides. (There is an implicit null slot to which the nodes that do not provide
any information to be extracted are assigned by default.) The documents are
assumed to provide information on a given topic and to have regularities that
help learn the rule.

The main algorithm first computes a number of attributive and relational
features on the input documents. Such features are not intrinsic to our pro-
posal; on the contrary, we assume that the user provides a procedure called
featureBuilder to compute them; in other words, our proposal relies on an
open catalogue of features that allows it to evolve as the Web evolves. The at-
tributive features are then used to assemble a training set from which a rule is
learnt. Neither is the base learner used intrinsic to our proposal; on the contrary,
any technique in the literature that can work with multi-class problems using
both numeric and categoric features can be plugged into our proposal using a
user-provided procedure to which we refer to as baseLearner. The initial rule
is then evaluated on the previous training set using a user-defined rule scorer to
which we refer to as ruleScorer. The main algorithm in Roller loops as long
as a perfect rule is not found and the current rule can be expanded to a new rule
that provides some score gain. The expansion procedure explores the context of
every node, that is, the neighbouring nodes according to the available relational
features, and then selects the one whose attributive features help learn a better
rule.

Formally speaking, the problem that we address can be formulated as follows:

Requirements: a) a procedure called featureBuilder to compute a cata-
logue of features from a set of documents; b) a procedure called baseLearner

to learn a rule from a multi-class training set in which features can be both
numeric and categoric; c) a procedure called ruleScorer that returns a
score for a rule based on how well it performs in a test set.

Inputs: a) a set of documents D ; b) an annotation A.
Assumptions: a) the documents in D have a regular structure; b) if a node is

not included in annotation A, then it is implicitly assumed to belong to the
null slot.

Problem: find a rule r that characterises the information to be extracted using
some attributive features of a subset of nodes that are related by means of
some relational features; that rule must have the best possible score.

Regarding the requirements, we have performed quite an exhaustive experi-
mentation from which we have drawn the following conclusions: a good catalogue
of features must include the following attributive features: the standard W3C
HTML features, the standard W3C rendering features, and user-defined features
to characterise the contents of the information to be extracted; it must also in-
clude the standard W3C DOM features to fetch the neighbours of every node;
furthermore, we have found that JRip and Kappa seem to be best combination
of base leaner and rule scorer. The previous recommendations can be used as
a default to configure Roller. Consult Section 3 for further details on our cata-
logue of features and how to select the best combination of base learner and rule
scorer.

In the following subsections, we first present the notation and the core con-
cepts that we use, then introduce the main procedures in our proposal, and,
finally, describe some ancillary procedures to deal with training sets and feature
vectors.

2.1 Notation and core concepts

We use the standard mathematical notation to represent variables, sets, and logi-
cal formulae. There are only a few pieces of notation for which there is not a stan-
dard in the literature, namely: given elements x1, x2, . . . , xn , then ⟨x1, x2, . . . , xn⟩
denotes a sequence of them; given two sequences s1 and s2, we denote their
concatenation as s1 ⊕ s2; we denote the tuples of which a map is composed as
{x 7→ y}; given a map M , we denote its domain as domM and its range as
ranM ; maps are applied using the usual functional notation, e.g., y = M (x);
given a map M , we denote its inverse as M−1.

Next, we define the core concepts of our proposal, namely: documents, nodes,
features, annotations, slots, contexts, bindings, datasets, rules, base learners, and
rule scorers.

Definition 1 (Documents and nodes). Documents are character strings that
adhere to the HTML syntax and can then be represented as DOM nodes [31, 63].

Example 1. Figure 1 illustrates a collection with documents {d1, d2, d3}. We
show a partial view of document d1, which we use as a running example through

�������� �	�
� �� ����������� �� �������������� �� ������ ���� ���� ���� ���� ����
�	����
��	���
������� ��� ����� �� ������ �	�
�����

���� ������� �� ���� �� �	��
 ��� ��� ��� ��� ���

������

Fig. 1. Sample documents.

the rest of this section. The set of nodes includes {n1,n2, . . . ,n15}, plus the chil-
dren of the head element and the nodes that correspond to documents d2 and
d3, which are not shown. Please, note that this example is fictitious because it is
not possible to show an actual collection of documents due to space constraints,
but it is enough for illustration purposes.

Definition 2 (Attributive and relational features). An attributive feature
is a function that maps a node onto a value that represents either an HTML
attribute [31], which is specified in the HTML code of a document, a rendering
attribute [63], which is computed by a browser, or a user-defined attribute. A
relational feature is a function that maps a node onto a set of nodes with which
the former is related by means of a neighbouring relationship.

Example 2. Table 1 illustrates some of the features of the nodes of which the
documents in Figure 1 are composed. node represents the node being examined;
tag and class represent its HTML tag and its CSS class, respectively; y-pos and
x -pos represent the ordinate and the abscissa of the corresponding rendering
box, respectively; len and is-number represent the number of tokens in the text
that is associated with the node and whether it is a number or not, respectively.

Definition 3 (Annotations and slots). An annotation is a function that
maps a node onto a slot. A slot is a label that provides a meaning to the nodes
with which it is associated. There is a special slot called null that indicates that
a node does not provide any information to be extracted. The nodes that belong
to the null slot are referred to as negative examples and the others as positive
examples.

���� ��� �	�

 ���
 ���
 	�� �
�������

�� ���� ���� � � � 	
���

�� ��
 ���� � � � 	
���

�� ��� ���� � � � 	
���

�� � ���� � � � 	
���

�� �� ���� �� � � 	
���

�� �� ���
� �� � � 	
���

�� �� ���� �� � � 	
���

�� �� ���� �� � � 	
���

�	 �� ���� �� � � 	
���

��
 ��
� ���� �� � � 	
���

��� ��
� ���� �� ��� � ����

��� ��
� ���� �� � � 	
���

��� ��
� ���� �� ��� � ����

��� ��
� ���� �� � � 	
���

��� ��
� ���� �� �� � 	
���

���� ������ 	�
� ���� ��	�

�� �� �� �� ��������
�� ���� �� ���� ���

�� ���� ���� �� ������������
�� ���� �� ���� ��

�� ���� ���� ���� ��������
�� ���� ���� �� ��	�
�� ���� �� ���� ���
������
�� ���� ���� �� ����������
�	 ���� �� �� ����������
��
 ���� �� ����� ��

��� ���� ���
� �� ��

��� ���� �� ����� ��

��� ���� ����� �� ��

��� ��	� �� ����� ��

��� ��	� ����� �� ��

(a) Sample attributive features (b) Sample relational features
Table 1. Sample features.

���� ���� ���� ���� ���� ����

�� ���� �� ���� ��� ����

�� ���� �� ����	� ��� ����
	�

�� ���� �� ����	� ��� ����

�� ���� �� ���� ��� ����

�	 ���� ��
 ����
	� ��	 ����

Table 2. Sample annotation.

Example 3. Table 2 presents the annotation that corresponds to document d1 in
Figure 1. The set of slots is {Record , country , code,null}, where Record labels the
records to be extracted, which are composed of a country name that is denoted
as country and a phone code that is denoted as code.

Definition 4 (Contexts and bindings). A context is a sequence of tuples
of the form (t , rf , s), where t denotes a target variable, rf denotes a relational
feature, and s denotes a source variable. If s and rf are not null , then it binds
t to the result of applying relational feature rf to s, that is, t = rf (s); if both rf
and s are null , then it is an initial context tuple that indicates that t is bound
to the set of all of the nodes in the input documents. Simply put, a context is
a symbolic representation of a binding; the binding itself is a map in which the
variables in a context are bound to their corresponding nodes.

Example 4. Regarding the documents in Figure 1, context ⟨(node0,null ,null),
(node1, parent ,node0)⟩ sets variable node0 to the nodes in the input documents
and then variable node1 to their parents. The corresponding binding is the fol-
lowing: {node0 7→ {n1,n2, . . . ,n15, . . .},node1 7→ {n1,n3,n5,n6,n7,n8,n9, . . .}}.

Definition 5 (Datasets and rules). A dataset is a function that maps ev-
ery node in the input documents onto a vector with its attributive features and
the attributive features of some neighbours (possibly none); such neighbours are
fetched by means of relational features and they are introduced by means of a
context. The datasets that are used to learn rules are referred to as training sets
and the datasets that are used to score rules are referred to as test sets. A rule
is a function that maps a vector onto a slot that is expected to provide its correct
meaning.

Example 5. Table 3(a) shows a sample dataset in which the context involves
the nodes in the input documents and their parents. Columns node0 and node1
present the corresponding bindings. Table 3(b) shows a sample rule that was
learnt from the previous dataset; it is of the form ⟨r1, r2, . . . , rn⟩ (n ≥ 1), where
each component ri is of the form ci,1∧ci,2∧ . . .∧ci,ki ⇒ slot = s (i = 1 . .n, ki ≥
0); each ci,j is a simple condition of the form n.f θ v , where n denotes a target
variable in a context, f denotes an attributive feature, θ is a comparator, and v
is a value. Given a node to classify, it is first transformed into its corresponding
vector, and then the components of the rule are applied in sequence; the last
component assigns a default slot to nodes that cannot be better classified by the
previous components.

Definition 6 (Base learners and rule scorers). A base learner is a procedure
that takes a training set and an annotation as input and returns a rule. A rule
scorer is a function that takes a rule and a test dataset and returns a value that
indicates how good the rule is at predicting the correct slot for each node in the
dataset. The scores must be normalised in range [0.00 . . 1.00] so that the closer
to the lower bound, the worse, and the closer to the upper bound, the better.

����� ��� �	�

 ���
 ���
 	�� �
������� ����� ��� �	�

 ���
 ���
 	�� �
�������

�� ���� ���� � � � 	
��� ���� ���� ���� ���� ���� ���� ����

�� ��
 ���� � � � 	
��� �� ���� ���� � � � 	
���

�� ��� ���� � � � 	
��� �� ���� ���� � � � 	
���

�� � ���� � � � 	
��� �� ��� ���� � � � 	
���

�� �� ���� �� � � 	
��� �� ��� ���� � � � 	
���

�� �� ���
� �� � � 	
��� �� ��� ���� � � � 	
���

�� �� ���� �� � � 	
��� �� �� ���� �� � � 	
���

�� �� ���� �� � � 	
��� �� �� ���� �� � � 	
���

�	 �� ���� �� � � 	
��� �� �� ���
� �� � � 	
���

��
 ��
� ���� �� � � 	
��� �� �� ���� �� � � 	
���

��� ��
� ���� �� ��� � ���� �� �� ���� �� � � 	
���

��� ��
� ���� �� � � 	
��� �� �� ���� �� � � 	
���

��� ��
� ���� �� ��� � ���� �� �� ���� �� � � 	
���

��� ��
� ���� �� � � 	
��� �	 �� ���� �� � � 	
���

��� ��
� ���� �� �� � 	
��� �	 �� ���� �� � � 	
���

����� �������������������

(a) Sample dataset.

⟨
node0.x -pos ≥ 100 ⇒ slot = code,
node0.tag = span ∧ node1.y-pos ≥ 16 ∧ node1.y-pos ≤ 32 ⇒ slot = country ,
node1.y-pos ≤ 0 ⇒ slot = null ,
node1.y-pos ≥ 48 ⇒ slot = null ,
⇒ slot = Record
⟩

(b) Sample rule.

Table 3. Sample dataset and rule.

Example 6. Regarding the rule in Table 3(b), a rule scorer might score it at 0.94
when it is evaluated on the dataset in Table 3(a). Note that it is not generally
possible to assess a score in isolation unless it is 0.00 or 1.00; that is, a score of
0.94 does not mean that the rule works well in 94% of the examples to which it
is applied or something like that; it simply means that a rule that scores at, say,
0.90 is worse and a rule that scores at, say, 0.98 is better.

2.2 Main procedures

Roller(D ,A)

– Step 1: compute features.
(AF ,RF) = featureBuilder(D)

– Step 2: learn an initial rule.
c = (node0,null ,null)
C = ⟨c⟩
B = {node0 7→ domA}
TS = createTrainingSet(c,AF ,RF ,A)

r = baseLearner(TS ,A)

– Step 3: find an expansion.
keepSearching = (ruleScorer(r ,TS) ̸= 1.00)

while keepSearching do
(C ,B ,TS , r ′) = findExpansion(C ,B ,TS , r ,AF ,RF ,A)

keepSearching = (r ′ ̸= r ∧ ruleScorer(r ′,TS) ̸= 1.00)

r = r ′

end
return (C , r)

Fig. 2. Roller’s main procedure.

Figure 2 presents the main procedure in Roller. It works on a set of documents
D and an annotation A; it returns a tuple (C , r), where C is a context and r is
a rule. It consists of three steps that run in sequence, namely:

– The first step consists in computing the attributive and the relational fea-
tures of the nodes of which the input documents are composed. This is per-
formed by a user-provided procedure called featureBuilder, which works
on a set of documents D and returns a tuple (AF ,RF), where AF denotes
the set of attributive features and RF the set of relational features that it
has computed. It is quite a simple procedure from a conceptual point of view:
it loads the input documents, parses them into DOM trees, iterates over the
resulting nodes, and computes the features that are provided in a catalogue.
Note, however, that it is a little more involved from a technology point of
view since it requires to interact with DOM-specific, browser-specific, and
user-defined APIs to compute the HTML, the rendering, and the user-defined

features, respectively. Such technology details are out of the scope of this ar-
ticle, in which our focus is on presenting the proposal, not on delving into
the technology intricacies to implement it. Working on tuples of the form
(AF ,RF ,A), where AF is a set of attributive features, RF is a set of rela-
tional features, and A is an annotation, is very common in our proposal; for
the sake of brevity, we refer to such tuples as input configurations.

– The second step consists in learning an initial rule building, exclusively,
on the attributive features of the nodes in the input documents. To do
so, we have to create an initial context of the form C = ⟨c⟩, where c =
(node0,null ,null). The corresponding binding B simply maps variable node0
onto the set of all nodes in the input documents, which can be very easily
computed from the domain of the input annotation A. Then, a training set
TS is created; it maps every node bound to node0 in the initial context tuple
c onto a vector that represents its attributive features. The base learner is
finally invoked on training set TS and the input annotation A in order to
learn a rule r . Working on tuples of the form (C ,B ,TS , r), where C denotes
a context, B its corresponding binding, TS is a training set for context C ,
and r a rule that was learnt from that training set is very common in our
proposal; for the sake of brevity, we refer to such tuples as rule configurations.

– The third step consists in finding an expansion, which is a term that we use
to refer to a rule configuration that results from exploring some neighbours
of the nodes in the context of the best rule configuration found so far. Ideally,
such expansion should provide a rule that scores better than the current rule.
To achieve such a goal, we combine the attributive features of the nodes in the
current context with the attributive features of the nodes that are explored
in the expansion. If an expansion that achieves a better score is found, this
step is repeated again; otherwise, it stops and the procedure returns the best
rule found and its associated context.

The procedure to find an expansion is presented in Figure 3. It works on
the rule configuration (C ,B ,TS , r) that corresponds to the best rule found
so far and an input configuration (AF ,RF ,A); it returns a rule configuration
(C ∗,B∗,TS∗, r∗) such that r∗ improves or equals the score achieved by r . It
consists of the following steps:

– The first step initialises a rule configuration of the form (C ∗,B∗,TS∗, r∗)
to the input rule configuration; the procedure searches for candidate expan-
sions and stores the best one that it finds in this starred rule configuration.
The criterion used to determine if an expanded configuration is better than
another is based on the score achieved by the corresponding rule; we use
variable g∗ to save the score gain that is achieved when the current rule is
replaced by the best expansion found so far. It is initialised to 0.00 because
the first configuration coincides with the input configuration.

– The second step is a loop that explores candidate expansions. It iterates over
the set of pairs (c, rf) of the Cartesian product of the context tuples in C
and the relational features in RF , as long as the best expansion found is

findExpansion(C ,B ,TS , r ,AF ,RF ,A)

– Step 1: initialise rule configuration.
C ∗ = C ; B∗ = B ; TS∗ = TS ; r∗ = r
g∗ = 0.00

– Step 2: explore candidate expansions.
for each (c, rf) ∈ C × RF as long as ruleScorer(r∗,TS∗) ̸= 1.00 do

c′ = (a new variable, rf , target of c)
if ¬redundant(c′,C) then

– Step 2.1: expand rule configuration.
C ′ = C ⊕ ⟨c′⟩
B ′ = B ∪

∪
{rf (n) | n ∈ B(source of c′)}

TS ′ = expandTrainingSet(TS , c′,B ′,AF ,RF ,A)

r ′ = baseLearner(TS ′,A)

– Step 2.2: save the expanded rule configuration.
g ′ = ruleScorer(r ′,TS ′)− ruleScorer(r ,TS)
if g ′ > g∗ then

C ∗ = C ′; B∗ = B ′; TS∗ = TS ′; r∗ = r ′

g∗ = g ′

end
end

end
return (C ∗,B∗,TS∗, r∗)

Fig. 3. Procedure to find an expansion.

not perfect. For each such pair, a new context tuple of the form (x , rf , y) is
created, where x denotes a new variable that is not used in context C and y
denotes the target variable in context tuple c; simply put, the new context
tuple binds a new variable to the result of applying relational feature rf to
the nodes that are currently bound to the target of context tuple c. This
allows to explore the neighbourhood of every node in the current context C .
Note, however, that only context tuples that are not redundant with regard
to the current context must be explored. Such context tuples are then used
to create a new rule configuration (C ′,B ′,TS ′, r ′). The score gain of r ′ with
respect to the input rule r is then computed; if it is greater than the score
gain of the best expansion found so far, then it means that the new expansion
must be saved since it has resulted in a better rule. This step iterates until
a perfect rule is found or the whole Cartesian product is explored; in both
cases, the best rule configuration found is returned.

The check for redundancy is implemented by means of predicate redundant ,
which given a context tuple (t , rf , s) and a context C holds as long as there is
a context tuple (t ′, rf ′, s ′) in C such that s = s ′ and rf = rf ′ or s ′ = t and
rf ′ = rf −1. The first condition is trivial since it amounts to saying that context
tuples (t , rf , s) and (t ′, rf , s), where t ̸= t ′, are redundant because they bind the
same nodes to different variables, which does not help explore new neighbours.
The second condition is a little more involved; it amounts to saying that context

tuples (t , rf , s) and (t ′, rf −1, t), where t ̸= t ′, are redundant because the second
one binds t ′ to the same nodes that are bound to s. Formally speaking, rf is the
inverse of rf ′ if ∀n1 · rf1(n1) = N ⇒ {n1} =

∪
{rf2(n2) | n2 ∈ N }.

Example 7. Assume that Roller is executed on the input documents and the
annotation that are sketched in Figure 1 and Table 2, respectively. It first uses
the user-provided featureBuilder procedure to compute the sets of attributive
and relational features that are sketched in Table 1. These features and the
annotation are used to create an initial training set that corresponds to context
tuple (node0,null ,null), which is sketched in Table 3(a). Note that the previous
figure sketches a training set that corresponds to two context tuples, namely, the
initial context tuple (node0,null ,null) and another context tuple that explores
the parents of the nodes that are bound to node0, that is, (node1, parent ,node0).
The initial training set corresponds to the part of the figure that refers to the
initial context tuple. If we apply a base learner to learn a rule from this training
set, then we might get the following rule:

⟨
node0.tag = span ∧ node0.x -pos ≤ 0 ⇒ slot = country ,
node0.len ≥ 8 ⇒ slot = null ,
node0.y-pos ≥ 48 ⇒ slot = null ,
node0.tag = span ⇒ slot = code,
⇒ Slot = Record

⟩,

which is scored at 0.90. That means that it is reasonably good at classifying
each node in the input documents into the appropriate slot, but it is not perfect.
Thus, it makes sense to explore the neighbouring nodes in order to find out if
there is one whose attributive features can contribute to producing a better rule.
Since the context currently has the initial context tuple (node0,null ,null) only
and the relational features are parent , left , right , and child , then the procedure
to find an expansion has to explore the following additional contexts:

⟨(node0,null ,null), (node1, parent ,node0)⟩,
⟨(node0,null ,null), (node1, left ,node0)⟩,
⟨(node0,null ,null), (node1, right ,node0)⟩,
⟨(node0,null ,null), (node1, child ,node0)⟩.

Exploring the first context amounts to creating a new training set in which
the attributive features of each node are combined with the attributive features
of their parents. In this case, the resulting training set is sketched in Table 3(a).
If the base learner is applied to this training set, then we might get the following
new rule:

⟨
node0.x -pos ≥ 100 ⇒ slot = code,
node0.tag = span ∧ node1.y-pos ≥ 16 ∧ node1.y-pos ≤ 32 ⇒ slot = country ,
node1.y-pos ≤ 0 ⇒ slot = null ,
node1.y-pos ≥ 48 ⇒ slot = null ,
⇒ slot = Record

⟩,

which is scored at 0.94. Exploring the remaining context tuples results in similar
rules, none of which is scored better. That means that we now have to explore
the following contexts:

⟨(node0,null ,null), (node1, parent ,node0), (node2, left ,node0)⟩,
⟨(node0,null ,null), (node1, parent ,node0), (node2, right ,node0)⟩,
⟨(node0,null ,null), (node1, parent ,node0), (node2, child ,node0)⟩,
⟨(node0,null ,null), (node1, parent ,node0), (node2, parent ,node1)⟩,
⟨(node0,null ,null), (node1, parent ,node0), (node2, left ,node1)⟩,
⟨(node0,null ,null), (node1, parent ,node0), (node2, right ,node1)⟩.

Note that there are two contexts that need not be explored, namely: con-
text ⟨(node0,null ,null), (node1, parent ,node0), (node2, parent ,node0)⟩ is not ex-
plored because it does not provide any additional data to the training set and
would result in the same rule; context ⟨(node0,null ,null), (node1, parent ,node0),
(node2, child ,node1)⟩ is not explored because context tuples (node1, parent ,node0)
and (node2, child ,node1) are redundant because relational feature child is the in-
verse of relational feature parent , so exploring it would result in the same rule
because node2 = node0; that is, both node2 and node0 would be bound to ex-
actly the same nodes. Note, however, that the new contexts are allowed to include
context tuples that have been explored previously; for instance, a context of the
form ⟨(node0,null ,null), (node1, parent ,node0), (node2, left ,node0)⟩ explores the
left sibling of every node again, but in a different context: previously, we explored
the nodes and their left siblings and now we explore the nodes, their parents,
and their left siblings together.

In this case, the context that results in the best rule is ⟨(node0,null ,null),
(node1, parent ,node0), (node2, parent ,node1)⟩, namely:

⟨
node0.tag = span ∧ node0.x -pos ≥ 100 ⇒ slot = code,
node0.tag = span ∧ node0.x -pos ≤ 0 ∧ node2.class = list ⇒ slot = country ,
node0.tag = li ∧ node0.y-pos ≤ 32 ⇒ slot = Record ,
⇒ slot = null

⟩.

This rule is scored at 1.00, which means that it is a perfect rule, that is, it
assigns every node in the training set to the correct slot. So the search for a rule
finishes here. Note that the resulting rule takes into account nodes node0 and
node2 only; node1 was used just to reach node2, but its attributive features do
not provide any classification power in this example.

2.3 Working with training sets

createTrainingSet(c,AF ,RF ,A)

TS = ∅
N = domA
for n ∈ N do

v = computeVector(n,AF , c)
TS = TS ∪ {n 7→ {v}}

end
return TS

expandTrainingSet(TS , c,B ,AF ,RF ,A)

TS ′ = ∅
for {n 7→ V } ∈ TS do

V ′ = expandVectors(
n,V , c,B ,AF ,RF ,A)

TS ′ = TS ′ ∪ {n 7→ V ′}
end

return TS ′

(a) Creating training sets. (b) Expanding training sets.

Fig. 4. Procedures to deal with training sets

Training sets associate nodes with the vectors that describe their attributive
features within a given context. Figure 4 presents the two ancillary procedures
that we propose to deal with training sets.

The first procedure is createTrainingSet , which works on an initial context
tuple c and an input configuration (AF ,RF ,A); it returns a training set in
which every node in the domain of the annotation is mapped onto a singleton
that provides its representation as a vector. Initially, every node is associated
with a unique vector, but if the training set is expanded using a multi-valued
relational feature, then the initial vectors need to be combined with the vec-
tors that correspond to several neighbours. This is the reason why training sets
associate nodes with sets of vectors.

The second procedure is expandTrainingSet , which works on a training set
TS , a context tuple c, a binding B , and an input configuration (AF ,RF ,A); it
returns a training set in which every node in TS is mapped onto a set of expanded
vectors that represent the attributive features that are already present in training
set TS plus the attributive features that correspond to the nodes bound in B
by context tuple c.

Example 8. Table 3(a) illustrates a training set that is created from the attribu-
tive features in Table 1(a). The initial training sets consists of the vectors that
correspond to context tuple (node0,null ,null); the same figure illustrates how
this training set is expanded to take into account the features of the parents of
every node.

2.4 Working with vectors

Vectors represent the attributive features of a subset of nodes in the input doc-
uments in a format that is suitable to learn a rule using a propositional base
learner. We need two ancillary procedures to deal with them, which are presented
in Figure 5.

computeVector(n,AF , c)
v = ∅
for af ∈ AF do

v = v ∪ {(c, af) 7→ af (n)}
end

return v

expandVectors(n,V , c,B ,AF ,RF ,A)

N = B(target of c)
rf = relation of c
V ′ = ∅
for (m, v) ∈ N × V such that m ∈ rf (n) do

w = computeVector(m,AF , c)
V ′ = V ′ ∪ {v ∪ w}

end
return V ′

(a) Computing vectors. (b) Expanding vectors.

Fig. 5. Procedures to deal with vectors

The first procedure is computeVectors. It works on a node n, a set of attribu-
tive features AF , and a context tuple c. It computes a vector that is implemented
as a map in which each attributive feature is associated with its corresponding
value on node n regarding context c.

The second procedure is expandVectors. It works on a node n, a set of vectors
V that is associated with n in a given training set, a context tuple c, a binding
B , and an input configuration (AF ,RF ,A). It first computes the set of nodes N
that correspond to the target of context tuple c and, after getting the relational
feature in c and initialising the result V ′ to the empty set, it iterates over the
set of pairs (m, v) in which m denotes a node in N and v is one of the vectors
in V ; note that only pairs in which m ∈ rf (n) are considered, that is, pairs in
which node m is a neighbour of node n regarding relational feature rf . For every
such pair, we first compute the vector w that corresponds to m using the set of
attributive features AF and the context tuple c; that vector is then merged with
vector v , that is, vector v is expanded with the attributive features of node m.

Example 9. Let us examine node n10 in the document in Figure 1 and the ini-
tial context tuple c = (node0,null ,null). Recall that Table 1(a) reports on the
attributive features of the nodes in our running example. The vector that is
associated with this node is the following: v = {(c, tag) 7→ span, (c, class) 7→
null , (c, y-pos) 7→ 16, (c, x -pos) 7→ 0, (c, len) 7→ 1, (c, is-number) 7→ false}. If
this vector is expanded with context tuple c′ = (node1, parent ,node0), then it
becomes v ′ = {(c, tag) 7→ span, (c, class) 7→ null , (c, y-pos) 7→ 16, (c, x -pos) 7→
0, (c, len) 7→ 1, (c, is-number) 7→ false, (c′, tag) 7→ li , (c′, class) 7→ null ,
(c′, y-pos) 7→ 16, (c′, x -pos) 7→ 0, (c′, len) 7→ 2, (c′, is-number) 7→ false}.

3 Configuring Roller

Roller has three variation points, namely: procedure featureBuilder, which
computes a catalogue of features, baserLearner, which learns a rule from a
propositional training set, and ruleScorer, which assesses how good a rule
is. There are several alternatives to implement these procedures; the decision

must, obviously, be made building on an experimental study that proves that
the chosen combination of alternatives is very good.

The details regarding our experimentation environment and the performance
measures that we used are described in Appendices A and B, respectively. In the
following subsections, we first present a method that helped us make a decision
regarding which the best combination of alternatives was; then, we report on the
feature builder, the base learner, and the rule scorers that we examined; finally,
we report on the results of the experimental analysis that we carried out to find
the best combination of alternatives.

3.1 A ranking method

Since we have to compare many alternatives regarding the variation points in
Roller, we need a method to rank them building on a number of performance
measures that we denote as M . Without loss of generality, we can assume that
M can be partitioned as M = A ⊎ B , where A denotes a set of performance
measures whose value must be maximised and B denotes a set of performance
measures whose value must be minimised.

For the method to work well, we first need to normalise the values of the
measures so that they all range within the same interval and the interpretation of
the lower and the upper bounds is homogeneous. Assume that we are dealing with
a performance measure m, that we have gathered a set of values W regarding it,
that a denotes the minimum value in set W , and that b denotes the maximum
value. If m ∈ A, then we define its set of normalised values as W ′ = {w ′ | ∃w ·
w ∈ W ∧w ′ = (w −a)div (b−a)}; if m ∈ B , then we define its set of normalised
values as W ′ = {w ′ | ∃w · w ∈ W ∧ w ′ = 1.00 − (w − a) div (b − a)}. (a div b
equals a/b if b ̸= 0.00; otherwise, it equals 1.00.) Note that the values in W ′

range in interval [0.00 . . 1.00], so that the closer a value to the lower bound the
worse and the closer to the upper bound the better.

We now have to transform the normalised values of the measures into a
rank. We assume that the experimenter provides a map β that assigns a relative
weight in range [0.00 . . 1.00] to every measure in M ; obviously, the weights
must sum up to 1.00 so that they are consistent. The idea behind weighting the
performance measures is that the researcher can provide a hint regarding the
measures on which he or she is most interested. Note that we need to perform
several experiments to rank a number of alternatives, which means that we
actually compute a set of values for every measure. To work with that set, we
need to compute their mean value, but we also have to take into account their
deviation since a high deviation means that the mean value of a variable is not
actually representative, that is, it is not good to estimate a rank. To deal with
this problem, we have devised the following formula:

K p =
∑

m′∈M ′

β(m)K p
m′

K p
m′ =

mdrpm′

mdrmax
m′

where p denotes an alternative to be compared, M ′ denotes a set of new mea-
sures that are in one-to-one correspondence with the measures in M , but are
normalised according to the previous procedure, and mdrpm′ denotes the mean-to-
deviation ratio of alternative p with regard to normalised performance measure
m ′ and mdrmax

m′ denotes the maximum mean-to-deviation ratio of performance
measure m ′ across all of the alternatives to compare. This ratio is defined as
follows:

mdrpm=

{
µp
m

σp
m
µp

m if σp
m ̸= 0.00

µp
m otherwise

where m denotes an arbitrary performance measure, µp
m denotes its mean value

regarding alternative p, and σp
m its standard deviation regarding alternative p.

Note that this ratio maps every measure onto a value that weights its mean
value with the inverse of the coefficient of variation. Intuitively, the smallest the
coefficient of variation, the more representative the mean value; in other words,
the smallest the coefficient of variation of a measure, the more can that measure
contribute to the rank of an alternative.

Summing up, K p provides a rank for alternative p in which both the mean
value of the performance measures and their deviation are taken into account.
We think that this is a good approach since it blurs the contribution of measures
that are not stable enough, but emphasises the others. Please, note that it was
not our purpose to devise a general-purpose ranking method, but an ad-hoc
method that has proven to guide our search for a good alternative very well.

Before concluding, we would like to mention that our experimental analysis
has revealed that some alternatives fail when they are applied to some datasets.
Sometimes, the reason is that they consume too much memory; sometimes, they
cannot learn a rule in a reasonable time (we set a deadline of 15 CPU minutes);
sometimes, the dataset has some characteristics that make it impossible to exe-
cute the base learner on it. That means that we also need to compute a failure
ratio for every alternative under consideration, which is defined as follows:

FR =
F
D
,

where F denotes the number of datasets on which an alternative did not work,
and D denotes the number of datasets on which the alternative was run. In-
tuitively, the closer to 0.00 the better and the closer to 1.00 the worse. We
obviously, are not willing to accept an alternative whose failure ratio is different
from 0.00, since that means that it is not generally applicable.

3.2 Our feature builder

Our feature builder computes the standard HTML features and the standard ren-
dering features of the input documents, as they are defined in the corresponding

���������	
���� ��������������������� �������������

���������	�����	���� ��������������������� ��������

���������	����������� ��������������������� ������

����������	�
�� �������	
���� �������

������������� �������	�����	���� �� !�

��������������� �������	����������� ��"�#�����

������������� ��������� ��
����

������� ������ ��������� ���	���

�������"����� 	�������� ����������

�������"�#����������� 	�������������	�
�� ���$"

�������"�#����������� 	����������
���� ��%��

�������"�#����������� 	��������!����� ���������

������������� 	��&�������'�� ���������

������������� �����	�
��

��������������������� �������

(a) Some attributive features.

�������� 	���
��	�� ����
��	��

���	���� 	���
��	��

�����
��	�� ������

(b) Some relational features.

Table 4. Partial catalogue of user-defined features.

W3C recommendations [31, 63]. Additionally, it computes some user-defined fea-
tures; Table 4 shows only the user-defined features that have proven to be useful
in our experiments.

The attributive features can be classified according to the prefixes of their
names into the following groups: a) prefix beginsWith identifies some features
that check if the text of a node begins with a token that belongs to a given
lexical class, e.g., a number or a punctuation symbol; b) prefix countOf identifies
some features that count the number of tokens in the text of a node that fulfil a
given property, e.g., the count of alpha-numeric tokens or the count of lowercase
tokens; c) prefix endsWith denotes features that check if the text in a node ends
with a token that belongs to a given lexical class, e.g., a number or a punctuation
symbol; d) prefix first denotes features that return a prefix of the text in a node,
e.g., the first token or the first two tokens (which are commonly referred to as
bigrams); e) prefix has identifies features that check if there is a subsequence of
tokens in the text of a node that fulfils a given property, e.g., there is a bracketed
number or a question mark; f) prefix is denotes a feature that checks if the text
in a node matches a given pattern, e.g., whether it is capitalised or a phone
number; g) finally, prefix last denotes features that return a suffix of the text in
a node, e.g., the last token or the last bigram.

The catalogue of relational features provides common features to navigate
from a node to its neighbours in a DOM tree, namely: ancestor, children, first
sibling, last sibling, left sibling, right sibling, and parent.

Recall that Roller is not bound with a particular choice of features. It is open
to work with the features that a user thinks are the most appropriate for a given
problem. The previous features provide just a catalogue that has proven to work
very well in our experiments.

3.3 Our base learner and rule scorer

� � �� �� �� �� � � � �� �� �� �� � � � �� �� �� �� �

	
�� ���� ���� ���� ����	 ���� ���� ���� ���� �
��� ���
 ���� ���� ���� �
�	
 ���

��
�� ���� ���� ���� ���

 ���� ���
 ���	 ���� �
��
 ��	� ���� ���� ���� ����� ����

��� ���� ���� ���� ����� ��
� ���� ���	 ���� �
�	� ��
� ���� ���
 ���� ����
 ��
�

	
�� ���� ���� ���� �����
 ���� ���� ���� ���
 ��
��� ���� ��	� ���� ���� ����� ����

��
�� ���	 ���� ���
 ������� ���� ���� ���� ���� ������ ���� ���� ���� ���� �
���	 ����

��� ���� ���	 ���� 	���
 ���� ���� ���	 ��	� ��
��� ���� ����

���
��� ����� ����

	
�� ���� ���� ���� ����� ���
 ���	 ���
 ���� ����� ���� ��	
 ��	� ��	� ����
 ���

��
�� ���	 ���
 ���� ������ ����	 ���� ���� ���	 ����� ���� ���� ���� ���� �
��� ����

��� ��	� ��	� ���� ����	 ���� ����� 	��	 ���� �	��	 ���� ����� ����� ����� �
��� ����

	
�� ���	 ��
� ���� ���	� ���
 ���� ���� ���� ���� ���� ���� ��
� ��
� ����� ����

��
�� ���	 ���� ���	 �����
��� ���� ���� ���� ���� ���� ���� ���� ���� �
�

���

��� ���� ���� ��
� ����� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ����� ����

	
�� ��	� ��	� ��	� �	�
� ���� ��	� ��	� ��	� ����� ���	 ��	� ��	� ��	� ����	 ����

��
�� ���� ���� ���� ������ ��
� ���� ���� ���	 ����
 ���	 ���� ���� ���� ���
� ����

��� ��
	
���
��� 	�	� ���� ����� ����� 	��� ����� ���	 ����� ���
� ���	� ����� ����

	
�� ���
 ���� ���� �	��� ��
	 ��	� ����� ���	 ��	� ��	� ��	� ��	� ��	� ����� ����

��
�� ���	 ���� ���
 ����	 ���� ���	 ����
 ���	 ���� ���� ���� ���� ����
���� ���	

��� ���� ��
� ���� ���
� ���� 	��� ����� ���	 ����� ����� ����� ����	 ����� ����� ���

� � �� �� �� �� � � � �� �� �� �� � � � �� �� �� �� �

	
�� ���� ���� ���� ����	 ���	 ���� ���� ���� �
��� ���� ���� ���� ���� ����� ����

��
�� ���� ���� ���� ����� ���� ���� ���� ���� ���
� ���� ���� ���� ���� ����� ����

��� ���� ���
 ���� ����� ���� ���� ���
 ���� ����� ��
� ���� ���
 ���� ����� ��
�

	
�� ��	� ���� ���� ����� ���� ��	� ���� ���� 	���� ���� ��	� ���� ���� �
��� ����

��
�� ���� ���� ���� �	���� ���� ���� ���� ���� ������ ���� ���� ���� ���� �	���
 ����

��� ����

���
��� ���	� ���� ����

���
��� ����� ���
 ����

���
��� ����� ����

	
�� ��	
 ��	� ��	� ����� ���
 ��	
 ��	� ��	� ����� ���� ��	
 ��	� ��	� �
��� ���

��
�� ���� ���� ���� ����	 ���� ���� ���� ���� ����� ���� ���� ���� ���� ����� ����

��� ����� ����� ����� ����� ���� ����� ����� ����� ����� ���
 ����� ����� ����� ����� ����

	
�� ���� ��
� ��
� ���	� ���� ���� ��
� ��
� ���		 ���� ���� ��
� ��
� ����� ��
�

��
�� ���� ���� ���� �
��	
��� ���� ���� ���� ����

��� ���� ���� ���� �
�	�
�
�

��� ��
� ���� ���� ����� ��	� ��
� ���� ���� ����� ���� ��
� ���� ���� ����� ����

	
�� ��	� ��	� ��	� ���	� ���� ��	� ��	� ��	� ����� ���� ��	� ��	� ��	� ����� ����

��
�� ���� ���� ���� �
��
 ���	 ���� ���� ���� ���
� ���� ���� ���� ���� �
��� ����

��� ����� ���
� ���	� ����� ���� ����� ���
� ���	� ����� ���� ����� ���
� ���	� ����� ����

	
�� ��	� ��	� ��	� ����� ���� ��	� ��	� ��	� ����� ���� ��	� ��	� ��	� �
��	 ����

��
�� ���� ���� ����
���� ���	 ���� ���� ���� ����� ���� ���� ���� ���� ����� ���	

��� ����� ����	 ����� ����	 ���
 ����� ����	 ����� ����� ���� ����� ����	 ����� ����
 ����

�
�
�
��
�

�
�
	

�

�
�
�
�
�

�
�
�
	

��
�

�
�
�
��
�

�
�
	

�

�
�
�
�
�

�
�
�
	

��
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

����������������
�� ����
����
���
���� ������
��

���� ���	

���	

����

����

��
�����

����

����

���

�������

����

����

����

���� ����

���� ���	

���� ��	�

����

���	

���� ���	

���� ����

���� ����

���� ����

���	

���� ��	�

���� ����

���� ���

����

���� ���

���
 ��	�

���� ����

����

���
 ���	

����� ������

���� ���	

���� ���	

���� ��	�

����

��	�

���� ����

���� ���	

���� ��	�

���� ����

����

���	

����

���� ���

���
 ��	�

���

���
 ��	�

Table 5. Experimental results regarding several variants of Roller.

Regarding the base learner, we have explored Conjunctive Rule, Decision
Table, JRip, NNge, PART, and Ridor [22]. They are available in Weka and
can deal with multi-class problems and both numeric and categoric attributive
features. A problem with them is that they do not work well with training
sets that are unbalanced, which is the case in our context. The reason is that
input documents are composed of hundreds of nodes, most of which are negative
examples, cf. Table 14 in Appendix A. Thus the base learner must balance the

� � �� �� �� �� � � � �� �� �� �� � � � �� �� �� �� �

	
�� ���� ���� ���� ����� ���� ���� ���� ���	 ���
� ���� ���� ���� ���� ���
� ����

��
�� ���� ���� ���� ����� ���	 ���� ���� ���� ����� ��	� ���� ���� ���� ����� ���	

��� ���� ���� ���� �
��� ���� ���� ��	� ���� �
��	 ���� ���� ���� ���� ����� ����

	
�� ��	� ��	� ��	� ����	� ���� ��	
 ��	� ��	� ������ ���
 ��	� ��	
 ��	� �	���� ��
�

��
�� ���
 ���� ���
 �����
� ���
 ���	 ���� ���� �
�
��� ���� ���� ���� ���� ������
 ����

��� ���	 ���� ���	
���� ���� ���� ��	� ����
���� ���� ���	 ��
� ���� ���
� ����

	
�� ���� ���� ���� ������ ��
� ��	� ��	� ��		 ������ ��
� ���� ���� ���� ����� ����

��
�� ���� ���� ���� ������ ���� ���	 ���� ���	 ������
��� ���� ���� ���� ������ ����

��� ���� ����
�	� �	��
 ���� ����
��� ���� ����	 ��
� 	��� 	��� ���
 ����� ����

	
�� ��	� ���� ���� ����
 ���� ��	� ���� ���� ����� ���� ��	� ���� ���� ���
� ����

��
�� ���� ���	 ���� ����� ���� ���� ���	 ���� ����� ���� ���� ���	 ���� �
��� ���

��� ���
 ���� ��	� ����	 ���� ���
 ���� ��	� ����� ���� ���
 ���� ��	� ����
 ���	

	
�� ���
 ���� ���� �
��� ���� ���� ���� ���� ����� ���� ���
 ���� ���� ����� ���	

��
�� ���� ���	 ���	 ����� ���
 ���� ���� ���� �
����
��� ���� ���	 ���	 	��
� ����

��� ����� ����� ����� ����� ���� ���� ���� ���� �
��� ���� ����	 ����� ����� ����� ����

	
�� ���� ���� ���� ����		 ���� ��	� ��		 ��	� ������ ���� ���� ���� ���� �����
 ��
�

��
�� ���
 ���� ���� ��	��� ���� ���� ���� ����
����� ���
 ���� ���� ���� ��
��� ��	�

���
�
� ���

��
 ����� ���� ���� ���� ���� ����� ���� ��
� ���	 ���
 ����� ����

� � �� �� �� �� � � � �� �� �� �� � � � �� �� �� �� �

	
�� ���� ���� ���	 ����� ���	 ���� ���� ���	 ����	 ���
 ���� ���� ���	 ���
� ����

��
�� ���� ���� ���� �
��� ���� ���� ���� ���� �
��	 ��	
 ���� ���� ���� ����� ��	

��� ���� ��	� ���� ����
 ���� ���� ��	� ���� ����	 ���� ���� ��	� ���� ����� ����

	
�� ���� ��		 ��		 		��� ���
 ���� ��		 ��		 	
�
� ���
 ��	� ��	� ��	� ��	��	 ����

��
�� ���	 ���� ���� ����		 ���� ���	 ���� ���� �	���� ���� ���
 ���� ���
 �����
 ����

��� ����� ���� ���� �
��� ���� ����� ���� ���� �
��� ���	 ���
 ���
 ���� ����	 ����

	
�� ���� ���� ���� �
��� ���� ���� ���� ���� �
��� ���� ���� ���� ���� ����
� ����

��
�� ���
 ���� ���� ����	 ���
 ���
 ���� ���� ����� ���
 ���
 ���� ���
 ������ ��
�

��� �	�	� ����� ����� �
��
 ���� �	�	� ����� ����� ����� ����
��� ���

��� �
�

 ����

	
�� ��	� ���� ���� ����� ��
� ��	� ���� ���� �
��� ���� ��	� ���� ���� ����� ����

��
�� ���� ���	 ���� ����� ��
� ���� ���	 ���� ����� ��
� ���� ���	 ���� ����� ��
�

��� ���
 ���� ��	� ����� ���� ���
 ���� ��	� ����� ���� ���
 ���� ��	� ����� ����

	
�� ���
 ���� ���� �	��� ���	 ���
 ���� ���� ���		 ���	 ���� ���� ���� �
��� ����

��
�� ���
 ���	 ���	 ���	
 ���� ���
 ���	 ���	 ����
 ���	 ���� ���� ���� ��
��� ��
�

��� ���
� ����� ����� ����
 ���	 ���
� ����� ����� ����� ���� ���� ���	 ���	 ����� ����

	
�� ���� ���
 ���
 �
��� ���� ���� ���
 ���
 ����� ���� ��		 ���� ��		 ������ ����

��
�� ���
 ���� ����
���	 ���� ���
 ���� ����
���� ���� ���� ���� ���� ������ ��
�

��� ����� ���	� ���
� ����� ���
 ����� ���	� ���
� ����� ���
 ����
��� ���� ����
 ����

�
�
�
��
�

�
�
	

�

�
�
�
�
�

�
�
�
	

��
�

�
�
�
�

�
�
�
�

�
�
�
��
�

�
�
	

�

�
�
�
�
�

�
�
�
	

��
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

������ ���
����

�
�
���
 ���������� � ��!�
""�#�
��

����"�#����

���� ����

���� �������� ����

���� ���	

���� ���	

���� ���	

���� ����

���� ��

���� ��	�

���� ��
	

���� ���	 ���� ���	

���� ����

���� ����

���� �������� ����

���� ����

���� ���

���� ��	�

���� ��
�

���� ���	

���� ��
�

���� ����

���� ��
�

���� ����

���� ����

���� ��	

���� ���	

���� ��	

���� ���	

���� ����

���� ����

���� ����

���� ����

���� ��
�

���� ����

Table 6. Continues from Table 5.

training sets on which it works. We have explored several alternatives in the
literature [4, 30], and our conclusion was that the one that best performs consists
in computing the number of examples of the majority slot and then replicating
as many examples of the other slots as needed to assemble a training set that
has approximately the same number of examples for every slot.

Regarding the rule scorer, Information Content is the most common in prac-
tice [51]. It has proven to guide the search process very well when dealing with
classical inductive logic programming problems. It relies exclusively on the num-
ber of true positives and false positives that a rule produces when it is evaluated.
We wished to explore some rule scorers that also take into account the number
of true negatives and false negatives. We have surveyed the literature and we
have found several alternatives [27], namely: Collective Strength, Confidence,
Jaccard, Kappa, Laplace, Leverage, Odds Ratio, Phi Coefficient, Satisfaction,
Support, and Yule’s Q.

The cartesian product of base learners and rule scorers resulted in 72 varia-
tions of Roller. Tables 5 and 6 summarise the results that we obtained when we
run each variation on our datasets, including the mean and standard deviations
of precision (P), recall (R), the F1 score (F1), learning time (LT), and extraction
time (ET), as well as our rank (K) and the failure ratio (FR).

In our experimentation, we set the relative weights of the performance mea-
sures to β(F1) = 0.70, β(LT) = 0.10, and β(ET) = 0.20. In other words, we
think that a good proposal must be able to learn extraction rules that are very
effective, that is, that achieve a high precision and recall, and, consequently, a
high F1 score. Note that learning a rule is a process that is executed every now
and then, when a new site needs to be analysed or when a rule breaks because
the corresponding site has undergone a change to its layout; since our experi-
mental analysis confirmed that Roller is quite effective and can learn in a matter
of seconds, we did not think that the learning time could make a big difference
between two alternatives. Contrarily, once a rule is learnt, it must be executed as
quickly as possible in a production environment, so the extraction time is much
more important than the learning time.

Note that the best variations achieve K = 0.98 and K = 0.97; they all rely on
Ridor as the base learner and Jaccard, Laplace, Satisfaction, or Support as the
rule scorers; unfortunately, all of them have a failure ratio of 0.16, which means
that they cannot deal with some datasets. The problem is that Ridor is a learner
that uses a technique called Reduced Error Pruning to prune the resulting rules;
unfortunately, there are a number of datasets that do not provide enough data
for this technique to work, which means that it cannot be applied to relatively
small documents. As a conclusion, we have to resign to use Ridor, even though
it works well with sufficiently large documents.

Thus, the best variations seem to be those that achieve K = 0.92 with a
0.00 failure ratio. They all correspond to using JRip as the base learner and
Confidence, Jaccard, Kappa, Laplace, Satisfaction, and Support as rule scorers.
Since there are multiples ties, we decided to select JRip and Kappa because this
is the variation that achieves the minimum extraction time.

4 Experimental analysis

In this section, we first report on the results of our experimental analysis re-
garding effectiveness and then regarding efficiency. The details regarding our
experimentation environment, including the proposals with which we have com-
pared ours, and the performance measures that we have used are described in
Appendices A and B, respectively. In every case, we have conducted a statistical
analysis to make sure that the differences in rank that our experiments have
found are statistically significant at the standard significance level α = 0.05.

Following the results by Demšar and García and Herrera [25], we have used
Iman-Davenport’s test to find out if there are statistically significant differences
in the empirical ranks and then Hommel’s test to compare the best ranked
technique to the others. Note that we have to resort to non-parametric tests
because the distribution of the performance measures is not normal and they
are not homoscedastic [54]. Regarding the normality of Roller’s precision, for
instance, Kolmogorov-Smirnov’s test returns D = 0.78 with a p-value less than
2.20 10−16, Shapiro-Wilk’s test returns W = 0.79 with p-value 2.39 10−07, and
Arlinton-Darling’s test returns AD = 49.85 with p-value 1.11 10−05; regarding
homoscedasticity, the comparison between Roller’s and SoftMealy’s precision, for
instance, returns F = 49.64 (with one degree of freedom) and p-value 1.94 10−10

using Levene’s test, K = 69.66 (with one degree of freedom) and p-value less than
2.20 10−16 using Bartlett’s test, and F = 0.08 with p-value less than 2.20 10−16

using the F test. Note that the previous results provide a strong indication that
the data does not behave normally and is not homoscedastic, which precludes
using parametric tests like the well known t-test or ANOVA tests.

4.1 Effectiveness analysis

Table 7 reports on the raw effectiveness data that we got from our experimen-
tation. For each proposal, we report on its precision (P), recall (R), and F1

score (F1) regarding our datasets. The first two lines also provide a summary of
the results in terms of mean value and the standard deviation of each measure.
Since it is difficult to spot a trend in this table, we decided to summarise the
data using boxplots.

Table 8 summarises the results regarding precision. By precision, we mean
the ability of a proposal to learn a rule that makes as few classification mistakes
as possible; simply put, it is the ratio of true positives to the total number of
true positives and false positives. Empirically, Roller seems to be the proposal
that can achieve a better precision, and it is, indeed, the one that is more stable
regarding this effectiveness measure; the other proposals can achieve precisions
that are as high as Roller’s, but their deviation with respect to the mean is larger.
Iman-Davenport’s test returns a p-value that is nearly zero, which is a strong
indication that there are differences in rank amongst the proposals that we have
compared. We then have to compare Roller, which ranks the first regarding pre-
cision, and the other techniques. Hommel’s test confirms that the differences in
rank amongst Roller and the other techniques are statistically significant because

� � �� � � �� � � �� � � �� � � �� � � �� � � ��

���� ���� ��	� ��	
 ���� ��	 ��� ���� ��	 ���� ��	� ��� ��	� ��� ���� ��� ���� ���� ���� ���	 ���� ����

�������������� ���� ��

 ��
� ���� ��

 ���� ���� ��
 ��
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��������� ��	
 ���� ���� ���� ���� ���� ��	� ���
 ���	 ���� ���� ��	 ���� ���	 ���
 ���� ���� ���
 ���� ���� ����

������������� ��� ��
� ���� ���� ���� ��
� ���� ���
 ���� ��� ���	 ��� ���� ��	 �� ���� ���� ���� ���� ���� ����

������� ��!������� ��� ���	 ��	 ��
� ��
� ��
	 " " " ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���#������ ���� ���� ��
 ���� ���� ���� �� ���� ���� ���� ���� ���� ���� ���� ��
 ���� ���� ���� ��� ���� ���

 ���������� ���� ���� ���	 ��	 ��	� ��	 ���� ���� ���� ���
 ��	 ���� ��� ��� �� ���	 ���� ��� ���� ���� ����

$��� ��	� ��� ���� ���� ��
� ���
 ���� ���� ��

 ��	 ���
 ���� ��� ��� ��� ���
 ���
 ���
 ���� ���� ����

�����#������� ���
 ���� ���� ��	� ���� ���� ���� ���� ��� ��	 ��� ��	� ��� ���	 ���� ���� ���	 ���	 ���� ���� ����

�!������������ ���� ��
� ���� ���� ���� ��
 ��� ���� ���� ���� ���
 ���� ��� ���	 ��� ���� ���� ���
 ���� ���� ����

�!!������� ��� ���� ��
� ���� ���� ���
 ���
 ���� ��
 ��	� ��		 ��	� ���� ��� ��	 ���� ��� ��� ���� ��� ���

��%!�&�!�� ���� ���� ���� ���� ���� ��
 ���� ���� ���� ���� ���	 ��� ��	 ���� �� ���� ���� ���� ���� ���	 ���	

�%���'����� ���� ���� ��	 ��	� ���� ���� " " " " " " ��� ��� ��� ���� ���� ���� ���	 ���� ����

(�����) ��� ��� ���� ���	 ��� ���� ���	 ���� ��� ��
� ��� ���	 ��
 ��� ��� ��� ��� ��� ���
 ���� ����

(���*��� ��	� ���� ���� ���
 ���� ���� ���	 ���� ���� ��
 ���� ���� ���� ���� ���� ��� ��
 ��	 ���	 ���� ����

(!����+�(����,�����!� ��	 ��� �� ���� ���� ���� ��
	 ���	 ���� " " " ��	� ��� ���� ���� ��
 ��� ���	 ���� ����

$���������%��-%��� ���	 ���
 ���� ���� ���� ���� ���� ���� ���� ��� ���
 ��� ���	 ���� ��	 ��
 �� ��� ���� ���� ����

.������$� ��� ���
 ��	
 ���	 ���� ���� ��
 ���� ���
 ��� ��� ��
 ��� ��	 ��� ���� ���� ���	 ���� ���� ����

�!!�(��,����+�� ���	 ���� ��� ��� ��
� ��� ��	� ���� ���	 ���� ��� ���� ���� ���	 ���	 ���� ���� ���� ���� ���� ����

������ ���� ���� ���� ��		 ���� ���� ��	� ��� ���� ��	� ���� ���	 ��� ���� �� ���	 ���	 ���	 ��� ��� ���

/���.�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ���	 ��� ���� ���� ���
 ���� ���� ��� ���	

0��.������- ��
� ��

 ��

 ��
� ���� ���� ���
 ���� ��� ��	 ���� ��� ���� ���� ��
 ��� ���� ���� ���� ���� ����

 ����� ���	 ���� ���� ���� ���� ��� ���� ���� ���� ���� ���� ��	� ���	 ���� ���� ���
 ���� ���
 ���� ���� ����

���������+�!�����+� ���
 ��
� ��
� ���� ���	 ���� " " " ���� ���� ���� ���
 ���
 ��� ��� ���� ��� ���� ���� ����

�������� ���	 ��	� ��� �� ���� ���
 ��� ���� ���� ���� ���� ���	 ��	 ���� ���� ���� ��� ���� ���� ���
 ���

�����+��� ���
 ��� ���� ���� ��� ���� ��	� ��� ��� ��	� ���� ���� ���� ���� ��� ��	� ��	� ��	� ��� ��� ���

�����#�1��!�2 ���	 ���� ��� ��	� ��		 ��	� ��� ���� ��� ���� ���� ��	 ���� ���� ��	 ���� ��� ���� ���� ���� ����

$���-2���������������# ���� ���� ���� ���	 ���� ��� ���� ��� ���� ��� ��	� ��� ��	
 ���� ���� ��� ���� ���� ���	 ���� ����

��3��� ���� ���� ���� ��	 ��� ��� ���� ���� ��� ��� ��	� ���� ��� ���� ��	 ��� ���� ��� ���� ���� ����

	�&�-%���3��� ���
 ���� ��	� ���� ���� ��
� ���
 ���� ��
 ���
 ���� ���
 ���� ���� ��� ��	 �� ��� ���� ���� ����

(�������%�!��� ���� ���� ���	 ��� ���� ��	� ���� ���� ���
 ���� ���� ���� ��� ���� �� ���� ���� ���	 ��	 ���� ����

3����,����� ���	 ���� ���� ��
� ���� ��
 ��	� ��		 ��	
 ���
 ���� ���
 ��	� ���� ��� ��� ���� ���� ��� ���� ���	

4�2��5 ���� ���� ���� ��
 ��
 ��
 " " " ���� ���� ��	 ���� ���� ���� " " " ���� ���
 ����

1���� ���� ���� ��� ��	� ��	 ��	 ���	 ��� ��	� ��	� ���� ��� �� ���� ���� ���� ���� ���� ���� ���
 ����

1���� ���� ���� ���� ��� �� ��� ���� ���� ���� " " " ���	 ��� ���� ��
 ��� ��� ��� ��� ���

0���) ���� ���� ��	 ��� ���� ��� ���	 ���� ��� ���� ���� ���� ���� ���� ��	
 ���� ��� ��� ���� ���� ����

'�%!�� ��� ��� ��� ���	 ��� ��� ���� ���� ���	 " " " ���	 ���� ��	
 ���
 ���
 ���
 ���	 ���� ����

6!�#���6��,�!�� ��		 ���	 ���� ���� ���� ���� " " " ��� ���
 ���� ��� ���� ��� ���� ���� ���	 ���
 �� ��

78&� ���� ���� ��	 ��
 ���� �� ��	 ���� �� " " " ���� ���� ���� ���� ���� ���� ���� ��	 ���

�'6� ��!��'�%� ��� ���� �� ��� ��	� ���	 ���� ��� ��� ���� ���� ���� ���� ���� ��� ���
 ���� ���� ���� ���� ����

/&. ���	 ���� ���� ��	� ���� ���� ��
 ���� ��� ���� ��� ���
 ���� ���� ��� ���	 ��	� ���� ��� ��� ���

��++������� ���� ��� ��� ��	� ���� ��� ��		 ���� ���� " " " ���	 ���� ���� ��� ���� ��� ���� ���� ����

���9���(��� ���	 ���� ��
 ���� ���� ��� ���� ���� ��� ��
� ��	
 ���� ��	
 ��	� ��	� ���� ���� ���� ���� ���� ����

78&��6!�#��� ��� ��� ��
 ���
 ��� ��� ��� ���	 �� ��	� ���� ���� ���� ��
 ��� ���� ���� ���� ���� ���� ����

���9���6�:�������� �� ��	 ���� ���� ���� ��� ���
 ���� ���� ���� ���� ���� ��	 ���� ���� " " " ��� ��� ���

78&��'���� ��� ��� ��� ��
 ���� ���� ��	 ���� ���
 ��� ���� ��� ���� ���� ���� ���� ���� ���� ���	 ���� ����

�%��;:���6!�#��� ���� ���� ���� ���� ���� ��

 ��	� ���� ���	 ���� ���� ��� ���� ���� ��� ���� ���
 ���	 ���� ���� ����

8"��#����� ��	
 ���� ���
 ��	� ���� ���� ���� ���� ���� ��	 ���� ��� ���� ���	 ��� ��	� ��		 ��	� ��� ��� ���

��<���.��-%��������!! ��� ��
� ���� ���� ��� ��
� ���� ���� ��
� ���
 ���� ��� ���� ��� ��� ���� ��� ���� ���� ���� ����

/��,!�)�&�!�� ��	� ��� ���� ���� ���� ��� ���� ���� ��	
 ���� ���
 ���� ���� ���� ��� ���� ���
 ���	 ��� ��� ���

06��&����6�+��-�� ���� ���� ��� ��� ���� �� ���� ���� ���� ���� ��	
 ���� ���� ���� ��	 ���� ���
 ���	 ���� ���� ����

��-���� ���� ���� ���� ��� ���� ���� ���� ���
 ���� " " " ��� ���� ��� ��� ��� ��� ���	 ���� ����

$�& ��� ���� ��
� ���� ���� ��� ��� ��� ���� ���� ��	� ��
� ��	� ���� ���� ���� ��� ���� ���� ���� ����

;��� ��		 ���� ��� ��
	 ��	
 ���	 ���� ���
 ���� ��
� ��

 ��
� ��� ��� ��� ���	 ���� ���� ��� ��� ���

.�� ���!# ���� ���	 ��
� ��	
 ���� ���� ���	 ���� ���� ��	� ���� ���� ���� �� ��� ���� ��
 ���� ���� ���	 ���	

*�-�� ��	� ��	� ���� ���
 ���� ���� ���� ���� ��
� ��� ���� ���� ���� ��� ���� ���� ���� ��� ���� ���� ����

�����	�

����� ����	������	��� ��	 ������	� ����
	�� ��	��

Table 7. Effectiveness results regarding precision (P), recall (R), and the F1 score.

����������	
���

��������� ���� 	������ ��������� ����

�
���� ���� ���	� ������� �
������� �������� ���� �
� ������ �
���� �

���	� ���� ���	� �

������� ���� ������� �

�
������� 	��� �
������� �

�������� ���� �������� �

���� ���� ���� �

�
� ������ ���
 �
� ������ �

���	��!������" �����������!������"#
�����

� $���� !	�������

�������� �������� ��
���

�

����

�
���� ������� 	���������	����

����

����

����

����

����

����

����

��	�

��
�

����

����

�������� ���� ��������� ������� ������� !��" �����

#�������$� ���� ���
 ���� ���	 ��	� ��
� ����

����%�% ���
 ���� ���� ���� ���� ���� ��		

������ ��	� ���� ���� ���
 ��
� ���� ���	

��&�%�% ���� ���� ���� ���
 ���� ���� ����

#�������$� ��	� ��	� ��	� ��	� ���� ���� ����

Table 8. Summary of results regarding precision.

����������	
���

��������� ���� 	������ ��������� ����

�
���� ���� ������� ���	� �
�������� �������� ���� �
�� ���� �
���� �

������� ���� ������� �

���	� ���� ���	� �

�
�������� ���� �
�������� �

�������� ���� �������� �

���� ���	 ���� �

�
�� ���� ���� �
�� ���� �

���	��!������" �����������!������"

����
��	

#
�����

��$�����!	�������

�
����
����
���

���	
��� ���
��� ���
��� ����
��� ����
���

����

����

����

����

����

����

����

��	�

��
�

����

����

�������� ���� ��������� �� �!�"# !������ $��%# �����

&�������'� ���	 ���� ���� ���� ��
� ��
� ����

����(�(���� ���� ���� ���� ���
 ���� ��		

������ ��	� ��	
 ��
� ���� ���� ���� ���	

��)�(�(���� ���� ���� ���� ���� ���� ����

&�������'� ���� ���� ���� ���	 ���	 ���� ����

Table 9. Summary of results regarding recall.

����������	
���

��������� ���� 	������ ��������� ����

�
���� ���� ���	� ������� �
������� �������� ���� �
� ������ �
���� �

���	� ���� ���	� �

������� ���� ������� �

�
������� ���� �
������� �

�������� ���	 �������� �

����
��� ���� �

�
� ������
��� �
� ������ �

���	��!������" �����������!������"#
�����

� $���� !	�������

�������
�
���� �������� ��
���� �������� ������� �������� ��	�����

����

����

����

����

����

����

����

��	�

��
�

����

����

�������� ���� ��������� �� �!�"# !������ $��%# �����

&�������'� ���� ���� ���
 ���� ��
� ��
	 ����

����(�(���� ���� ���� ���� ���
 ���� ��	�

������ ��	� ���� ���� ��	� ��
� ���� ����

��)�(�(���� ���� ���	 ���	 ���� ���� ����

&�������'� ��
� ��
� ��
� ��
� ���� ���� ����

Table 10. Summary of results regarding the F1 score.

it returns adjusted p-values that are very small with regard to the significance
level. In other words, our experimental data provides enough evidence to reject
the hypothesis that Roller behaves similarly to the other proposals regarding
precision, that is, it supports the idea that Roller can learn rules that are more
precise than the rules learnt by the other proposals.

Table 9 summarises the results regarding recall. By recall, we mean the ability
of a proposal to learn a rule that assigns as many nodes as possible to their
correct slots; simply put, it is the ratio of true positives to the total number of
true positives and false negatives. Empirically, Roller seems to be the proposal
that can achieve a higher recall and it is the one that seems more stable regarding
this measure because its deviation is the smallest and its inter-quartile range is
also the smallest. Note, however, that the other techniques can achieve results
that are very good, too, chiefly Trinity and Aleph. Iman-Davenport’s test returns
a p-value that is very close to zero, which is a clear indication that there are
differences in rank amongst the proposals that we have compared. Hommel’s
test confirms that the differences in rank between Roller, which ranks the first
from an empirical point of view, Aleph, RoadRunner, FiVaTech, Wien, and
SoftMealy are statistically significant at the standard significance level; note,
however, that the adjusted p-value that corresponds to the comparison between
Roller and Trinity is not greater than the standard significance level, which
means that the difference in empirical rank between these two proposals is not
statistically significant. As a conclusion, the experimental data does not provide
enough evidence to reject the hypothesis that Roller and Trinity behave similarly
regarding recall, that is, they both rank statistically at the first position; however,
it provides enough evidence to reject the hypothesis that Roller behaves similarly
to Aleph, RoadRunner, FiVaTech, Wien, and SoftMealy, that is, they rank worse
than Roller and Trinity.

Table 10 summarises the results regarding the F1 score. This score is the
harmonic mean of precision and recall; thus, it rewards proposals that achieve
both a high degree of precision and recall and penalises those that do not. Em-
pirically, Roller seems to be the proposal that can achieve the best F1 score,
and it is, again, the most stable. Iman-Davenport’s test returns a p-value that is
nearly zero, which strongly supports the hypothesis that there are statistically
significant differences in rank. Hommel’s test returns adjusted p-values that are
clearly smaller than the significance level in every case, which supports the hy-
pothesis that the differences in rank between Roller and every other proposal
are statistically significant, too.

Since Roller works on the tree representation of the input documents, we
need to parse them and correct the errors in their HTML code. Such errors are
very common, cf. Table 14 in Appendix A. As a conclusion, it was also necessary
to carry out a statistical analysis to find out if our experiments provide enough
evidence to conclude that the presence of errors in the input documents has an
impact on the effectiveness of our proposal. We have used Kendall’s Tau test,
which returned τ = −0.09 with p-value 0.37. Note that τ is very close to zero
and that the p-value is clearly greater than the standard significance level, which

means that the experimental data does not provide enough evidence to reject
the hypothesis that the correlation is zero. In other words, our experiments do
not provide any evidence that the effectiveness of our proposal may be biased
by the presence of errors in the HTML code of the input documents.

Our conclusions are that Roller outperforms the other proposals regarding
effectiveness and that it is the proposal whose results are more stable. The
statistical tests that we have performed have found enough evidence in our ex-
perimental data to support the hypothesis that the differences in the empirical
rank amongst Roller and the other proposals are significant at the standard sig-
nificance level, except for the case of recall, in which case the experimental data
does not provide enough evidence to conclude that Roller and Trinity perform
differently. Note, too, that proposals like RoadRunner and FiVaTech cannot deal
with all of our datasets; in Table 7 such situations are indicated with a dash. The
reason is that they took more than 15 CPU minutes to learn a rule or that they
raised an exception; in both cases, we could not compute effectiveness measures
for the corresponding datasets.

4.2 Efficiency analysis

Table 11 reports on the raw efficiency data that we got from our experimentation.
For each proposal, we report on its mean learning time (LT) and its mean
extraction time (ET) regarding our datasets. The first two lines also provide
a summary of the results in terms of mean value and standard deviation of
each measure. Since it is difficult to spot a trend in such a table, we decided to
summarise the data using boxplots.

Table 12 summarises the results regarding learning times, that is, the mean
CPU time that each proposal took to learn a rule. Experimentally, it seems that
Trinity is the proposal that takes less time to learn a rule; in most cases, it does
not take more than a tenth of a second. It is followed by RoadRunner, Soft-
Mealy, and Wien, whose learning times are very similar; Roller seems to rank
at the fifth position, before FiVaTech and Aleph, which are the most inefficient.
Iman-Davenport’s test returns a p-value that is very close to zero, which clearly
supports the hypothesis that there are differences in rank amongst these pro-
posals. Hommel’s test also returns adjusted p-values that are very small with
respect to the significance level, which also reveals that the experimental data
provides enough evidence to support the hypothesis that Trinity is the proposal
that performs the best and that the others rank below it. Note that we do not
think that this is a serious shortcoming since our learning times still lie within
the range of a few seconds in most cases and we assume that learning rules is
not a task that must be executed continuously in a production scenario.

Table 13 summarises the results regarding extraction times, that is, the mean
CPU time that it took to apply a rule to a dataset. Aleph, SoftMealy, and Wien
seem to be the proposals that have the worst performance; RoadRunner and
Trinity seem to be very similar in both mean extraction time and deviation since
their inter-quartile ranges are identical. FiVaTech seems to be a little worse than
RoadRunner and Trinity since its mean extraction time is larger, but note that

�� �� �� �� �� �� �� �� �� �� �� �� �� ��

���� ���� 	��
� ���� ���� ��� ��	� ����� ���� ��� ��	� ���	� ����� ����� ����

�������������� ���� 	���� ����
��� ��� ���� ����� ���� ��	 ���� 	���� ���
� ����� ����

���������
�
� ��� ���� ���� 	��
 ���
��� ���
 ���� ��� ���� 	��� ��	
 ����

������������� ���	 ��
 	��� ���� ��� ��� 	��� ��� ���� ��� ��
� ���� ��� ���	

������� ��!�������
��� ����	 ��
	 ��
 " " ����� ���� ��� ��� ��� �	��� ���� ���

���#������ ��	
 ���	 ���� ���� �	 ��� ���� ���
 ��	 ��� ���� �
��� ���� ���	

 ���������� ���� �	��� ���� ���	 	��� ��� �
�	� �	� ���� ��� ��� �
��

�� ����

$���
��
 �	���
��� ���
�
� ��� 	��	 ��	� ���� ��� ��
 ����� �	��
 ��	

�����#������� ��	� 	�� ���� ���� �

 ��� ���� ���� ���� ��� ���� ���
 ���� ����

�!������������ ���� 	��� �	� �� ��
 ��� ��� ��� ��� ��� ��
 ���� ���� ����

�!!������� ��� 	���� 	��	 �� �
� ��� ���	 ��� ���� ��� ���
 	��� ����	 ���

��%!�&�!�� ���� ����
 ���	
�	� �
 ��� ���� ���	 ���� ��� ���� ����� ��� ����

�%���'����� ���� ���	
 ����
��	 " " " " ��� ���� ���� ��� ���	 ���	

(�����)
��� ���
 	��� ��	� 	��� ���
��� ��� ��� ��� ���� 	��
 �		 ����

(���*��� 	��	 ����� ���� 	�	� ���� ���
���
 ��� ���� ��� ���	 	��	� ���
 ����

(!����+�(����,�����!� 	��� ����� ��
 ��
 ����� ��� " " ��	 ��� ���� �
��
 	��

 ����

$���������%��-%��� ��		 ����� ��� ���� ���� ��� ���� ��� ���� ��� ���	 	�	� ��� ���	

.������$� ���� �
�� ��� 	�	� ��� ��� 	���� ��	� ���� ��� ��� ���	� �� ����

�!!�(��,����+�� ��	� �	�� 	��� 	�	� ��� ��� ���� ��� ���� ��� ���
 	���� ��
� ���	

������ ��� 	�
� ���� ��� ���� ��� ��
� ���� ���� ��� 	���
��� 	�
	 ����

/���.�� ���� ���� ���	 ��	 ��� ���� ���� ���	 ���� ���� 	��� 	���� ��	� ����

0��.������- ���� ��
� ��� �	� ��		 ��� 	�� ��� ��� ��� ���	 �	 �
� ����

 ����� ���� ����� ���� ��� ���
 ��� ���� ��� ��� ��� ���� ����� ��� ����

���������+�!�����+� ��� ��	� 	��� ��	
 " " ��	 ���� ���	 ��� ���� 		��� 	��� ����

�������� ��� ���� �	� ��� ��	
 ��� ���� ���� ��� ��� ����
��� ���� ����

�����+��� ��� ��� ���� ��� �� ��� 	���
 ��� ��� ��� 	��
 ���� �� ����

�����#�1��!�2 ���� ����� ��
� ���� ��� ���� ��� ���� ��	� ��� 	����
���	 ���� ����

$���-2���������������# ��
� ��� 	��� ��

 ��� ���
�	� ���� ���� ��� 	��� ����� 	
�	� ����

��3��� ���� 	���� ���
 ���� ��� ��� ��	� ���� ���� ��� ���� 	����
��� ����

��&�-%���3��� ���� ��� ���� ��	� 	��	 ��� �	�� ���� ���� ��� ���� ��� ��� ���	

(�������%�!��� ���� 	���� ���� ��	
 ���� ��� 	���	 ���� ���	 ��� ���� 	���
�
� ����

3����,����� 	��	 ��� ���� 	�	� ��
 ��� 	��		 ��� ���	 ��� ���� 	���	 		��� ����

4�2��5 ��	� ����� ���� ���� " " ����
� ���
 ���� ��� " " ���� ����

1���� ���	 �
��� 	��� ���� 	�� ���
��� ���� ���� ��� ��	� ���� ���� ����

1���� ��	� ����� ���� ��� ���	 ��� " " �� ��� 	��
 �	��� �
�		 ����

0���) 	��
 ���� ��	� ��� ���� ��� ����	 ���� ���� ��� ���� 	���� ��� ���	

'�%!�� ���
���	 ��
� ���	�
�
� ��� " " ���� ��� ��
�
��� ���� ����

6!�#���6��,�!�� ��
� ���	 ���	 	��	 " " ���� ��� ���� ���
�
� �	�� �	�� ����

78&� ���� �	��� ���
 	�
� ���
 ���� " " ���	 ��� ���� 	�
	
�� ����

�'6� ��!��'�%�
�	 ����� �� ���� ���� ���	 ���� ���� ��	� ����
��� ����� ��
 ���	

/&. ��	� �����
��
 ����
��� ���� ����
 ��� ���� ��� ���� �	��� ���� ��

��++������� ���� 		�	� ��
� ���� ���� ��� " " ��	� ��� ��	� ������ ����� ����

���9���(��� ���� ���� ��� ���� ���� ��� ���� ��� ��� ��� 	�	
 ���
��� ����

78&��6!�#��� ��	 ��� 	��
 ���� ��� ��� ���� ���	 ��� ��� ��
	 ���� ���� ����

���9���6�:�������� 	�� ���� ��
� ���� ��	 ��� ����� ���� ��� ��� " " ��
	 ���

78&��'���� ���
 	�		 ���� ���� ���� ��� ���� ��� ���� ��� ��� ���	 ����� ����

�%��;:���6!�#��� ��� ���� ���� ��
� 	�� ��� ����� ��� ��� ��� ���� ����� ���	 ����

8"��#����� �� � ���
 	��� �� ��� 	
��
� ��	� ���� ���� �����
�
� 	��� ����

��<���.��-%��������!! �		 	��� ��	
 ���� ��� ��� ����� ��� ���� ��� ���� 	��
 	��	 ����

/��,!�)�&�!�� ���� �	��� ���� 	��� ���	 ��� 	

�� ���	 ���� ��� ���� ����� ���� ����

06��&����6�+��-�� ���	 ���	 �	
 ���� ���� ��� ����
 ���� ���� ��� ��
	 ���� 	��� ����

��-���� �� ���� ��� ����
 ���� ��� " " ���� ��� ��� ����� ����� ����

$�& ���
��	 ��
� ��� ���� ��� ���� ���� ���� ��� ���� ��� �	� ����

;��� ���� ���� �	 ����� ��	
 ��� ����	� ���� ���� ��� ����� ����� �	�
 ��

.�� ���!# �	� �	��� ���� ��
 ���� ��� ���
 ���	 ��� ��� 	��� ���� ���	� ���

*�-�� ��� �� ���	 	��� 	��� ��� �	�� ���� ���� ��� 	���
�� ���
 ���

�������
�	
�
�� ����	��������� �
�� �������	 �
������ �����

Table 11. Efficiency results regarding learning time (LT) and extraction time (ET).

����������	
���

��������� ���� 	������ ��������� ����

������� ���� �
�������� �
������� ���� �
���� �������� ��	� ������� �

�
�������� ���� �
�������� �

�
������� ���� �
������� �

���� ���	 ���� �

�
���� ���� �
���� �

�������� ���	 �������� �

 ��	�
��� ��	� �

�������� ���
���� ��������

���	��!������" �����������!������"#
�����

��$�����!	�������

�

���

������� ��������
�

���

�

���

����

����

����

�����

������

�������

�����	
�� �	� ��
�����	� ���
�	�� ������� ��	�� ����	�

��
����	�� ���� ���� ���� ���� ���� ��� � !� �

����"�" ��!# ��$� ���� ���� ���� ���� ��%!

�	��
� !��$!�!� ��!� � �$# ���� �%��� #��%

�
&�"�" ���!$ �#�!� � �!� !�$��% ��%� �� �!� �%����

��
����	�� %��% ���� ��%� ����� ���� �#�%� ��� $

Table 12. Summary of results regarding learning times.

����������	
���

��������� ���� 	������ ��������� ����

������� ���� �
���� �
�������� �������� ���� �
������� ��	� ������� �

�
���� ���� �
���� �

�
�������� ���� �
�������� �

�������� ���� �������� �

���� 	�
� ���� �

�
������� ���
 �
������� �

 ��	� ���� ��	� �

������� ������� �������

���	��!������" �����������!������"#
�����

��$�����!	�������

�������
������� ������� �������� �������

��������	
��� �������� �������� ������	 ����� �����

���������� ����� ���� ���� ���� ���� !�"# ����

����$�$ ���� ���� ���� ���� ���� #�%� ����

������ ���� ���! ���� ���% ���� ���## ���!

��&�$�$ �#���� � � # ���� ��! ���� ����� �� "

���������� %���! ��� � ���� ��#% ���� ����� ����

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

Table 13. Summary of results regarding extraction times.

it is a little more stable since the inter-quartile range is smaller. The timings
regarding Roller are good since most rules do not take more than a tenth of a
second to extract information, and its inter-quartile range is also very small with
regard to the best-ranked proposals, but its mean time is slightly larger than in
the case of RoadRunner and Trinity. Iman-Davenport’s test returns a p-value
that is nearly zero, which clearly indicates that there are statistically significant
differences in the empirical rank. Hommel’s test returns adjusted p-values that
are not smaller than the standard significance level regarding the comparisons
of Trinity, which is the best-ranked proposal according to the empirical ranking,
Roller, RoadRunner, and FiVaTech. This means that the experimental data does
not provide enough evidence to conclude that there is a statistically significant
difference between Trinity, Roller, RoadRunner, and FiVaTech regarding extrac-
tion times, that is, they all rank at the first position. The test, however, finds
enough evidence to reject the hypothesis that the previous proposals and the
others behave similarly regarding extraction time. These results are very impor-
tant, because they confirm that the rules that Roller learns are very competitive
regarding efficiency.

As a conclusion, our experiments support the idea that Roller is very efficient.
It is not the best performing regarding learning times, but it still lies within the
range of seconds, which we do not think is a serious shortcoming from a practical
point of view. However, the rules that it learns are as efficient as the rules that
other state-of-the-art proposals can learn, which makes them competitive from
a practical point of view. The reason why Roller takes a little more time to
learn a rule than other proposals is that it has to create several training sets and
then apply the base learner several times; its efficiency clearly depends on how
effective the base learner is. Anyway, we think that the efficiency results are quite
reasonable and that its superiority regarding effectiveness clearly compensates
for its slightly worse performance.

5 Related work

In this section, we first provide an overview of the proposals in the literature that
were specifically tailored to learning web information extraction rules; we then
delve into propositio-relational machine-learning proposals, which are closely
related to ours, but have not been explored so far in our context; finally, we
compare them with ours from a conceptual point of view.

5.1 Specific-purpose proposals

There are literally hundreds of proposals that were specifically tailored to learn-
ing web information extraction rules in the context of semi-structured web doc-
uments [11, 56]. Thus, we restrict our attention to those that pioneered a new
research path.

Many authors have devised techniques that work on the text of the input
documents, namely: Kushmerick et al. [44] presented a proposal that learns two

patterns of tokens that characterise the left and the right context of the infor-
mation to extract; Hsu and Dung [34] presented a proposal that relies on using
automata to model the structure of the information and regular patterns to
control the transitions amongst states; Chidlovskii [12] and Muslea et al. [49]
also explored the idea of learning automata and patterns; Crescenzi and Mecca
[13] and Crescenzi and Merialdo [14] explored learning regular expressions to
extract information; Chang and Kuo [10] explored a multiple-string alignment
technique; Arasu and Garcia-Molina [2] presented other proposals to learn reg-
ular expressions; and Sleiman and Corchuelo [55, 58] presented two proposals
that are based on multi-string alignment techniques.

There are also many authors who have devised techniques that work on the
DOM tree representation of the input documents, namely: Hogue and Karger
[32] presented a proposal that is based on tree similarity; Park and Barbosa [50]
devised a technique that combines tree matching and clustering; Shen and Karger
[53] devised a heuristic-based proposal; Álvarez et al. [1] devised a proposal that
relies on clustering, tree matching, string matching, and string alignment; Su
et al. [61] presented a proposal that is based on aligning DOM trees using a
maximum entropy model; and Kayed and Chang [38] introduced a technique
that first learns an information schema and then a context-free grammar using
a tree similarity and a tree alignment technique.

The previous techniques work on the documents themselves, that is, on their
tokens or their nodes. A few authors have explored transforming the tokens or the
nodes into vectors of attributive features that are related to others by means of
relational features. (See Reference [19] to find details on an alternate first-order
representation of documents, not necessarily semi-structured web documents.)
Such a representation allows to use techniques that got inspiration from inductive
logic programming. Soderland [59] and Califf and Mooney [9] pioneered this
research path with two proposals that learn ground first-order rules that work
on the textual representation of the input documents; Bădică et al. [8] presented
a technique that learns first-order rules with variables by applying the FOIL
system to a first-order tree-based representation of the input documents. The
previous techniques rely on quite a limited catalogue of built-in features; Freitag
[24], Irmak and Suel [35], and Fernández-Villamor et al. [20] worked on proposals
that learn first-order rules using open catalogues of features.

5.2 Exploring propositio-relational learning

Inductive logic programming is a natural approach to deal with relational data.
Unfortunately, it is inefficient when the datasets scale in the number of data or
features because the search space is typically huge [7, 8, 23, 24, 48]. This has
motivated some authors to work on adapting efficient propositional techniques
so that they can work on relational data. The proposals in the literature can be
broadly classified as follows [29, 40]: upgrading, flattening (aka. proposionalisa-
tion), and multiple view.

Upgrading proposals rely on a conventional propositional learner that is up-
graded to deal with relational features. Some proposals upgrade a propositional

learner with the ability to learn first-order rules, namely: TILDE [6] upgrades
C4.5, SCART [41] upgrades CART, RIBL [18] and RIBL2 [33] upgrade k -NN,
Cumby and Roth [15] and Gärtner et al. [26] upgraded some kernel methods,
PRM [28, 36] upgrades Bayesian networks, SLP [47] upgrades stochastic gram-
mars, and 1BC and 1BC2 [21] upgrade Bayesian classifiers. Unfortunately, these
proposals did not prove to be efficient enough [29], which motivated other au-
thors to work on so-called relational-database proposals that transform the origi-
nal problems into SQL representations that can be handled more efficiently with
commodity database management systems. There are two approaches in the
literature: selection graph model, which includes MRDTL [3], which builds on
TILDE but represents the data in SQL, and MRDTL2 [3], which is an optimised
version of MRDTL that can also handle missing attributes using a proposal based
on Naive Bayes classifiers; other proposals are based on a technique called tuple
ID propagation, which basically attempts to join related vectors virtually; for
instance, CrossMine [64] and GraphNB [65] follow this approach by extending
FOIL [51] and a Bayesian classification algorithm, respectively.

Flattening proposals convert relational data into table-based representations
to which standard propositional techniques can be applied. There are two ap-
proaches in the literature: creating universal vectors that join all of the data
in the training sets, which was pioneered by LINUS [17], DINUS [45], and SI-
NUS [43], or creating vectors that summarise and/or aggregate the data in the
neighbourhood of every vector, e.g., RollUp [39] and RELAGGS [42].

Guo and Viktor [29] devised the only multiple-view proposal of which we
are aware. It relies on a meta-learning approach that can learn from multiple
views of the data, that is, multiple subsets of data that result from projecting
them using different feature subsets, and then integrates the results using a novel
technique that does not require the complex preprocessing required by flattening
proposals.

Although propositio-relational proposals seem very adequate to deal with
the problem of learning information extraction rules, it remains an almost unex-
plored research path. The only exception is the work by Sleiman and Corchuelo
[57], who devised a proposal that hybridises finite automata and neural net-
works; the states of the automata represent the information to be extracted and
the transitions the next-token relational feature; the transitions are controlled
by means of neural networks that recognise token patterns building on simple
features like they their HTML tags or their lexical classes.

5.3 Discussion

Typically, researchers who are interested in web information extraction have
designed ad-hoc proposals that are specifically tailored to this problem, which
has led to a variety of alternatives. Although many of them were proven to
be very effective and efficient, the problem is that they cannot leverage the
many advances in the field of machine learning; neither can the general machine-
learning field easily benefit from them. Furthermore, many of them have faded
away quickly as their inherent assumptions about the structure of documents

have become obsolete as the Web has evolved. Unfortunately, they could not be
easily adapted to deal with such evolution because this would have required to
re-work them, that is, to have devised completely new proposals. Some of the
ad-hoc proposals that we have surveyed work on the textual representation of the
input documents and their goal is to characterise the left and the right context
of the information to extract; others work on their DOM tree representations
and their goal is to characterise the path from the root node to the nodes that
provide the information to be extracted.

Contrarily to the previous proposals, Roller can leverage many machine-
learning techniques in the literature and benefit from the advances in this field.
Furthermore, it is based on an open catalogue of features that can be easily
extended and adapted as the Web evolves, without changing the proposal itself.
Neither does Roller attempt to characterise the left or the right context of the
information to extract or the path from the root to the nodes that provide the
information to extract; but it tries to characterise a context in the DOM tree.
Note that this may involve tokens in disparate positions, not necessarily on the
left or the right, as well as tokens that are not on the same path to the root
node, e.g., siblings or children of siblings.

A few authors have explored using techniques that got inspiration from in-
ductive logic programming since the tokens or the DOM nodes of semi-structured
documents can be naturally represented as relational data. Their proposals are
expected to be easier to adapt as the Web evolves since they need not be adapted,
but their catalogues of features. In general, they can achieve high effectiveness
at the cost of efficiency. They explore an unbounded context, which does not re-
strict them to the left or the right context or nodes within a given path, as was
the case for the ad-hoc proposals. Unfortunately, they use the same heuristic to
guide the search through both attributive and relational features; furthermore,
although they all are analysed together in every step, only one of them is se-
lected to grow the rule being learnt, which typically results in a problem called
myopia. The reason is that when a relational feature is selected, the attributive
features of the target node are not taken into account; in other words, there are
cases in which a decision to explore a neighbouring node may lead to a local
minimum. Except for L-Wrappers, none of the proposals that we have surveyed
can backtrack to explore other choices. Note, too, that L-wrappers is the only
proposal that advocates transforming the problem of web information extrac-
tion into a first-order knowledge base and then learning extraction rules using
an inductive-logic system like FOIL. This proved not to be efficient enough, even
with relatively simple documents. This problem was first pointed out by Freitag,
who suggested that learning from a first-order representation would simply be
too inefficient. Our experimental results using Aleph prove that the problem can
be tackled using a pure inductive logic programming technique, but the rules
learnt are not the most effective and they are inefficient.

Roller also works on a relational representation of the input documents that
builds on an open catalogue of features that can easily evolve as the Web evolves,
without making a change to the proposal itself. Furthermore, it relies on a propo-

sitional base learner that can be integrated in our proposal without a change;
that is, it can benefit from the advances in the general field of machine learning.
Our experiments prove that Roller is very effective and efficient. This is because
it relies on a propositional learner to analyse the attributive features of the nodes
to extract and then explores their context using relational features in an attempt
to find neighbouring nodes whose attributive features can contribute to learn-
ing a better rule. Furthermore, two different search heuristics are involved: one
that is provided by the base learner, which is ad-hoc and was designed to guide
the search through attributive features as effectively and efficiently as possible,
and another one that was designed to guide the search through the relational
features and helps explore the context as effectively and efficiently as possible.
Roller also reduces myopia because it deals with all of the attributive features at
the same time, not one after the other as was the case for the existing propos-
als; furthermore, the decision on which relational feature has to be explored next
does not depend only on that feature itself, but on the attributive features of the
target nodes. Obviously, this is not a solution to myopia, but our experiments
prove that it reduces the odds of making wrong decisions; we explored using
backtracking, but our experiments proved that the mechanism was not actually
necessary, so we decided not to include it in the final version of Roller.

Since information extraction problems can be naturally represented using re-
lational data, one might think that it would be easy to leverage a proposal from
the field of propositio-relational learning. Unfortunately, few such proposals exist
in the literature since there are a number of intrinsic problems: according to Guo
and Viktor [29], upgrading proposals are not generally scalable-enough, chiefly
those that rely on inductive logic programming approaches, and cannot gener-
ally achieve high effectiveness when they deal with numeric data, which is very
common in our context, e.g., depth of a node, number of children, font size, ratio
of letters or figures, text length, co-ordinates, and the like. Relational-database
proposals are more efficient because they rely on a database management system,
but they do not seem easy to adapt to the problem of information extraction be-
cause they rely on a fully-fledged relational schema, that is, they were designed
to deal with actual relational databases that build on a rich data schema that
includes information about every attribute, primary keys, foreign keys, and so
on; in other words, they are schema-driven proposals. In our context, there is
not such a schema, which requires the proposals to be instance-driven, that is:
they must explore the context of every instance individually, without an explicit
schema. The existing multi-view proposal in the literature improves on efficiency,
but it does not seem appropriate in our context because it is based on aggregating
neighbouring vectors. Numeric features are aggregated using the standard SQL
aggregation functions (sum, average, minimum, maximum, standard deviation,
and count), but categoric features are aggregated using counts only. That means
that the classification power that those features can provide is lost, but they are
very common in our context, e.g., font family, colour, horizontal alignment, float-
ing specification, and the like; furthermore, it does not take into account that
attributes in disparate nodes can contribute to obtaining a good rule. Flatten-

ing proposals require much computation to flatten the datasets to be analysed
and the resulting vectors may have an arbitrarily large number of components,
which hinders the applicability of many learners in practice; some of the propos-
als require data to be duplicated, which increases statistical skewness, whereas
others require data to be aggregated, which implies that data distributions are
neglected; furthermore, they need to put a limit to the amount of context that
can be explored because the context of the data is not explored on-demand, but
pre-computed.

Roller naturally fits within the category of flattening proposals, but it differs
significantly from the existing ones: instead of pre-processing the vectors in an
attempt to make the context of every node explicit, it first tries to learn a perfect
rule building solely on the attributive features of the nodes to be extracted; if no
such a rule can be learnt, then it explores the context by means of the available
relational features, which involves flattening the vectors that correspond to the
nodes being analysed and the vectors that correspond to their neighbours. This
results in a dynamic flattening proposal that has proven to work very well in
practice according to our experiments. Note that, contrarily to other existing
proposals, no aggregation of data is required; it works on the attributive features
themselves, which implies that no classification power is lost in the flattening
process.

6 Conclusions

In this article, we have introduced Roller, which is a new proposal to learn web
information extraction rules in the context of semi-structured web documents.

It is a highly configurable proposal: it relies on an open catalogue of both
attributive and relational features, which helps adapt it as the Web evolves;
furthermore, it does not commit to a specific base learner or rule scorer, but can
leverage many proposals in the literature and thus benefit from the continuous
advances in the general field of machine learning. This clearly deviates from
the many existing ad-hoc proposals in the literature and from the few existing
proposals that are based on inductive-logic programming techniques. Technically,
the learner that underlies our proposal relies on a search procedure that uses
a new dynamic flattening technique to explore the context of the nodes that
provide the information to be extracted; our survey of the literature proves that
is a novel approach to the problem.

We have conducted a series of experiments on a collection of 54 real-world
datasets. The experiments confirm that our proposal is very effective and efficient
in practice. It can outperform state-of-the art proposals in terms of effectiveness
and it is very competitive in terms of efficiency; although it is a little more
inefficient than other proposals regarding learning times, it can still learn a rule
in a matter of seconds, which we do not think is a serious shortcoming; the rules
that it learns can, however, be executed as effectively as the rules learnt by other
state-of-the-art proposals.

Our results clearly support our idea that using standard machine-learning
techniques to learn web information extraction rules is a promising approach.
Note that this clearly deviates from the existing proposals in the literature, which
build on ad-hoc machine-learning techniques that were specifically tailored to the
problem of learning web information extraction rules. They have proved to be
very effective, but the problem is that they tend to fade away because their
learning components are not clearly differentiated, which makes it difficult to
evolve them as the Web evolves and precludes re-using the many advances that
are published in the general field of machine learning. Contrarily, Roller relies
on a standard machine-learning technique and a standard rule scorer, which are
re-used as is, and an open catalogue of features, which can be easily extended.
This proves that it makes sense to keep working on trying to use general-purpose
machine-learning techniques instead of working on new ad-hoc techniques.

A The experimentation environment

We performed our experiments on a four-threaded Intel Core i7 computer that
ran at 2.93 GHz, had 4 GiB of RAM, Windows 7 Pro 64-bit, Oracle’s Java Devel-
opment Kit 1.7.9_02, JTidy 9.38, and Weka 3.6.8. No changes were performed
to the default configurations of the hardware or the software.

We used a collection 40 datasets on books, films, cars, events, doctors, jobs,
realty, and players, plus the nine datasets from the ExAlg repository and the
five datasets from the RISE repository that provide semi-structured documents.
The categories regarding the first group of datasets were randomly sampled
from The Open Directory sub-categories, and the web sites inside each category
were randomly selected from the 100 best ranked web sites between December
2010 and March 2011 according to Google’s search engine; we downloaded 30
documents from each web site and handcrafted a set of annotations with the slots
that we wished to extract from each document. Table 14 describes our datasets;
for each category, we report on the sites from which they were downloaded, the
slots that model the information that they provide, the number of documents
that they have, their average size in KiB, the average number of HTML errors
that they have (as reported by JTidy), the average number of positive examples,
and the average number of negative examples. The datasets were split ten times;
in each split, we randomly selected six documents for training purposes and the
remaining ones for testing purposes. The results on which we report in this article
were obviously computed on the testing sets.

We searched the Web and contacted many authors in order to have access
to the implementation of as many proposals as possible. We managed to find
an implementation for SoftMealy [34] and Wien [44], which are classical pro-
posals, and RoadRunner [14], FiVaTech [38], and Trinity [58], which are recent
proposals. We also experimented with a straightforward approach in which we
translated our datasets into first-order knowledge bases and then used Aleph [60]
to induce rules.

�������� 	
�� 	���� ��� 	
�����
�� ������ ���
�
��� �����
������� �����	
���
��������
� �����������������
�������
������ ������ ������������� ��������� ������������ ��� �!�!��"����� �����������������
�������
������ ������ �#����������� �����"�� ������������ ��!���!�����$��%������� �����������������
�������
������ ������ ������������� ��� ���� ������������ �#��#���!�&������'%��(�� �����������������
�������
������ ������ �!"���������� � �� ���� ������������ ����!!���������)�*��� �����������������
�������
������ ������ ��"���������� �"������� ������������ �������!���&��� +%
��,��(�� &����������(�������������������������(�����������
�������������
���� ������ ��#"�������� �������� ������������ ���"������&���*�- &���������������������(�����������
�������������������
���� ������ ������������� �� ��"�� ������������ ����������&���.��� &����������(������������������
�������/��������������(��������������������
�������������������
���� ������ ������������� ���#�#�� ������������ �������!���&�������&����)���0��� &��������������
�������/�����(�����������
�������������������
���� ������ ������������� ��!������ ��#� ������� �����#�!����
����
�+%
��%�(� &����������(������������������
���������������������
�������������
���� ������ ��!"�������� ����� �� ������������ ��!���#���1-+�� +��2���&��� &�����/�����(���������� ������ ��!���������� ��������� �!"��������� ���� ��!���31$+�4������ 4��������������%�
��� ������ ������������� ����"���� ��#������� �����������+��2���4���+�
��
� +�
��
������ �� ��� ��"���������� ��!������ ��#�!���� �#��������31$+�,���� ,�����������
�������%�
����)�)�5�))����
�����)�%�(�(���������5�����
����������������������������(��
��4����5�))������
�����%�)�5�))����
���� ������ �������������� ����#���� �� � ������� !�"���#����+%��6����4������ 4���������������
	5(�
������
	5���������%�
����	���	
���������7���	
� �� ��� �"����������� ��������� �� ��������� ""�"������15'���'�(� '�(����������(�������
���� �!���� ������������� ��#������ ������������ ���� �����*�8���9���%��'������� 4����������������
�����
���� � ������ �"����������� ��������� �!!��"���� �!""�#����:�
)��-�$���� $����
�
����(����
��������
	������� �!���� �""���������� ���!�#�� ������������ ����������;4*�$��(�4��/���� 4��/����������(������
����������
���5���
��� ������ ��!���������� � � ������� ��!������ ����! ����;����1�
�
� <���
 4�����
���((��������(������������� ������ � ����������� �"������� � ����������� ����������<���� 4�����
���((��������(���������
	���������2��������� ������ �! ���������� � � ���� ������������ !� �"������;���- 4�����
���((��������(���������
	���������2��������� ������ ������������� ��!������ ������������ ���� ��!��,�%��� 4�����
���((��������(���������
	���������2��������� ������ ���!�������� �������� ������������ �������������
��� =���*� ���
����������((�������	������������
�� ������ �! ���������� ��"������ ������������ ���#������+����*�(�����+����� ���
����������((�������	������������
�� ������ ��!���������� ��������� ������������ #��#����������
��
� ���
����������((�������	�����)�-���������
�� ������ ������������� �������� ��#��������� ���!��!��������0���� ���
����������((�������	������������
�� ������ ��"���������� ��������� �����"������ !��� ������0
��(��<���
	 ���
����������((�������������
�� ������ �#����������� ��"������ ������������ �"�#������1��
� 9��/�(��� 1��
�(�
����������
�
����%��� ������ ������������� ��������� �� ��������� �����#����+���&��)������� 1��
�(�
����������
�
����%��� ������ ��#���������� ����"���� ������������ ����� �"��*���(� 1��
�(�
����������
�
����%��� ������ �������������� ��������� ������������ �����������;��9������� 1��
�(�
����������
�
����%��� ������ �"������������ ��"������ ������������ ���##�#����;��� '�����/ '%���������������
����	������
���
� ���!� ��!���������� ��������� �!�������� ���#�!�����+$ $��(������������������������
�����������5����(��� ��!�� ��"���������� ��������� ��"��������� #�� �������6/�� &�
�2��������������� ������ �#������������ ��!�"���� ��#������� �"��#�����9+�=��/�� ;��
�%���
���������((�������	���� ��#��� �!������������ �"� ������� ������!��� ��!�#��!���.���
 ;��
�%���
��������((������
���� � ���� ��#���������� ���� ���� �����!������ "�# "��!���$���� +�������*���� $����
�
����(����
������
�����������%�
���� ������ �������������� ���� ���� ����!������� ��� #������+���*���� $����
�
����(����
������
�����������%�
���� ������ ��"���������� ��������� ��#��������� ���"�#�����������*���� $����
�
������
�����������%�
���� ������ �"����������� �! �"���� ������������ ������������*�' $����
�
����(����
������
�����������%�
���� ������ � ����������� ��������� �"���������� �#��������0�%��$���� $����
�
����(����
������
��������� ������ ��#���������� ��������� ��!�"������� ��� #!����'��/� +���'��/� '��/�
�
�����%
	���������������� ������ ��#���������� �!#������ ��!��������� #�����"����+7������'��/� '��/�
�
�����%
	���������������������� ������ ������������� �"������� ������������ ������#����'�

���=���(�'��/� '��/�
�
�����%
	���������� ������ ���!�������� �"������� ��"�!������� � �����!��*����'��/� '��/�
�
�����%
	��������� ������ ������������� �������� ����!������� ���!�!��!�=�
���
���� '��/�
�
�����%
	���������� ������ �#����������� ��� ���� ����!������� ���#!�����4������ 4������4��)���� 4���������������
	��	��	
��7���	
����%�� ������ ������������� ��!������ ������������ ���#"�����31$+ 4���������������
	����%�
��������
���� ������ ������������� ����#���� ������������ #� !�������+,4�=���(�,�%� 4���������������
	�������	��	
��7���
	����%�
��� ������ ������������ � ������� ������������ �!��#"�!��:$9 4���������������
	��	��	
��7���
	��������������� ������ � !���������� �#"������ ������������ ����!"����0������'��� 4���������������
	�������	��	
��7���
	����%�
��������
�������%�� ������ �#!���������� ��!����� ������������ ��������#�
Table 14. Description of our datasets.

B Performance measures

We collected the usual effectiveness measures, namely: precision (P), recall (R),
and the F1 score to combine them both (F1). We also collected some efficiency
measures, namely: learning time (LT) and extraction time (ET), both measured
in CPU seconds.

Effectiveness measures are stable because the proposals that we have com-
pared are deterministic, that is, they do not change when a proposal is run
multiple times on the same datasets. Efficiency measures, on the contrary, are
subject to external experimental conditions and may vary from execution to exe-
cution. We decided to measure CPU times because they are far more stable than
user times; given that the proposals that we have compared are deterministic,
that means that they follow the same execution paths every time that they are
executed on the same dataset, which implies that they execute exactly the same
machine-level instructions. IO activities were not a problem in our experimen-
tal study; the reason is that the proposals that we compared are CPU bound,
not IO bound. In other words, they read the input documents, which typically
takes less than a hundredth of a second, then run their algorithms in memory,
and finally output the results to a file, which does not usually take more than a
hundredth of a second.

To confirm the idea that CPU times are stable enough, we repeated each
experiment 25 times and we averaged the timings after discarding a few outliers
using the well-known Cantelli’s inequality.1 We studied these outliers to make
sure that they were actual abnormal values. They were due to the fact that our
University’s cloud infrastructure was reset a couple of times while the experi-
ments were running; that resulted in a few timings that were abnormally large
due to the interferences caused by the temporary interruption of the computing
service. The rest of the timings were quite stable; the small differences from run
to run were mainly due to the performance of the memory cache system, which,
in turn, depended on the other processes that were running on our University’s
cloud infrastructure.

Acknowledgments

We are grateful to Dr. Hassan A. Sleiman, from the Commissariat à l’Énergie
Atomique et aux Énergies Alternatives, LIST Institute, France, and Dr. Toñi
Reina, from the University of Sevilla, for their help and support with previ-
ous proposals that have paved the way for Roller. We would also like to thank
Dr. Francisco Herrera, from the University of Granada, Spain, for sharing his
statistical analysis software with us, and also to Dr. José C. Riquelme, from the

1 Cantelli’s inequality states that given a random variable X , if µ denotes its mean
and σ denotes is standard deviation, then the probability that X ≥ µ+ k σ or that
X ≤ µ−k σ is not greater than 1/(1+k2). If we wish to discard, say, 5% of the data
as lower or upper outliers, we then have to set 1/(1 + k2) = 0.05, that is k = 4.36.

University of Sevilla, Spain, for the many fruitful discussions regarding evaluat-
ing our proposal and comparing our experimental results. Last, but not least,
we would like to thank our reviewers and our editor for their insightful com-
ments on the earlier versions of this article, which helped us to improve it very
much. Our work was supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes (grants TIN2007-64119, P07-
TIC-2602, P08-TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-
E, TIN2010-10811-E, TIN2010-09988-E, TIN2011-15497-E, and TIN2013-40848-
R). The work by Patricia Jiménez was also partially supported by the University
of Southern California during a research visit that she paid to the Information
Sciences Institute.

Bibliography

[1] M. Álvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda. Extracting lists
of data records from semi-structured web pages. Data Knowl. Eng., 64(2):
491–509, 2008.

[2] A. Arasu and H. Garcia-Molina. Extracting structured data from web pages.
In SIGMOD Conference, pages 337–348, 2003.

[3] A. Atramentov, H. Leiva, and V. Honavar. A multi-relational decision tree
learning algorithm. In ILP, pages 38–56, 2003.

[4] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of the
behavior of several methods for balancing machine learning training data.
SIGKDD Explorations, 6(1):20–29, 2004.

[5] P. A. Bernstein and L. M. Haas. Information integration in the enterprise.
Commun. ACM, 51(9):72–79, 2008.

[6] H. Blockeel and L. D. Raedt. Top-down induction of first-order logical
decision trees. Artif. Intell., 101(1-2):285–297, 1998.

[7] H. Blockeel, L. D. Raedt, N. Jacobs, and B. Demoen. Scaling up inductive
logic programming by learning from interpretations. Data Min. Knowl.
Discov., 3(1):59–93, 1999.

[8] C. Bădică, A. Bădică, E. Popescu, and A. Abraham. L-Wrappers: Concepts,
properties and construction. Soft Comput., 11(8):753–772, 2007.

[9] M. E. Califf and R. J. Mooney. Bottom-up relational learning of pattern
matching rules for information extraction. Journal of Machine Learning
Research, 4:177–210, 2003.

[10] C.-H. Chang and S.-C. Kuo. OLERA: Semisupervised web-data extraction
with visual support. IEEE Intelligent Systems, 19(6):56–64, 2004.

[11] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of web
information extraction systems. IEEE Trans. Knowl. Data Eng., 18(10):
1411–1428, 2006.

[12] B. Chidlovskii. Wrapping web information providers by transducer induc-
tion. In ECML, pages 61–72, 2001.

[13] V. Crescenzi and G. Mecca. Automatic information extraction from large
websites. J. ACM, 51(5):731–779, 2004.

[14] V. Crescenzi and P. Merialdo. Wrapper inference for ambiguous web pages.
Applied Artificial Intelligence, 22(1&2):21–52, 2008.

[15] C. M. Cumby and D. Roth. On kernel methods for relational learning. In
ICML, pages 107–114, 2003.

[16] J. Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[17] S. Džeroski and N. Lavrač. Inductive learning in deductive databases. IEEE
Trans. Knowl. Data Eng., 5(6):939–949, 1993.

[18] W. Emde and D. Wettschereck. Relational instance-based learning. In
ICML, pages 122–130, 1996.

[19] F. Esposito, S. Ferilli, N. Fanizzi, T. M. A. Basile, and N. D. Mauro. Incre-
mental multistrategy learning for document processing. Applied Artificial
Intelligence, 17(8-9):859–883, 2003.

[20] J. I. Fernández-Villamor, C. Á. Iglesias, and M. Garijo. First-order logic
rule induction for information extraction in web resources. International
Journal on Artificial Intelligence Tools, 21(6):1–20, 2012.

[21] P. A. Flach and N. Lachiche. Naive bayesian classification of structured
data. Machine Learning, 57(3):233–269, 2004.

[22] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten,
and L. Trigg. Weka-a machine learning workbench for data mining. In Data
Mining and Knowledge Discovery Handbook, pages 1269–1277. Springer,
2010.

[23] D. Freitag. Information extraction from HTML: Application of a general
machine learning approach. In AAAI/IAAI, pages 517–523, 1998.

[24] D. Freitag. Machine learning for information extraction in informal do-
mains. Machine Learning, 39(2/3):169–202, 2000.

[25] S. García and F. Herrera. An extension on ‘statistical comparisons of clas-
sifiers over multiple data sets’ for all pair-wise comparisons. Journal of
Machine Learning Research, 9:2677–2694, 2008.

[26] T. Gärtner, J. W. Lloyd, and P. A. Flach. Kernels and distances for struc-
tured data. Machine Learning, 57(3):205–232, 2004.

[27] L. Geng and H. J. Hamilton. Interestingness measures for data mining: A
survey. ACM Comput. Surv., 38(3), 2006.

[28] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic
models of relational structure. In ICML, pages 170–177, 2001.

[29] H. Guo and H. L. Viktor. Multirelational classification: A multiple view
approach. Knowl. Inf. Syst., 17(3):287–312, 2008.

[30] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Trans.
Knowl. Data Eng., 21(9):1263–1284, 2009.

[31] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O’Connor,
and S. Pfeiffer. HTML 5: A vocabulary and associated APIs for HTML and
XHTML. Technical report, W3C, 2014.

[32] A. W. Hogue and D. R. Karger. Thresher: Automating the unwrapping of
semantic content from the World Wide Web. In WWW, pages 86–95, 2005.

[33] T. Horváth, S. Wrobel, and U. Bohnebeck. Relational instance-based learn-
ing with lists and terms. Machine Learning, 43(1/2):53–80, 2001.

[34] C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-
structured data extraction from the web. Inf. Syst., 23(8):521–538, 1998.

[35] U. Irmak and T. Suel. Interactive wrapper generation with minimal user
effort. In WWW, pages 553–563, 2006.

[36] M. Jaeger. Probabilistic-logic models: Reasoning and learning with rela-
tional structures. In SCAI, pages 197–200, 2008.

[37] Y. Kavurucu, P. Senkul, and I. H. Toroslu. A comparative study on ILP-
based concept discovery systems. Expert Syst. Appl., 38(9):11598–11607,
2011.

[38] M. Kayed and C.-H. Chang. FiVaTech: Page-level web data extraction from
template pages. IEEE Trans. Knowl. Data Eng., 22(2):249–263, 2010.

[39] A. J. Knobbe, M. de Haas, and A. Siebes. Propositionalisation and aggre-
gates. In PKDD, pages 277–288, 2001.

[40] S. Kramer, N. Lavrač, and P. Flach. Propositionalization approaches to
relational data mining. In S. Džeroski and N. Lavrač, editors, Relational
Data Mining, pages 262–291. Springer, 2001.

[41] S. Kramer, G. Widmer, B. Pfahringer, and M. de Groeve. Prediction of
ordinal classes using regression trees. Fundam. Inform., 47(1-2):1–13, 2001.

[42] M.-A. Krogel. On propositionalization for knowledge discovery in relational
databases. PhD thesis, Otto von Guericke Universität Magdeburg, 2005.

[43] M.-A. Krogel, S. Rawles, F. Zelezný, P. A. Flach, N. Lavrač, and S. Wrobel.
Comparative evaluation of approaches to propositionalization. In ILP, pages
197–214, 2003.

[44] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction for
information extraction. In IJCAI (1), pages 729–737, 1997.

[45] N. Lavrač and S. Džeroski. Inductive logic programming: Techniques and
applications. Ellis Horwood, 1994.

[46] P. Montoto, A. Pan, J. Raposo, J. Losada, F. Bellas, and V. Carneiro. A
workflow language for web automation. J. UCS, 14(11):1838–1856, 2008.

[47] S. Muggleton. Learning stochastic logic programs. Electron. Trans. Artif.
Intell., 4(B):141–153, 2000.

[48] S. Muggleton, L. D. Raedt, D. Poole, I. Bratko, P. A. Flach, K. Inoue, and
A. Srinivasan. ILP turns 20: Biography and future challenges. Machine
Learning, 86(1):3–23, 2012.

[49] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical wrapper induction
for semistructured information sources. Autonomous Agents and Multi-
Agent Systems, 4(1/2):93–114, 2001.

[50] J. Park and D. Barbosa. Adaptive record extraction from web pages. In
WWW, pages 1335–1336, 2007.

[51] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL
and related systems. New Generation Comput., 13(3&4):287–312, 1995.

[52] S. Sarawagi. Information extraction. Foundations and Trends in Databases,
1(3):261–377, 2008.

[53] Y. K. Shen and D. R. Karger. U-REST: An unsupervised record extraction
system. In WWW, pages 1347–1348, 2007.

[54] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Pro-
cedures. Chapman and Hall/CRC, 5th edition, 2012.

[55] H. A. Sleiman and R. Corchuelo. TEX: An efficient and effective unsuper-
vised web information extractor. Knowl.-Based Syst., 39:109–123, 2013.

[56] H. A. Sleiman and R. Corchuelo. A survey on region extractors from web
documents. IEEE Trans. Knowl. Data Eng., 25(9):1960–1981, 2013.

[57] H. A. Sleiman and R. Corchuelo. A class of neural-network-based transduc-
ers for web information extraction. Neurocomputing, 135:61–68, 2014.

[58] H. A. Sleiman and R. Corchuelo. Trinity: On using trinary trees for un-
supervised web data extraction. IEEE Trans. Knowl. Data Eng., 26(6):
1544–1556, 2014.

[59] S. Soderland. Learning information extraction rules for semi-structured and
free text. Machine Learning, 34(1-3):233–272, 1999.

[60] A. Srinivasan. The Aleph manual. Technical report, University of Oxford,
2004.

[61] W. Su, J. Wang, and F. H. Lochovsky. ODE: Ontology-assisted data ex-
traction. ACM Trans. Database Syst., 34(2), 2009.

[62] J. Turmo, A. Ageno, and N. Català. Adaptive information extraction. ACM
Computing Surveys, 38(2), 2006.

[63] A. van Kesteren, A. Gregor, A. Russell, and R. Berjon. Document object
model 4. Technical report, W3C, 2014.

[64] X. Yin, J. Han, J. Yang, and P. S. Yu. Efficient classification across multiple
database relations: A crossmine approach. IEEE Trans. Knowl. Data Eng.,
18(6):770–783, 2006.

[65] H. Zhang and J. Su. Conditional independence trees. In ECML, pages
513–524, 2004.

Authors’ Biographies

Patricia Jiménez is working as a lecturer for the Univer-
sity of Seville. She earned her PhD degree with a thesis in
which she presented a number of techniques to extract infor-
mation from semi-structured web documents and a method
to rank web information extractors. Her current research in-
terests focus on open information extraction in the context
of semi-structured web sites.

Rafael Corchuelo works for the University of Sevilla as a
Reader. His research focus is on Enterprise Application and
Information Integration, with an emphasis on technologies
to extract data from both semi-structured web sites and
social media in as an unsupervised manner as possible. He
often works with start-ups so as to transfer his results to
the industry.

View publication statsView publication stats

https://www.researchgate.net/publication/280227092

