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Abstract. Software agents are increasingly used to search for experts, recommend 
resources, assess opinions, and other similar tasks in the context of social networks, 
which requires to have accurate information that describes the features of the members 
of the network. Unfortu-nately, many member profiles are incomplete, which has 
motivated many authors to work on automatic member labelling, that is, on techniques 
that can infer the null features of a member from his or her neighbour-hood. Current 
proposals are based on local or global approaches; the former compute predictors from 
local neighbourhoods, whereas the lat-ter analyse social networks as a whole. Their 
main problem is that they tend to be inefficient and their effectiveness degrades 
significantly as the percentage of null labels increases. In this paper, we present Katz, 
which is a novel hybrid proposal to solve the member labelling problem using neural 
networks. Our experiments prove that it outperforms other pro-posals in the literature 
in terms of both effectiveness and efficiency.

Keywords: Social networks · Member labelling · Hybrid approach · Neural 
networks

1 Introduction

On-line social media have sprouted out during the last decade. They have paved 
the way for on-line social networks whose members typically interact to share or 
to retrieve information from one another. Never before has it been easier to find 
information about individuals, their demographics, their likes, their dislikes, the 
activities in which they engage, their opinions, their thoughts, and so on. And 
something that is even more important: their relationships.

Software agents are being used in tasks such as searching for experts regard-
ing a given topic, recommending resources (posts, videos, music, and the like), 
assessing opinions, targeting advertisements, sociological studies, and so on. For 
these agents to succeed in producing accurate information, it is very impor-
tant that the information in a member’s profile be as complete as possible. 
Unfortunately, it is not uncommon that many members do not complete their 
profiles [11], which makes it very difficult for software agents to work well.

Many authors have paid attention to a problem that is commonly referred to 
as member labelling (aka. member classification, node classification, link-based 
classification, or collective classification). Simply put, the idea is to infer the



features of a member of a social network as accurately as possible using solely
the features available from members with whom he or she has a relationship [1].
This has proven to work well because social networks have a property that is
known as homophily [19], according to which members who have similar fea-
tures tend to have stronger relationships than members that have very dissimi-
lar features. The current proposals in the literature are based on local or global
methods. The former learn a predictor from the features of the members of a
social network, including some neighbours; the latter tackle the problem from a
global perspective and attempt to analyse social networks as a whole. The main
problem with current proposals is that they have proven to be inefficient and
ineffective as the size of a social network or the number of null features increases.

This motivated us to work on Katz, which is a novel hybrid proposal to solve
the member labelling problem. It is based on neural networks, which are used to
infer a predictor for each member feature using the information provided by an
unbounded neighbourhood. It starts analysing each member’s profile in isolation,
and then explores his or her neighbourhood searching for the relationships and
features that contribute the most to producing a better predictor. It is not a local
method since it explores an unbounded context and selects the most interesting
features and neighbours to learn a predictor; neither is it a global method because
it does not attempt to analyse social networks as a whole; that is the reason why
we refer to Katz as a hybrid proposal. Our experiments on quite a large real-
world social network prove that it outperforms other proposals in the literature
in terms of both effectiveness and efficiency.

The rest of the paper is organised as follows: Section 2 describes our proposal;
Section 3 reports on the results of our experiments; Section 4 surveys the related
work and compares it to ours; finally, Section 5 presents our conclusions.

2 Our Proposal

Katz works on a social network that is represented as a graph in which a node
represents all of the features of a member profile and an edge represents a rela-
tionship to another member. It analyses the network and returns a map in which
each feature is associated with a set of neural networks that can be used to label a
new member regarding that feature. Note that each feature is predicted by means
of a set of neural networks that are learnt from different partitions of the social
network; the goal, which has been confirmed empirically, is to decrease the error
rate by using an ensamble-predictor approach instead of the single-predictor
approach that is common in the literature. In the following subsections, we first
present the main procedure of Katz and then an ancillary procedure that is used
to extend a neural network to the most appropriate neighbourhood.

Main Procedure: Figure 1 shows the main procedure of Katz. It works on a
graph (N ,E ) that represents a social network. N is a collection of vectors of
the form (m, f1, f2, . . . , fn), where m is the unique identifier of a member of the
social network and fi are the values of its features (i = 1 . . .n); features can be



1: Katz (N , E)

2: m = ∅
3: for each feature f used in N do

4: ns = ∅
5: repeat β times

6: t = select nodes in N with a value for f

7: ts = create a training set with �γ |t|� nodes from t

8: vs = t \ ts

9: n = null

10: do

11: (n′, ts′, vs′) = expandNeuralNetwork(n, ts, vs,N ,E)

12: exit when n = n′

13: (n, ts, vs) = (n′, ts′, vs′)
14: end

15: w = 1/error(n, vs)

16: ns = ns ∪ {(n,w)}
17: end

18: m = m ∪ {(f ,ns)}
19: end

20: return m

Fig. 1. Main procedure of Katz

either numeric (e.g., age, salary, or opinion polarity about a topic) or categorical
(e.g., nationality, gender, or dislikes). E is a collection of vectors of the form
(m1,m2, k ,w), where m1 and m2 are the identifiers of two members of the social
network, k denotes a kind of relationship between them, and w is the weight of
that relationship. The relationships include any kind of interaction between any
two members of a social network (e.g., replies to posts, post forwards, friendship
requests, message exchanges, and so on). Thus, the weight of edge (m1,m2, k ,w)
is computed as the number of actual interactions of type k that have occurred
between members m1 and m2.

The result of the main procedure is computed in variable m, which is a map
that associates every feature in the social network with a collection of tuples
of the form (n,w), where n is a neural network, which acts as a regressor or a
classifier for the corresponding feature, and w is its weight, which is the inverse of
the error rate; that is, the smaller the error rate, the more important the neural
network and the larger the error rate, the less important the neural network. Katz
returns β rules for every feature, where β is a user-provided parameter. To label a
new member regarding a given feature, the neural networks are applied one after
the other. In the case of numeric features, the values predicted by each rule are
weighted according to their normalised error rate and then averaged; in the case
of categoric features, the results are weighted according to the normalised error
rate and the most voted one is returned.

The main procedure basically iterates over the set of features in the social
network; in each iteration, it repeats the following procedure β times: it first
selects the subset of nodes that have a value for the feature being analysed and
then splits it into a training set and a validation set. The size of the training set
is controlled by means of γ, which is a user-provided parameter; the remaining



1: expandNeuralNetwork(n, ts, vs, N , E)

2: if n = null then

3: n = learn network from ts

4: else

5: c = expand the neighbourhood of ts and vs using (N ,E)

6: for each (u, v) in c do

7: n′ = learn a network from u

8: ts′ = u

9: vs′ = v

10: if error(n′, vs′) < error(n, vs) then

11: (n, ts, vs) = (n′, ts′, vs′)
12: end

13: end

14: end

15: return (n, ts, vs)

Fig. 2. Procedure to expand a neural network
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Fig. 3. Excerpt of an expanded training set

nodes are used for validation purposes. It then initialises a neural network n
to a null network that does nothing, and then repeatedly expands it until no
further expansion is possible. Expanding a neural network consists of extending
it to some neighbours as long as this helps to reduce the error rate. We provide
additional details in the following subsection.

Expanding Neural Networks: Figure 2 shows the procedure to expand a
neural network. It works on a neural network n, a training set ts, a validation
set vs, and a social network (N ,E ); it returns a new neural network, the training
set from which it was learnt, and the validation set on which it was validated.

The procedure first checks if the input neural network is null, in which case it
simply learns a neural network from the training set and returns it. Otherwise,
it first expands the neighbourhood of the training and the validation sets using
the information provided by the social network. Expanding the neighbourhood
of a dataset means that its vectors are expanded with additional components
that represent the features of a kind of neighbour. For instance, Figure 3 shows



Table 1. Experimental results
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Nullif. E T E T E T E T E T Nullif. E T E T E T E T E T

5.00% 5.55 7.01 9.70 12.39 8.85 6.75 5.00% 19.12 5.56 19.77 5.60 3.44 11.77 7.94 13.51 5.40 4.10

10.00% 9.39 8.22 14.30 12.74 12.55 6.69 10.00% 26.85 6.79 21.28 6.95 6.81 12.27 8.33 15.06 9.09 3.76

15.00% 16.45 9.18 10.70 15.60 10.88 4.36 15.00% 27.55 7.33 22.01 7.83 9.00 12.64 14.96 18.77 13.55 3.74

20.00% 6.49 10.61 11.16 16.30 11.75 4.71 20.00% 22.76 9.04 22.75 6.96 10.33 15.55 8.94 20.13 17.36 3.23

25.00% 20.43 11.37 20.00 14.55 18.83 4.70 25.00% 34.96 7.25 23.56 7.39 19.24 16.57 8.59 20.62 25.13 4.40

30.00% 24.08 10.94 31.86 16.23 15.62 4.68 30.00% 48.85 7.99 24.25 7.27 7.88 12.54 17.79 22.72 12.34 5.07

35.00% 35.55 13.56 21.17 15.63 10.59 5.05 35.00% 23.34 8.59 25.05 8.13 22.35 13.76 35.32 26.06 20.84 4.76

40.00% 23.39 12.46 15.31 17.88 17.86 4.66 40.00% 22.85 7.19 35.82 8.14 24.67 16.75 27.80 23.97 20.46 2.44

45.00% 50.13 12.92 36.26 21.65 13.18 6.38 45.00% 54.20 7.53 26.50 8.65 19.85 16.79 19.85 23.39 21.07 3.33

50.00% 40.23 15.81 17.44 20.75 10.48 5.59 50.00% 49.13 7.86 44.71 10.52 52.53 17.77 17.79 27.51 44.04 3.57

Mean 23.17 11.21 18.79 16.37 13.06 5.36 Mean 29.96 7.51 25.57 7.74 17.61 14.64 16.73 21.17 17.93 3.84
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Nullif. E T E T E T E T E T Nullif. E T E T E T E T E T

5.00% 5.40 6.35 10.25 6.54 5.62 5.40 9.73 4.65 8.01 4.08 5.00% 21.75 5.50 16.52 7.54 4.06 5.81 9.85 4.55 6.46 5.41

10.00% 5.72 9.33 13.54 6.90 14.50 5.61 16.40 4.86 12.73 4.14 10.00% 23.86 6.59 18.81 9.03 11.93 5.69 15.55 4.98 5.48 4.04

15.00% 6.52 10.71 22.70 6.04 12.84 6.42 11.45 5.97 11.17 4.44 15.00% 27.77 7.92 19.95 9.47 10.85 5.89 10.73 5.32 8.01 5.27

20.00% 14.85 12.21 26.83 6.96 24.15 6.08 17.67 6.67 15.25 4.76 20.00% 30.22 8.19 21.11 7.34 11.14 6.30 8.69 5.33 7.12 5.24

25.00% 15.29 13.68 31.03 7.16 5.59 7.49 23.57 5.72 17.17 3.22 25.00% 35.98 9.64 22.26 7.92 8.18 6.55 22.06 5.59 21.34 5.30

30.00% 7.71 15.19 20.18 8.41 35.44 5.93 32.64 6.49 10.59 4.14 30.00% 24.09 9.59 23.47 9.40 25.70 6.88 19.83 5.69 28.90 2.09

35.00% 25.13 16.59 21.76 9.59 6.35 4.73 23.68 6.95 16.38 3.55 35.00% 40.91 11.79 24.63 8.97 14.68 7.94 35.23 6.84 28.30 2.07

40.00% 18.76 18.08 23.57 7.91 20.12 3.62 24.36 7.03 14.36 4.06 40.00% 53.60 9.75 25.74 9.76 21.84 9.44 24.57 7.36 25.61 1.57

45.00% 13.36 19.68 29.06 7.91 27.63 3.21 14.86 5.82 13.36 4.09 45.00% 30.26 7.60 30.94 9.48 30.13 9.62 31.53 8.74 29.31 2.28

50.00% 28.18 20.87 26.63 9.50 27.29 2.88 42.70 6.43 15.29 3.83 50.00% 32.96 7.78 28.06 11.67 21.03 12.00 19.98 10.05 32.13 2.29

Mean 12.09 14.27 22.16 7.69 17.95 5.14 21.71 6.06 13.43 4.03 Mean 32.14 8.43 22.75 9.06 15.95 7.61 19.80 6.44 17.27 3.56

��	�� ���������

Nullif. E T E T E T E T E T Nullif. E T E T E T E T E T

5.00% 14.36 5.01 18.56 6.07 8.53 9.52 9.17 4.13 8.33 5.40 5.00% 19.49 5.49 13.50 7.91 10.34 5.19 15.19 10.84 10.75 6.26

10.00% 23.36 9.27 23.09 9.35 14.53 9.32 13.18 9.30 11.34 5.06 10.00% 24.50 9.33 20.25 9.28 18.35 9.26 20.20 9.31 13.75 5.62

15.00% 27.86 10.79 25.28 10.75 17.54 10.82 15.18 10.74 12.83 3.85 15.00% 27.00 10.78 21.12 10.80 17.84 10.83 22.70 10.83 15.25 9.25

20.00% 32.36 12.26 27.57 12.30 20.53 12.23 17.17 12.27 14.33 4.26 20.00% 29.49 12.18 21.95 12.17 20.34 12.25 25.20 12.20 16.75 7.68

25.00% 36.86 13.84 29.75 13.64 23.53 13.76 19.17 13.82 15.84 4.19 25.00% 31.99 13.62 22.85 13.69 22.85 13.74 27.70 13.75 18.25 6.99

30.00% 41.36 15.22 32.08 15.31 26.53 15.22 21.18 15.13 17.33 5.77 30.00% 34.49 15.10 23.63 15.12 25.35 15.06 30.19 15.14 19.75 9.72

35.00% 45.86 16.70 34.43 16.54 29.53 16.56 23.17 16.60 18.84 5.14 35.00% 37.00 16.73 24.50 16.64 27.84 16.63 32.70 16.51 21.25 9.48

40.00% 50.36 18.02 36.70 18.25 32.53 18.33 25.18 18.06 20.33 2.97 40.00% 39.50 17.95 25.42 18.02 30.35 18.12 35.20 18.09 22.76 16.02

45.00% 54.86 19.72 38.72 19.74 35.53 19.76 27.18 19.64 21.83 3.82 45.00% 42.00 19.64 32.22 19.50 32.85 19.51 37.69 19.46 24.26 19.39

50.00% 59.36 21.27 45.05 21.01 38.53 21.32 29.17 21.35 23.33 3.41 50.00% 44.50 21.34 37.04 20.85 35.35 20.91 40.19 21.19 25.75 13.73

Mean 38.66 14.21 30.72 14.29 24.73 14.68 19.98 14.10 16.43 4.39 Mean 33.00 14.22 22.65 14.40 24.15 14.15 28.70 14.73 18.85 10.41

KatzLGNJ MP B

NJ LG MP B Katz

NJ LG MP B Katz

NJ LG MP B Katz

NJ LG MP B

NJ LG MP B

Katz

Katz

an excerpt of an initial training set on the left; on the right, that training set has
been expanded with the features of the neighbours regarding the ‘sends-message’
relationship; note that the weight of the relationship is added as an additional
feature to the vector.

Then, the procedure iterates through the set of expansions of the training set
and learns a new neural network from each one. It returns the expanded neural
network that achieves the smallest error rate together with the training set from
which it was learnt and validation set on which the error rate was computed.

3 Experimental Results

We conducted a series of experiments to analyse how Katz performs in practice.
The experiments were carried out using a Java 1.7 implementation that was run
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Fig. 4. Graphic summary

on a four-threaded Intel Core i7 computer that ran at 2.93 GHz, had 16 GiB
of RAM, Windows 7 Pro 64-bit, Oracle’s Java Development Kit 1.7.9 02, and
Weka 3.6.8.

We implemented the general framework by Neville and Jensen [17] (NJ)
and then the specific proposals by Lu and Getoor [12] (LG), Macskassy and
Provost [13] (MP), and Bhagat et al. [3] (B). Regarding the previous proposals,
we considered that a labelling was estable when no more than 5% of the features
changed in an iteration of the method. Regarding Katz, we experimented with
several combinations of parameters and kinds of neural networks. We found out
that the following values for the parameters work quite well: β = 10, that is, 10
neural networks learnt for each feature, and γ = 0.25, that is, 25% of the nodes



available in the social network are used for training purposes and the remaining
for validation purposes. Regarding the learning technique, we found out that
RBFN networks [4] are the best performing in this context.

The experiments were performed on a dataset that consisted in a dump of
our university social network. This network has 56, 431 members, each of which
is characterised by a profile that includes the following features: age (a natu-
ral value), gender (male, female), group (student, lecturer, staff), nationality
(Spanish, French, Italian, and so on), school (Computer-Science, Mathemat-
ics, Physics, Philology, and so on), likes, and dislikes; other features like name,
address, national id or passport were discarded to keep the data anonymous;
neither was it very interesting to attempt to predict them. The likes and dislikes
are sets of key words that are selected by the members from a list that is com-
puted automatically from the messages post by the members of the network; to
deal with them in our experiments, we selected the top 50 key words and created
binary features of the form likes X or dislikes Y, where X or Y represents key words.
The relationships between the members of the network are the following: posts-
to-wall, replies-to-post, forwards-post, sends-message, follows-member, requests-
friendship. This dataset was particularly useful because almost every profile has
accurate features that are set automatically using the students’ registration data
or the lecturers’ and staff’s work contracts, and the likes and dislikes are also
selected from sets of pre-computed key words. That is, we had quite a large
correctly labelled dataset on which could conduct quite a precise validation.

To evaluate our proposal and compare it to others, we created several datasets
from the previous one. They were versions of the original dataset in which we
nullified the features of 5% up to 50% nodes that were chosen randomly. This
helped us to evaluate how our proposal works and compare it to others in terms
of error rate (E ) and processing time (T ). The error rate was computed as the
percentage of wrong predictions; in the case of numeric features a ±10% tolerance
threshold was established to consider a prediction wrong. The processing time
was measured in CPU plus IO hours, since these timings are far more reliable
and stable than user times.

Table 1 shows our results and Figure 4 summarises them using a couple of
charts. (The columns that correspond to proposals NJ and LG regarding fea-
ture ‘age’ are empty because these methods cannot be applied to numeric fea-
tures.) Regarding effectiveness, the first conclusion is that the error rate increases
steadily as the percentage of nullification increases, but Katz keeps the smallest
global mean in the majority of cases, where global mean refers to the computed
mean for each feature for a given nullification percentage, cf. the upper part
of Figure 4. To compare the results more precisely, we have computed the ten-
dency lines for each proposal according to the percentage of nullification, which
is denoted as N :



Proposal Error rate tendency R2

NJ 2.78N + 14.72 0.99
LG 1.88N + 15.17 0.93
MP 2.99N + 4.16 0.95
B 2.15N + 9.17 0.88

Katz 1.69N + 7.37 0.92

Note that the R2 coefficient is very good in every case, which means that
there is a clear linear tendency in the results. The smallest slope corresponds
to Katz, which means that it is the proposal whose error rate increases at the
lowest pace as the percentage of nullification increases; it is followed by LG, but
note that the error rate of this proposal is roughly double as Katz’s.

Regarding efficiency, the first conclusion is that Katz seems to have a
behaviour that is very stable, whereas the other proposals seem to require more
processing time as the percentage of nullification increases. To confirm this idea,
we have also computed the tendency lines for each proposal, namely:

Proposal Processing time tendency R2

NJ 1.04N + 5.62 0.98
LG 0.66N + 6.08 0.98
MP 0.78N + 6.93 0.97
B 1.00N + 7.63 0.98

Katz 0.08N + 4.81 0.95

Note that the R2 coefficient is again very good in every case. The smallest
slope corresponds again to Katz, which means that it is the proposal whose pro-
cessing time increases at a lower pace as the percentage of nullification increases.
Note that it is very close to 0.00, which means that the processing time remains
almost constant; the reason is that the size of the training sets decrease as the
percentage of nullification increases, which makes learning neural networks eas-
ier; unfortunately, as the percentage of nullification increases, the number of
neighbours that must be explored to keep as a low error rate as possible increases.
Katz is followed by the other proposals, which require considerably more pro-
cessing time since they have to iterate until the labelling is stable enough, which
is more and more difficult as the percentage of nullification increases.

4 Related Work

There are two mainstream approaches to the member labelling problem [9],
namely: local and global methods. They both work on a graph-based repre-
sentation of the social network being analysed, where the nodes store member
features and the edges keep track of their interactions, but differ in that the
former focus on learning local predictors from every member and his or her local
neighbourhood, whereas the latter analyse the social network as a whole.

Below, we report on both approaches and discuss on how our proposal
improves on them from a conceptual point of view.



Local Methods: These methods can be further classified into instantiations of
the Iterative Classification Algorithm by Neville and Jensen [17] or instantiations
of the Gibbs Sampling Algorithm by Geman and Geman [8].

The methods that are based on the Iterative Classification Algorithm [17]
transform a social network into a dataset of vectors, each of which provides the
features of a member’s profile plus some aggregated features that correspond to
the members in his or her neighbourhood. They analyse each feature in isolation
as follows: they first learn a local predictor from the members whose profiles
provide a non-null value for that feature. (Informally, this is commonly referred
to as “the member is labelled”.) The predictor is either a regressor or a classifier
depending on whether the feature being analysed is numeric or categorical. It is
then used to compute the label of the unlabelled members, as long as they have
at least a labelled neighbour. Note that labelling a member will likely change
the values of the aggregated features in the neighbourhood, so the labelling pro-
cess needs to be repeated iteratively until the labels do not change dramatically
or do not change at all. The previous idea has been instantiated many times
in the literature, the difference being the kind of predictor used: Neville and
Jensen [17] used Naive-Bayes predictors, Lu and Getoor [12] used logistic regres-
sion, Macskassy and Provost [13] used a voting approach, and Bhagat et al. [3]
and McDowell et al. [16] used k -nearest neighbours. Recently, Cataltepe et al. [6]
have used different types of predictors for member features and neighbourhood
features, which are then combined to produce an ensamble predictor.

The methods that are based on the Gibbs Sampling Algorithm [8] work in
four phases, namely: bootstrapping, burn-in, collecting, and labelling. In the
bootstrapping phase, they learn a predictor in a way that is very similar to
the methods that are based on the Iterative Classification Algorithm, and then
use it to label the unlabelled members. Then, the burn-in phase is repeated a
number of times; in each repetition, the members that were initially unlabelled
are randomly ordered and then new labels are computed using a predictor, which
can be the same that was used in the bootstrapping phase or a new one [14]. In
the sample collection phase, the process is repeated a pre-defined number of times
and the count of labels assigned to each member is computed. Finally, in the
labelling phase, the members that were initially unlabelled are assigned the most
likely label according to the counts that were computed in the previous phase.
Both McDowell et al. [15] and Macskassy and Provost [14] have instantiated this
idea; the former used Naive-Bayes and k -nearest neighbours and the latter used
different combinations of predictors.

Global Methods: The most common methods in this category are based on
random walks and optimisation.

A random walk on a graph is a very special case of a Markov chain. The core
idea was introduced by Zhu et al. [23]: they rely on a transition matrix P that
encodes the probability that a random walk proceeds between any two members
of a social network using their relationships. Given an unlabelled member, the
method assigns it the most common label out of the members that can be reached
from it using random walks. That is, it requires to compute an approximation



to the closure of P ; in practice, the procedure stops when the closure is stable
enough, that is, when the probabilities do not change dramatically or do not
change at all. This general idea has been instantiated many times in the litera-
ture, with some variations, namely: Szummer and Jaakkola [20] start their walks
from unlabelled nodes and consider only labelled nodes that can be reached in
a pre-defined number of steps; contrarily, Callut et al. [5] consider only walks
that start and end in a labelled node regarding a given feature, but do not go
through labelled nodes regarding the same feature in the intermediate steps.

The methods that are based on optimisation map the problem into a number
of constraints plus an objective function for which the global maximum or the
minimum needs to be found. The main problem with this approach is that it
typically results in an optimisation problem with a number of variables that very
typically exceeds the limits of current solvers [2]. Thus, the authors who have
instantiated this idea have focused on approximating the results as efficiently as
possible [7,10,18,21,22].

Discussion: The main difference amongst Katz and the other methods in the
literature is that it does not analyse a pre-defined neighbourhood, neither treats
it all of the members of a social network, all of the features, and all of their
relationships equally. It first learns a predictor using the member’s features only
and then tries to improve it by searching the most adequate neighbours and
features using the error rate as the only search heuristic. It is then a hybrid
approach since it does not focus on a local or a global neighbourhood, but finds
the most appropriate for each feature. This, in turn, leads to a method that
needs not be applied repeatedly in order to label a social network very well and
very efficiently, as our experimental results prove.

A key feature is that Katz does not rely on a single predictor, but on several
predictors that are learnt from different parts of the social network in order to
adapt better to its peculiarities and reduce the error rate. The methods that
are based on the Gibbs Sampling Algorithm also label a member using several
predictions, but the difference is that Katz makes predictions using several pre-
dictors, not the different predictions that are computed using a single predictor
from randomising the order in which it is applied to the members of a network.
This has resulted in a method that has proven experimentally to achieve a very
low error rate, even in cases in which there are many null labels, which have
proven to be very difficult to deal with using other proposals.

Another strong point is that Katz relies on using neural networks, which have
been proven to learn good models from complex data like ours [4]. This allows it
to be applied to any kind of features, whereas some methods in the literature can
only be applied to a kind of features. For instance, the proposals by Neville and
Jensen [17] and Lu and Getoor [12] can only be used with categorical features
because, unfortunately, the technique on which they rely does not deal with
numeric features.

Finally, a common weak feature of the existing methods is that they tend to
be inefficient. Iterative methods typically require an unbounded number of iter-
ations for a labelling to become stable; Macskassy and Provost [14] proposed to



limit the number of iterations of their proposal and they experimentally proved
that roughly 2, 200 iterations was enough to achieve good results, but it is not
completely clear if this figure works in general. Global methods typically lead to
problems that are not computationaly tractable and then can only be approxi-
mated. Our experiments prove that Katz is very efficient in practice and more
scalable than other proposals in the literature.

5 Conclusions

In this paper, we have introduced Katz, which is a new hybrid proposal to solve
the problem of labelling the members of a social network, that is, to infer the
values of a member’s profile missing features using his or her neighbourhood. It
is based on neural-network predictors that are computed from a member’s profile
and an unbounded neighbourhood, which makes it very effective; furthermore,
it does not require to iterate multiple times until the labelling converges, which
makes it very efficient. Our experiments on a real-world university social network
prove that it outperforms other proposals in the literature.
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