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Abstract

Tables are a common means to display data in human-friendly formats. Many
authors have worked on proposals to extract those data back since this has
many interesting applications. In this article, we summarise and compare many
of the proposals to extract data from tables that are encoded using HTML and
have been published between 2000 and 2018. We first present a vocabulary that
homogenises the terminology used in this field; next, we use it to summarise
the proposals; finally, we compare them side by side. Our analysis highlights
several challenges to which no proposal provides a conclusive solution and a
few more that have not been addressed sufficiently; simply put, no proposal
provides a complete solution to the problem, which seems to suggest that this
research field shall keep active in the near future. We have also realised that
there is no consensus regarding the datasets and the methods used to evaluate
the proposals, which hampers comparing the experimental results.
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1. Introduction

Tables are a common means of displaying data in web documents because
people can easily spot and interpret them [3, 5]. The estimations are as high
as hundreds of millions; for instance, Lehmberg et al. [35] and Galkin et al. [25]
found 233 and 12 billion tables in different editions of the Common Web Crawl,
respectively, and Crestan and Pantel [16] found 8.2 billion tables in their own
crawl. Cafarella et al. [5] also highlighted the explosion of consumer demand
for data that comes from tables thanks to the increasing popularity of voice
assistants and infobox-like search results.

In this context, data extraction consists in transforming tables into struc-
tured formats that focus on their data and abstract away from how they are
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displayed. Data extraction has many applications to text mining [24, 64, 65],
data (meta-)search [3, 9, 18, 26, 44, 51, 63–65], query expansion [16], document
summarisation [40, 64], question answering [1, 20, 44, 46, 65], knowledge dis-
covery [9, 22, 26, 32, 44, 46], knowledge base construction [17, 72], knowledge
augmentation [1, 9, 18, 20, 56, 56, 57, 67], synonym finding [1, 3, 39], improving
accessibility [43, 47, 49, 64, 65], textual advertising [15], data compression [2, 49],
or creating linked data [22, 33], just to mention a few common ones.

It is not surprising then that many researchers have worked on a variety
of proposals to extract data from tables, which has motivated others to write
articles in which they summarise and compare them. Lopresti and Nagy [41, 42]
presented a definition of table, with a focus on how they are encoded and dis-
played, and motivated the need to extract data from them; they summarised
some data extraction techniques, as well as some techniques to integrate the
resulting data. Hurst [27] introduced the problem and then reported on some
of the challenges regarding locating tables and their cells; he paid special atten-
tion to reporting on the evaluation of the proposals and concluded that common
evaluation methods are not suitable. Zanibbi et al. [70] described the extraction
tasks as abstract machine-learning procedures in which input documents are
first modelled and then mapped onto observations that are transformed prior
to performing inference; they analysed many existing proposals according to
how they address the steps of the previous procedure; they also highlighted the
need for common evaluation methods. Costa-Silva et al. [14] discussed on what
a table is and what makes it different from a diagram; they then listed many
proposals to implement the tasks involved in extracting data from tables and
compared them using several comparison frameworks; they also criticised com-
mon evaluation methods and contributed with some specific purpose evaluation
measures. Embley et al. [21] first discussed on the definition of table and then
motivated the need to extract data from them by describing many applications;
they listed some proposals to locate tables and their cells, but their emphasis
was on the tasks to classify the cells, to group them, and to interpret the tables.

The previous articles focus on the proposals that were published between
1990 and 2003. Unfortunately, there is not a recent article that summarises
and compares the proposals that were published later, which motivated us to
work on it. Our focus is on proposals that work on tables that are encoded us-
ing HTML because there has been a steady shift towards encoding them using
this language [3, 18, 35], which provides specific-purpose tags and has become
pervasive. We have analysed 28 proposals that were published between 2000
and 2018, we have defined a vocabulary that homogenises the terminology used
in this field, we have used it to summarise the proposals as homogeneously as
possible, and we have compared them side by side using several objective char-
acteristics. We have identified several challenges to which no proposal provides
a conclusive solution and also several challenges that have not been addressed
sufficiently; addressing them in future shall definitely help produce solutions
that increase the range of tables from which data can be extracted correctly.
We have also realised that there is not a standardised evaluation method, which
hampers the experimental comparison.
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The rest of the article is organised as follows: Section 2 introduces the
vocabulary that we have compiled; Section 3 summarises the proposals that we
have analysed using the previous vocabulary; Section 4 compares them side by
side using objective characteristics; finally, Section 5 concludes the article.

2. Vocabulary

In this section, we have made a point of integrating the many complementary
terms that are commonly used in the literature under a common vocabulary.
We first report on the vocabulary that is related to tables themselves and then
on the vocabulary that is related to extracting data from them. We illustrate
most of the concepts with a couple of examples.

2.1. Table-related vocabulary

Unfortunately, there is not a consensus definition in the literature regarding
what a table is. Many authors focus on the encoding since they define them as
whatever one can encode within HTML table tags [3, 7, 9, 16, 18, 28, 30, 32, 34,
38, 47, 49, 49, 59, 66, 68], which is a pragmatic approach; a few also refer to the
display of data, since they define tables as grids in which data are located in
cells in a manner that lines and/or styles ease interpreting them [22, 24, 26, 28,
30, 32, 46, 49]. There is only a proposal that deviates a little from the previous
approaches [21] since the authors focus on the data model behind the tables,
independently from how they are displayed; their proposal, however, works on
tables in which data are arranged in grids.

Neither is there a consensus taxonomy of tables. Most authors differentiate
between data tables, which provide data to be extracted, and non-data tables,
which are used for layout purposes or to provide utilities. Many of them make
also a difference between listings, forms, matrices, and enumerations [16, 18, 26,
30, 34, 44, 46, 66], although the exact terminology used is very diverging; there
is also a proposal in which tables are classified according to whether they have
headers or not [22].

In the previous discussion, there are three key concepts, namely: encoding,
cell, and table, which we define below.

Definition 1 (Encodings): An encoding is a specification of how a table
must be displayed to a person. Common encodings include pre-formatted text,
images, and mark-ups. In a table that is encoded using pre-formatted text,
the data are arranged in lines, they are aligned to their corresponding columns
using blanks, and the cells may be delimited using, for instance, dashes, vertical
bars, or tabulators. In a table that is encoded using an image, there is a graphic
canvas onto which the data and the lines that delimit the cells, if any, are drawn
using bitmaps or vectors. Contrarily, mark-ups provide a variety of tags that
help encode the tables, their cells and, hopefully, additional information that
helps interpret them. There are several mark-up languages available [58], but
our focus is on HTML due to its pervasiveness in the Web. HTML provides
an array of table-related tags, namely: table, thead, tbody, tfoot, col, colgroup,
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th, tr, td, and caption. It is relatively easy to extract data from tables that
are encoded using the previous tags. Unfortunately, real-world tables have a
variety of intricacies that hamper the extraction process, namely: some tables
are encoded using a subset of table-related tags that hardly help locate them
and their cells, which does not help interpret them; other tables are encoded
using listing tags (ul, ol, dl, li, dd, and dt) [9, 20, 36, 37]; lately, it is also relatively
common to find tables that are encoded using block tags (div and span) due to
their ability to create responsive layouts [50]; and, generally, speaking, there
are many tables that are encoded using a variety of tags that are not actually
related to tables, but look like tables when they are displayed [24, 26]. �

Definition 2 (Cells): A cell is a box that provides contents to a table. They
can be classified along several axes, namely: a) According to how they are
segmented, cells can be single cells, which occupy exactly one position in the grid
of a table, or spanned cells, which occupy more than one position. b) According
to whether their contents are complete or not, cells can be classified as single-
part cells, whose contents are complete, and multi-part cells, which provide
partial contents that must be somewhat merged with the contents of other cells.
c) According to their function, they can be classified as meta-data cells, whose
contents are labels that help people understand other contents in the table,
data cells, whose contents provide the data that must be extracted, decorator
cells, which provide irrelevant contents, and context-data cells, which provide
captions, notes, or factorised data. d) According to how their contents must
be interpreted, cells can be classified as factorised cells, whose contents must
be borrowed from adjacent cells, void cells, which are not intended to provide
any contents, atomic cells, whose contents cannot be decomposed further, and
structured cells, whose contents can be decomposed into a mixture of data and
meta-data. �

Definition 3 (Tables): A table is a collection of cells that are arranged in rows
and columns within a grid, where lines and/or styles are typically used to help
people interpret them. There are cases in which some context data are provided
in the text that surrounds a table, i.e., captions, notes, and factorised data.
The cells in a table are typically grouped as follows according to their functions:
headers, which are groups of meta-data cells, tuples, which are groups of data
cells, and separators, which are groups of decorator cells. Typically, headers
are arranged on the first few rows and/or columns, but we have found some
tables in which they are interwoven with tuples for the sake of readability; it
was the case of long listings with many tuples, in which it makes sense to repeat
the header rows or columns every few tuples, or wide listings/forms with many
headers, in which it makes sense to split the header rows or columns to narrow
them. Data tables can be broadly classified as follows: a) listings, in which
the headers, if any, occupy either the first few rows or columns and the tuples
are arranged in the remaining rows or columns, respectively; b) forms, in which
the headers, if any, occupy either the first few rows or columns and there is a
single tuple that is arranged row- or column-wise, respectively; c) matrices, in
which the headers occupy both the first few rows and columns, and all of the

4



�

������ �	
�� �
�������

������ ���� � !"#$ %&'( )*+,-. /012

3 456 789:; <=>?@
AB CDEFG

H I JKLMN
OP QRSTU

V W
XY Z[\]^ _` abcde

f ghi
j

klmno pqrst
uv wxyz{

| } ~����
�� �����

� �
�� ����� �� �����

������  ¡¢£¤¥¦§¨© ª« ¬

­ ®¯°± ²³´µ¶ ·¸¹º
»¼ ½¾¿ÀÁÂ

Ã Ä ÅÆÇÈÉ
ÊË ÌÍÎÏÐ

Ñ Ò
ÓÔ ÕÖ×ØÙÚ ÛÜ ÝÞßàá

â ãäåæç èéêëì
íî ïðñòó

ô õ ö÷øùú
ûü ýþÿ�	

� 

�� ������ �
 �����

" # �$� ����� ����
�� !%&'(

) *
+, -./01

23456 78 9:;<=> ?@AB

CDEFGHIJK

LMNOP

QRSTUVWXYZ[\

]^_`

abcdefghij

klmn

opqrstuvw

xyz{

|}~����

����

����

����

������

����������

� ¡¢

£¤¥¦§¨

©ª«¬

­®¯°±²³´µ¶

·¸¹º

»¼½¾

¿ÀÁÂ

ÃÄÅÆÇÈÉÊË

ÌÍÎÏ

ÐÑÒÓÔÕ

Ö×ØÙ

ÚÛÜÝ Þß àáâãä åæçè éêë ìíî ïðñòóôõö÷ øùúû

üýþÿ��� ����

� �(�������

����

�	.
� � $)�/
 ��� ��!" #%&'*+,-0 123 45678 9:;<=> ?@ ABC DEFGHIJKL MN

OPQR STUVWX YZ [\ ]^_`a bc defgh ij kl mno pqrstuvwx yz {|}~��� ����

��������� ���� ��� ��� ���� ���  ¡¢£

Figure 1: A sample table.

data cells constitute a single tuple; and d) enumerations, in which there are
no headers and each individual cell can be considered a tuple. According to
Crestan and Pantel [16], this taxonomy covers roughly 98% of the data tables
in their 8.2-billion table repository; the authors mention that it is arguable that
the remaining 2% tables can be considered actual data tables or that they are
frequent enough to be representative. �

Example 1: Figure 1 shows a horizontal listing taken from a document on a
share market. The black, solid lines help delimit the boundaries of the cells in
the grid; the greyed, dashed lines represent the boundaries of a few cells that
exists in the encoding of the table, but are not visible to the reader because
they are used for layout purposes. Most of the data are displayed on an 9 × 11
grid, but there are also some context data in the surrounding text.

Cells like “Time” are single because they occupy exactly one position in the
grid; on the contrary, cell “Volume” is spanned because it occupies two positions
in the grid. The meta-data cells occupy the first two rows; for instance “Risk”
is one such meta-data cell. Contrarily, cell “3-” below is a data cell and cell
“Acme Inc.” is a decorator cell. The caption of the table is displayed within
a bottom cell that spans the whole table, which is considered a context-data
cell; realise that there are additional context data: there is a note regarding cell
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“AAL” and there is a factorised datum regarding the date of the report, which
complements the times provided in some cells. Cells like “30.50” are single-part
cells because their contents are complete; on the contrary, cells like “4-” are
multi-part cells because it is necessary to merge the contents of two cells so that
the contents of the resulting cell are complete. A cell like “3.00” is atomic since
its contents cannot be decomposed further; contrarily, a cell like “N: +1.60 P:
-11.04” is a structured cell because it provides both meta-data and data, which
means that it can be decomposed further. The empty cell below cell “VISA” very
likely factorises the ticker since there are two tuples regarding this company at
09:00 and 17:00, respectively; contrarily, the four empty cells on the right of cell
“08:00” are very likely void cells that indicate that no data are available.

The table has seven headers, namely: “#”, “Sample/Ticker”, “Sample/Time”,
“Today/Volume”, “Today/Risk”, “Yesterday/Volume”, and “Yesterday/Risk”. It
provides five tuples, the first of which is (“1”, “KML”, “09:00”, “10.25”, “N: -0.95
P: -8.48”, “4-”, “30.50”, “N: -2.15 P: -0.07”, “3-”). It has also a separator at the
fifth row, which shows an advertisement.

2.2. Data-extraction vocabulary

In our context, data extraction refers to a process that transforms the tables
in an input document into record sets. A record is a data structure in which the
individual data in a tuple are endowed with semantics by means of descriptors
that are computed from the meta-data provided by the corresponding table; in
cases in which the table does not provide enough meta-data, the descriptors
must be generated artificially.

Costa-Silva et al. [14] did a good job at identifying the tasks of which the
data-extraction process is composed, namely: location, segmentation, functional
analysis, structural analysis, and interpretation. Note, however, that their focus
was on tables that are encoded using pre-formatted text or images, which means
that they need not make tables that provide data apart from tables that are
intended for layout purposes or to provide utilities. The latter are very common
in nowadays Web, which motivated Cafarella et al. [3], for instance, to introduce
a task to discriminate data tables from non-data tables.

Before feeding the record sets returned by data extraction into a particular
application, it is commonly necessary to perform some of the following inte-
gration tasks: semantisation [25, 45, 54, 55, 60, 63, 71], which either maps the
descriptors onto the terminology box of a particular ontology or the tuples onto
its assertion box [19]; union [23], which merges record sets that provide similar
data; finding primary keys [62], which determines which components of the tu-
ples identify them as univocally as possible; record linkage [8, 11, 12], which finds
different records that refer to the same actual entities; augmentation [6, 52, 67],
which joins record sets on the same topic to complete the information that they
provide individually; and cleaning [10, 31, 61], which fixes data. Note that the
integration tasks are orthogonal to data extraction because they are indepen-
dent from the source of the record sets, which is the reason why they fall out of
the scope of this article.
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In the previous discussion, there are three key concepts: record set, extrac-
tion task, and data extraction, which we define below.

Definition 4 (Record set): A record set is a collection of records. A record
is a map that associates a set of descriptors to each of the components of a
tuple. A descriptor is a structured label that endows the components of a tuple
with the semantics provided by the meta-data in the corresponding headers or
structured cells; if not enough meta-data are available, then descriptors must
be generated artificially. We make three types of descriptors apart, namely:
simple descriptors, which correspond to the contents of a single meta-data cell,
field descriptors, which correspond to the contents of several adjacent meta-data
cells, and artificial descriptors, which are used when not enough meta-data are
available. In listings and forms, every component of the tuples has one associated
descriptor; in matrices, they have two associated descriptors; in enumerations,
the descriptors must be created from the meta-data in the cells, if any; in other
cases, they must be generated artificially. �

Definition 5 (Extraction tasks): The tasks involved in extracting data from
a table are the following [14]: a) location, which searches the input document
for the excerpts in which tables are encoded and returns them; b) segmenta-
tion, which searches for the cells of which a table is composed; c) discrimination,
which classifies a table as either a data table or a non-data table, but further
sub-classification is possible; d) functional analysis, which classifies the cells ac-
cording to their functions; e) structural analysis, which groups cells into at least
headers and tuples; and f) interpretation, which produces record sets building
on the results of the previous tasks. �

Definition 6 (Data extraction): Data extraction refers to a process that
organises the extraction tasks into a pipeline so that they can achieve their
goal. Zanibbi et al. [70] and Costa-Silva et al. [14] reported on the many common
inter-dependencies amongst the extraction tasks. �

Example 2: Figure 2 illustrates a sample data extraction process in which we
have organised the tasks into a sequential pipeline.

The location task finds two excerpts in the input document that seem to
have tables; the segmentation task is responsible for finding the individual cells
of which the tables are composed, plus the context data that is associated with
them; the discrimination task makes a difference between the table on the left,
which seems to be a menu that does not provide any data, and the table on the
right, which seems to be a table that provides data; the functional analysis task
makes meta-data cells apart from data cells; the structural analysis task groups
the meta-data cells into four headers and the data cells into two tuples; finally,
the interpretation task produces a record set with three records.

Regarding the descriptors, we illustrate them using the usual field-access
notation for simple and field descriptors and the usual array-access notation for
artificial descriptors. For instance, header “A/A” results in a simple descriptor
of the form “A” because both cells were actually a vertically-spanned cell in the
original table. On the contrary, header “B/C” results in a field descriptor of the
form “B.C” in which it is clear that whatever “C” represents is subordinated to
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Figure 2: A sample data extraction process.

whatever “B” represents; note that this descriptor is ambiguous since there are
two columns of the table with the same header. In such cases, the table does
not provide enough meta-data and the columns must be made apart by means
of artificial descriptors, that is “B.C[1]” and “B.C[2]”. Obviously, header “B/D”
results in a field descriptor of the form “B.D”.

The records extracted are the following: {"A": "e", "B.C[1]": "f", "B.C[2]":
"g", "B.D": "h"}, {"A": "i", "B.C[1]": "j", "B.C[2]": "k", "B.D": "l"}, and
{"$caption": "Table 1: XXX"}. Realise that the last record uses a special simple
descriptor to indicate that corresponding datum is the caption of the table.
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et al. [3], Son and Park [59], Chu et al. [9], Eberius et al. [18], Milošević et al.
[44], Wu et al. [66], and Liao et al. [38] reported on naive approaches that
consisted in extracting every HTML excerpt with a table tag; Penn et al. [49],
Wang and Hu [64], and Crestan and Pantel [16] followed the same approach
but discarded tables with nested tables. The other proposals provide more
sophisticated approaches.

Lerman et al. [36, 37] focused on tables that are encoded using listing tags.
Their proposal works as follows: a) first, the input documents are tokenised and
the tokens are assigned to lexical types; b) then, the smallest input document
is taken as a base template; c) the remaining documents are then iteratively
compared to the template in order to make the sequences of tokens that appear
exactly once apart from the others; d) finally, the excerpts of the document that
have the largest repetitive sequence of tokens are returned. The authors did
not evaluate their procedure in isolation, but their complete system.

Gatterbauer et al. [26] presented a visual approach that analyses the bound-
ing boxes used to display the elements of a document in an attempt to identify
tables, lists, and so-called aligned graphics that represent tabular structures.
Their proposal works as follows: a) first, they apply some heuristics to lo-
cate elements in the DOM tree that are likely to be a part of a table, a list,
or an aligned graphic; the authors mention that they have compiled a collec-
tion of over twenty such heuristics, but they document only twelve of them in
their paper; b) then, they apply an algorithm that searches for so-called frames,
which are collections of elements that are rendered so that they form a box;
c) then, the frames are expanded to four orthogonal directions by finding ele-
ments whose bounding boxes are near to each other; d) finally, the excerpts that
correspond to the extended frames are returned. The authors evaluated their
proposal on 493 tables from their own repository plus 19 additional tables from
Wang and Hu’s [64] repository.

Fumarola et al. [24] also presented a visual approach. Their proposal works
as follows: a) it first creates a bounding box that encloses the whole input
document; b) it then iterates recursively and creates a bounding box for every
element in that document; c) next, it analyses the positions of the inner bound-
ing boxes and finds those that are laid out in a row- or a column-wise manner;
d) then, the corresponding excerpts are returned. The authors did not evaluate
their procedure in isolation, but their complete system.

Ling et al. [39] presented a proposal whose focus is on locating context-
data cells. It works as follows: a) first, it locates the elements in the input
document that have a table tag; b) then, it extracts some context data from the
title tag; c) next, it segments the text around the tables and aligns the resulting
segments using a multiple string alignment algorithm; d) finally, the segments
that are repetitive enough are considered context-data cells. The authors did
not evaluate their procedure in isolation, but their whole system.

3.2. Segmentation

Penn et al. [49], Yoshida et al. [69], Hurst [28], Wang and Hu [64], Kim and
Lee [32], Okada and Miura [47], Cafarella et al. [3], Crestan and Pantel [16],
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Fumarola et al. [24], Lautert et al. [34], Son and Park [59], Braunschweig et al.
[1], Eberius et al. [18], Milošević et al. [44], Wu et al. [66], Nishida et al. [46], and
Liao et al. [38] did not report on any proposals to implement this task. Chen
et al. [7], Yang and Luk [68], Jung and Kwon [30] relied on a naive approach
that searches for the cells using specific tags. The other proposals provide more
sophisticated approaches.

Lerman et al. [36] focused on tables that are encoded using listing tags; im-
plicitly, they assumed that tuples are shown in a row-wise manner. Prior to
segmentation, the authors applied a document alignment method to detect the
template of the documents and their repetitive segments, which are very likely
to contain the lists. Once the lists are located, their proposal works as follows:
a) first, the segments are grouped according to their separators; b) then, Dat-
aPro is invoked on the previous groups to learn patterns that characterise their
data; c) then, for each segment in each group, it computes binary features that
indicate whether it matches the previous patterns or not; d) next, the Auto-
Class clustering algorithm is invoked to learn the optimal number of clusters
and to learn a set of rules that assign new segments to the most similar cluster;
e) finally, the data in each cluster is assumed to be a column of the correspond-
ing table, which facilitates identifying the cells in a row-wise manner. The
evaluation was performed on the tables from a repository with 50 documents
that were taken from 14 different sources. The authors did not evaluate their
procedure in isolation, but their complete system.

Cohen et al. [13] relied on some transformations that help normalise tables
before they are segmented. Their proposal works as follows: a) the HTML
structure is cleaned up using HTML Tidy and the extra cells generated by this
tool are removed; b) structured cells are divided into multiple atomic cells by
splitting inner tables, paragraphs, or pre-formatted text; c) spanned cells are
split into several cells unless this results in more cells than the height or the
width of the table. The authors did not evaluate their procedure in isolation,
but their complete system.

Lerman et al. [37] segmented tables by learning a probabilistic model from
the repetitive segments in which they decompose tables that are encoded using
listing tags; they assumed that tuples are shown in a row-wise manner. Their
proposal works as follows: a) lists are split into columns according to candi-
date separators, which can be tags or punctuation symbols; b) some content
features are then computed on each column and their siblings; c) then, an infer-
ence algorithm learns a probabilistic model from the previous features; d) the
parameters are then used to find the best column assignment for a segment,
which is the one that maximises the probability of the features observed given
the model. Their evaluation was performed on the tables from a repository
with 283 tables from 12 web sites on book sellers, property taxes, white reports,
and corrections. They also experimented with a constrain satisfaction approach
that was less accurate.

Gatterbauer et al. [26] presented a proposal that requires to identify the
spatial relationships between the individual cells of a table. It works as follows:
a) it computes the boxes that represent the elements of an input document,
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taking into account their contents area, padding, border, and margin areas
according to the CSS2 visual formatting model; b) it then overlaps a grid that
helps identify each box by means of the co-ordinates of its upper-left corner and
its lower-right corner; c) then, it aligns the boxes according to their horizontal
and vertical projections; d) next, an adjacency relation is computed according
to how distant the cells are; e) finally, some cells are selected and a recurrent
expansion algorithm is invoked in an attempt to explore the adjacency relation
to find their neighbours. The authors evaluated their proposal on the tables
provided by a repository with 1 537 documents that were retrieved from search
engines, from Wang and Hu’s [64] repository, or written by the authors. The
authors did not evaluate their procedure in isolation, but their complete system.

Elmeleegy et al. [20] tried to find columns by checking how similar the cells
in a table are. The similarity is analysed by means of their data types and delim-
iters. The authors used two resources, a large-scale language model, which helps
know sentences that should not be split because they have previously occurred
within a cell, and a corpus of tables, which helps identify data that appear in
the same column in other tables. Their proposal works as follows: a) each row
is split into a (possibly different) number of columns using two scoring func-
tions, namely: a field quality score, which measures the quality of an individual
column candidate, and a field-to-field consistency score, which measures the
likelihood that two column candidates are actually the same column; b) then,
it sets the number of columns to the most frequent one; c) padding columns
are added to rows that have less columns than expected and some columns are
merged otherwise; d) finally, the segmentation of cells is refined by checking the
consistency amongst the cells in a per-column basis; e) if the consistency check
fails, the procedure is re-launched. Their evaluation was performed on 20 ta-
bles from 20 different domains plus 100 additional tables that were randomly
sampled from the Web.

Ling et al. [39] assumed that tables can be segmented building on their td
tags; their key contribution was regarding how to find context data. Their
proposal works as follows: a) it first uses a number of heuristics to generate
candidate context data, namely: tokens in between some punctuation marks,
the longest common sub-sequences, pieces of text that can be wikified [53], and
pieces of text that vary from document to document but are located at the same
position; b) then, the previous context data are added to the original table as
additional columns; c) finally, a pairwise adaptation of the Multiple Sequence
Alignment algorithm is used to segment the context data. The evaluation was
performed on 20 000 tables that were picked from a repository with 130 million
tables from 10 different web sites.

Chu et al. [9] also focused on finding the columns of a data table. Their
proposal works as follows: a) each row is tokenised using a set of user-defined
delimiters; b) then candidate columns are generated using two approaches: a
seed tuple is provided and the system discards segmentations that are very
different; a custom pruning procedure that borrows some ideas from the well-
known A* procedure is also used; c) it then measures the similarity of each
column using lexical and semantic similarity functions that are averaged (the
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former computes the difference regarding the number of tokens, characters, and
pattern-based types; the latter computes the point-wise mutual information
function); d) the process is repeated until a segmentation that maximises sim-
ilarity is found. Their evaluation was performed on 100 million data tables
that were transformed into lists; they used 20 additional tables encoded as lists
from five different domains.

Embley et al. [22] presented a proposal that works as follows: a) the input
documents are transformed into a representation that preserves the contents
only; b) spanned cells are split and their contents are copied verbatim to the
resulting cells; c) then, every row with more than two empty cells is considered
to provide context data; d) finally, the right-most bottom non-empty cell is
considered to be the last cell in the table. (Note that they can work on tables
that come from spreadsheets, in which it is not uncommon to find empty cells
that are not actually part of any tables.) The authors did not evaluate their
procedure in isolation, but their complete system.

3.3. Discrimination

Lerman et al. [36], Yoshida et al. [69], Lerman et al. [37], Elmeleegy et al.
[20], Ling et al. [39], Braunschweig et al. [1], Chu et al. [9], Embley et al. [22],
and Milošević et al. [44] did not pay attention to the discrimination task. The
other proposals provide sophisticated approaches.

Chen et al. [7] devised a proposal to discriminate tables by means of heuris-
tics. It works as follows: a) a cell similarity measure is computed by combin-
ing string similarity, named entity similarity, and number similarity functions;
b) then, the tables whose cells do not exceed a threshold regarding the number
of similar neighbour cells are discarded; c) finally, tables with less than two cells
or tables with many links, forms, or figures, are also discarded. The evaluation
was performed on 3 218 tables from their own repository with documents on
airlines from the Chinese Yahoo! site.

Penn et al. [49] also devised a heuristic-based approach. Their proposal
works as follows: a) tables that do not have multiple rows and columns are
discarded; b) tables whose cells have more than one non-text-formatting tag are
also discarded; c) finally, tables whose cells have more than a user-defined num-
ber of words are also discarded. The authors also mentioned that a desirable
feature is to have syntactic and semantic similarity into account, but they did
not explore this idea. They experimented with an unspecified number of tables
from their own repository with documents from 75 sites on news, television,
radio, and companies.

Cohen et al. [13] devised a proposal that builds on machine learning a classi-
fier. It works as follows: a) some structural and content features are computed
from a learning set with tables that are pre-classified as either data tables or
non-data tables; b) then, several classifiers are machine-learnt and evaluated;
c) the classifier that achieves the best effectiveness is selected to implement
the discrimination task. The authors experimented with Multinomial Naive
Bayes, Maximum Entropy, Winnow, and a decision tree learner that was based
on C4.5; their conclusion was that the best results were achieved using Winnow.
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They evaluated their proposal using a 5-trial approach on 339 tables from their
own repository; in each trial, 75% of the tables were used for learning and the
remaining 25% for evaluation purposes.

Hurst [28] presented another machine-learning approach in which he also
took visual features into account. He performed his evaluation on 89 data
tables and 250 non-data tables from his own repository; they were randomly
grouped into five sets from which 25% of the tables were selected for learning
purposes and 75% for evaluation purposes. The results confirmed that Naive
Bayes achieved the best results when the whole set of features was used, whereas
Winnow worked better when only geometric features were used.

Wang and Hu [64] devised another machine-learning proposal that relies on
structural and content features that are used to feed a custom decision tree
learner; some of the features need to be transformed into real values using
Naive Bayes or k -NN. The content features rely on the words found in the input
documents, which requires a large learning set so as to minimise the chances that
a classifier is applied to a document with a word that was not in the learning
set. The evaluation was performed using 9-fold cross evaluation on 11 477 tables
from their own repository with documents from Google’s directories.

Yang and Luk [68] reported on another heuristic-based method. Their pro-
posal works as follows: a) tables that have th tags are considered data tables;
b) tables that do not only contain links, forms, or images are also considered
data tables; c) meta-data and data cells are then located using some user-defined
patterns; d) tables that do not have both meta-data and data cells are discarded.
They evaluated their method on 1 927 tables from their own repository, which
was assembled with random documents from the Web.

Kim and Lee [32] used heuristics and an algorithm to check how similar the
cells are. Their proposal works as follows: a) tables are considered data tables
if they contain caption or th tags and there are td tags at the right or the bottom
sides; b) they are discarded if they have a single cell, if they have nested tables,
or if they seem to have meta-data cells only; c) if they have too many links,
images, or empty cells, then they are also discarded; d) then, it checks that the
cells selected previously are consistent using some user-defined patterns; e) if the
degree of similarity per row or column does not exceed a pre-defined threshold,
then the corresponding table is discarded. The evaluation was performed on
11 477 tables from Wang and Hu’s [64] repository.

Jung and Kwon [30] presented a machine-learning proposal. It works as
follows: a) it first removes empty rows and columns, splits spanned cells by
duplicating their contents, and discards tables with only one cell; b) then, it
computes many structural, visual, and content features of the table to find
out if it has meta-data cells, in which case the table is assumed to have data;
c) finally, a C4.5 learner is fed with the input features and the classified tables.
The evaluation was performed using 10-fold cross evaluation on 10 000 tables
from their own repository plus some tables from Wang and Hu’s [64] repository.

Gatterbauer et al. [26] reported on an approach that identifies tables using
some display heuristics. Their proposal works as follows: a) elements with td,
th, and div tags are considered candidate tables; b) it tries to identify frames

14



that rely on those elements, which are assumed to be tables; c) overlapping
tables are discarded; d) tables are also discarded if, after removing separator
columns and rows, they have less than three rows, a single cell is more than
40% the total size of the table, or they contain cells with more than 20 words.
The evaluation was performed on 493 tables from their own repository.

Okada and Miura [47] devised another machine-learning approach that re-
quires to binarise discrete features before feeding them into an ID3 learner. The
evaluation was performed using 10-fold cross evaluation on 100 data tables and
100 non-data tables from their own repository.

Cafarella et al. [3] proposed another machine-learning approach. Their pro-
posal works as follows: a) it considers tables that have at least four cells, are
not embedded in HTML forms, and are not calendars; b) the tables that meet
the previous criteria are classified as either data or non-data tables by a person;
c) then, a statistical classifier is machine-learnt from a dataset that vectorises
the previous tables using both structural and content features that are intended
to measure how consistent the cells are. They evaluated their proposal using
5-fold cross evaluation over several thousand tables from their own repository.

Crestan and Pantel [16] also presented a machine-learning proposal. It works
as follows: a) tables that have less than four cells or have cells with more than
100 characters are discarded; b) next, some structural and content features are
computed; c) then, a Gradient Boosted Decision Tree classification model is
machine-learnt. The evaluation was conducted on 5 000 tables from their own
repository by performing 20-fold cross evaluation without overlapping.

Fumarola et al. [24] proposed a heuristic-based approach. Their proposal
works as follows: a) it groups the elements whose bounding boxes are arranged
in a grid; b) it then computes their similarity by comparing their DOM trees;
c) next, it computes the number of nodes in each group; d) if the similarity
in a group is above a user-defined threshold and the difference in the number
of nodes is below another user-defined threshold, then it is considered a data
table. The evaluation was performed on 224 tables that were gathered from
Gatterbauer et al.’s [26] repository.

Lautert et al. [34] devised a machine-learning proposal that builds on neural
networks. It works as follows: a) it computes some structural, visual, and
content features; b) then, it uses them to machine-learn a perceptron with one
hidden layer and resilient propagation; c) it has one output neuron per type of
data table, which is encoded using a score in range [0.00 .. 1.00]; the classification
is performed in two steps, namely: the first one uses 25 features to classify the
tables into the corresponding types and the second step uses the previous 25
features plus the type of table output by the previous classifier. The evaluation
was performed on a repository with 342 795 tables that were gathered randomly.

Son and Park [59] also tried a machine-learning approach. Their proposal
works as follows: a) it selects every DOM node with tag table and their cor-
responding parents; b) the features described by Wang and Hu [64] are then
computed to create a learning set; c) finally, an SVM classifier is machine-learnt
using a kernel that works with structural features plus a kernel that works
with content features; the structure kernel is based on two other kernels, one
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of which works on the table nodes and the other on the corresponding parent
nodes. The authors performed 10-fold cross evaluation on a subset of 11 477
tables from Wang and Hu’s [64] repository; roughly 89% of the tables were used
for learning purposes and roughly 11% were used for evaluation purposes.

Eberius et al. [18] devised a proposal that builds on machine learning a clas-
sifier. It works as follows: a) some heuristics are applied to filter most non-data
tables out, namely: tables with less than two rows or columns, tables with an
invalid HTML structure, and tables that cannot be displayed correctly; b) some
structural and content features are then computed regarding the tables and
some of their subregions in order to compute local features; c) two alternatives
are now tried: learning one classifier for every table type or using one classifier
to discriminate between data and non-data tables and an additional classifier to
classify some kinds of data tables; d) several classifiers are machine-learnt and
evaluated, namely: CART, C4.5, SVM, and Random Forest; e) the classifier
that achieves the best effectiveness is selected to implement the discrimination
task. They evaluated their proposal on a repository with 24 654 tables from the
October 2014 Common Crawl. According to their experience, the best results
were achieved with Random Forest.

Wu et al. [66] provided a method to cluster tables that are similar according
to their structure. Their proposal works as follows: a) for every two tables, it
computes the set of paths that corresponds to caption, td, and th tags; b) then,
the similarity between the paths of every two tables is computed; c) then, ta-
bles are clustered according to their local density plus the previous similarities;
d) now, for each cluster, clustering is performed again building on the paths
that lead to elements with tags li, span, or div; e) finally, a so-called artificial
judgment method is used to decide on the class of each cluster. The authors
used a repository with 5 000 tables from the Wikipedia to evaluate their system,
but no results were provided regarding this task.

Nishida et al. [46] devised a proposal that analyses a subset of cells at the
top-left corner of a table using a deep neural network. It works as follows: a) for
each td or th tag, an embedding is generated by tokenising words, tags, and row
and column indexes; b) each token is encoded as a one-hot vector; c) an LSTM
with an attention mechanism is then used to obtain a semantic representation of
each cell; d) a convolutional neural network is then connected to three residual
units and applied to vectorise the input table; e) finally, a classification layer is
used. The authors learnt the network using 3 567 tables from 200 web sites,
and evaluated the results on 60 678 tables from 300 web sites; the documents
were selected from the April 2016 Common Crawl. They also experimented
with an ensemble of five neural networks, which attained the best results.

Liao et al. [38] presented a heuristic-based approach that takes into account
the existence of nested data tables. It works as follows: a) tables with a
th or caption tag are considered data tables; b) tables with a large number
of pictures, frames, forms, or script tags are discarded; c) tables with a small
number of elements or many empty cells are discarded, too; d) tables with too
many homogeneous contents in their rows are considered incomplete data tables,
which must be stitched to other sibling tables to create a complete data table.
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They evaluated their method on 226 tables from 50 different sites.

3.4. Functional analysis

Lerman et al. [36], Penn et al. [49], Cohen et al. [13], Hurst [28], Wang and
Hu [64], Lerman et al. [37], Okada and Miura [47], Crestan and Pantel [16],
Elmeleegy et al. [20], Fumarola et al. [24], Lautert et al. [34], Son and Park [59],
Chu et al. [9], Eberius et al. [18], Nishida et al. [46], and Liao et al. [38] did not
report on any proposals to implement the functional analysis task. Gatterbauer
et al. [26] presented a naive approach that matches the structure of a table to
a number of pre-defined structures in which it is also relatively easy to find the
meta-data cells. Ling et al. [39] and Wu et al. [66] assumed that meta-data
cells can be easily located by searching for th tags. Braunschweig et al. [1] also
presented a naive solution since they assumed that meta-data cells are located
on the first row. The other proposals provide more sophisticated approaches.

Chen et al. [7] devised a proposal that is based on row/column similarity. It
works as follows: a) it first divides the input table into blocks using the spanned
cells as boundaries; b) it them compares how similar the last row/column in each
block is to the previous ones using string, named-entity, and number similarity
functions; c) then the right-most and/or bottom-most rows/columns that are
similar to the last row/column are considered to contain data cells and the others
are considered to contain meta-data cells. The evaluation was not performed
on this task, but on their whole system.

Yoshida et al. [69] suggested using ontologies. Their proposal works as fol-
lows: a) for each cell in a table, it computes the ratio of times that its content is
recorded in the ontology; b) these ratios are then used to feed the Expectation-
Maximisation algorithm in order to learn a classifier that makes a few subtypes
of listings apart; c) once the exact type of listing is clear, identifying meta-data
cells is relatively easy and the rest of cells are assumed to be data cells. (Note
that the authors assume that the input tables are data tables, which is the rea-
son why this cannot be considered a discrimination proposal.) They evaluated
their proposal on 175 tables that were randomly sampled from a repository with
35 232 tables.

Yang and Luk [68] applied some heuristics to differentiate rows with meta-
data cells from rows with data cells. Their proposal works as follows: a) a row
is considered to have meta-data cells if it has at most 50% the average number
of cells per row, if it contains no structured cells, or if the visual features are
different from the visual features of the others rows; b) then, it tries to detect if
the input table is a listing or a matrix; c) once the table structure is identified,
it is easy to identify the meta-data. (Note that the authors assume that the
input tables are data tables, which is the reason why this cannot be considered
a discrimination proposal.) The authors did not report on their experimental
results regarding this task, but their whole system.

Kim and Lee [32] devised a proposal that first attempts to classify the input
table. It works as follows: a) in the case of tables with one single row or column,
the first cell is considered to be a meta-data cell and the rest are considered to
be data cells; b) in the case of tables with two rows and two columns that
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do not have any spanned cells, both the first row and column are considered
to have meta-data cells and the bottom-right cell is considered to be a data
cell; c) tables with two rows/columns and three or more columns/rows whose
upper-left cell spans a whole row/column are discarded; otherwise if the first
row/colum has some spanned cells (but not all), then the first column/row is
assumed to have meta-data cells and the others are assumed to have data cells;
d) otherwise, the similarity of the cells is checked per rows and columns using
the following functions: a lexical similarity function that focuses on the data
types and the length of the contents, and a semantic similarity function that
builds on some user-provided key words and patterns. The authors did not
provide any experimental results regarding this task.

Jung and Kwon [30] proposed a heuristic-based technique to locate the meta-
data within the tables. Their proposal works as follows: a) cells with a th tag
are assumed to have meta-data; b) if the table can be partitioned into two blocks
with the same background colour or font, then the top and/or the left blocks
are assumed to contain meta-data; c) if the cells in a row or column have some
user-defined contents or match some user-defined patterns, then they are also
considered to contain meta-data; d) spanned cells that are embedded in td tags
are also assumed to have meta-data as long as they are located on the top-left
areas of the table; its adjacent cells are also considered to have meta-data; e) if
the top-right cell is empty, then it is likely that the cells in the first row or column
have meta-data; f) a probability is finally computed for every cell building on
the previous heuristics and the cells whose probability exceeds a threshold are
then considered to be meta-data cells whereas the others are assumed to be
data cells. The evaluation was performed using 10-fold cross evaluation on
10 000 tables from their own repository plus the tables from Wang and Hu’s
[64] repository.

Cafarella et al. [3] devised a machine-learning proposal. It works as follows:
a) a learning set is assembled with data tables in which the cells are classified
as either meta-data or data cells; b) in cases in which a table does not have
any meta-data cells, synthetic cells are created and the meta-data is fed from a
separate database with similar tables; c) some structural and content features
are computed for each cell; d) a classifier is machine-learnt from the previous
features; e) the results of the classifier are used to enrich the other database.
The authors evaluated their proposal by means of 5-fold cross evaluation on a
repository with 1 000 tables that were gathered from the Web.

Embley et al. [22] devised a heuristic-based proposal that searches for four
critical cells that help delimit where the meta-data and the data cells are lo-
cated. These cells are referred to as CC1, CC2, CC3, and CC4. CC1 and CC2
identify the top left-most region such that the cells on the right and below that
region are mostly meta-data cells; CC3 and CC4 identify the bottom right-most
region whose cells are mostly data cells. (Note that CC4 is identified in their
segmentation task.) Their proposal works as follows: a) it sets CC1 to the
top left-most cell and CC2 to the bottom left-most cell; b) it then iteratively
shifts CC2 upwards or rightwards while searching for the minimum set of cells
between CC1 and CC2 that result in headers that can identify the cells between
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CC2 and CC4; c) then, CC3 is set to the first cell below to the right of CC2
that does not belong to an empty row or column; d) after that, footnotes are
identified in cells whose contents start with a footnote-mark symbol; e) finally,
it analyses some dependencies amongst the meta-data cells to find out the order
in which they must be grouped. The evaluation was performed on a repository
with 199 tables that was provided by Padmanabhan et al. [48].

Milošević et al. [44] restricted their attention to tables from the PubMed
Central repository. Their focus is on identifying the meta-data cells, since the
other cells are considered data cells by default. Their proposal works in three
phases. In the first phase, it searches for thead tags; if they are found, then the
inner th tags are assumed to encode the meta-data cells and their procedure
finishes. Otherwise, the second phase is intended to find meta-data cells at the
top rows as follows: a) they examine the syntactic similarity of cells on a per
column basis; the cells at the top whose syntactic type is different from the cells
below, if any, are considered meta-data cells as long as the cells in the same rows
in adjacent columns are also considered meta-data cells; b) if a cell in the first
row spans several columns, then it is assumed to have meta-data, as well as the
cells in the rows below, until a non-spanned cell is found; c) the cells at the top
that are between horizontal lines are considered meta-data if they are marked
with a thead tag and they are not empty; in cases in which only one cell in a
row has meta-data, the authors refer to it as a super row. The third phase is
intended to find meta-data cells on the left columns as follows: a) the cells on
the left-most column that are spanned are meta-data cells and so are the cells
on the right until the first non-spanned cell is found; b) the first column below
a super row is considered to have meta-data cells that are referred to as stubs.
They used a repository with 3 573 tables from which 101 tables were randomly
selected to evaluate their proposal.

3.5. Structural analysis

Penn et al. [49], Hurst [28], Wang and Hu [64], Kim and Lee [32], Jung and
Kwon [30], Gatterbauer et al. [26], Okada and Miura [47], Cafarella et al. [3],
Crestan and Pantel [16], Lautert et al. [34], Son and Park [59], Eberius et al. [18],
Embley et al. [22], Nishida et al. [46], and Liao et al. [38] did not report on any
proposals to implement the structural analysis task. Chen et al. [7] presented
a naive proposal that works on tables that provide data about a single entity,
so all of the data cells form a single tuple; regarding the meta-data cells, they
group them into headers horizontally or vertically after expanding spanned cells.
Yoshida et al. [69] presented a naive proposal that classifies tables in a number
of categories, which makes identifying the tuples quite a trivial task. Elmeleegy
et al. [20] also assumed that the tuples within tables that are encoded as lists are
always laid out row-wise. Ling et al. [39] and Braunschweig et al. [1] assumed
that tuples are displayed row-wise or column-wise depending on the number of
meta-data or data cells found in the first few rows or columns. Chu et al. [9]
also presented a naive approach that assumes that the tuples within tables that
are encoded as lists are always laid out row-wise. Wu et al. [66] presented an
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additional naive approach since they just identify tuples in horizontal listings.
The other proposals provide more sophisticated approaches.

Lerman et al. [36] used a couple of algorithms to detect row-wise tuples.
Their proposal works as follows: a) first, it uses DataPro to find the patterns
that describe the data in each column; b) such patterns can be interpreted as
tags that allow to transform a table into a sequence of symbols; c) then, a version
of ALERGIA is used to infer a finite automaton from those sequences; d) the
automaton is then transformed into a regular expression; e) finally, it identifies
repeating sub-patterns that correspond to the tuples in the original table. No
experimentation was performed regarding this task.

Cohen et al. [13] presented a proposal that relies on four so-called builders,
namely: a builder focuses on meta-data cells that cut in on the table, one that
focuses on columns of headers, another that focuses on rows of headers, and
an additional one that takes the tag paths into account. The builders are fed
into a FOIL-based system in order to learn a classification rule that allows
to identify both horizontal and vertical tuples. No experimental results were
reported regarding this specific task, but their whole system.

Yang and Luk [68] presented a proposal that specialises in numerical tables.
It works as follows: a) first, it removes the headers of the input table; b) then,
it checks whether the tuples seem to be one-dimensional or two-dimensional
using some heuristics; c) the type of cells is analysed using pre-defined patterns
in order to label numeric data cells; d) given the types of cells and the dimen-
sionality of the tuples, their proposal tries to match a number of pre-defined
patterns that help identify the tuples. The evaluation was performed on 169
one-dimensional and 50 two-dimensional tables.

Lerman et al. [37] devised two proposals to identify tuples, namely: a con-
straint solving technique and a probabilistic technique. The former works as
follows: a) it models the cells in the tables using Boolean variables; b) it then
adds constraints to ensure that each cell belongs to a single tuple, only contigu-
ous cells can be assigned to the same tuple, and two cells cannot be in the same
position in the same table; c) then a constraint solver is used to find a solution
to the constraints. The latter works as follows: a) it uses a set of observable
variables that model the types of tokens in the data cells, and a set of hidden
variables, which provide the tuple number or the column number to which every
cell belongs; b) a probabilistic model is then learnt by assuming a number of
dependencies between token types, cells, columns, neighbour columns, format,
or tuple numbers; c) finally, the contents of the hidden variables are inferred
building on the probabilistic model. Their evaluation was performed on the
tables from their own repository, which were gathered from 12 web sites on book
sellers, property taxes, white reports, and prisons.

Fumarola et al. [24] presented a proposal that was described very shallowly.
It seems to work on so-called candidate lists, which are sets of cells that cor-
respond to different columns and form a single tuple; each candidate list is a
sub-tree of the DOM tree and they all are required to satisfy some structural
similarity constraints, including a minimum size in terms of nodes. The evalu-
ation was performed on 224 tables from Gatterbauer et al.’s [26] repository.
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Milošević et al. [44] identify the tuples according to how the meta-data cells
are arranged within a table. If meta-data cells are at the top-most rows and
on the left-most columns, then, the table is a matrix with a single tuple that
consists of the whole set of data cells; if there are meta-data cells at the top,
but not on the left, then the table is a listing in which each row is a tuple;
if there are not any meta-data cells, every single data cell corresponds to a
tuple. (Note that this proposal cannot be considered a discrimination proposal
since it assumes that the input tables are data tables; recall that their focus
was on tabled in PubMed publications, which are tables with scientific data.)
They used a repository with 3 573 tables from which 101 tables were selected to
evaluate their proposal.

3.6. Interpretation

Lerman et al. [36], Penn et al. [49], Yoshida et al. [69], Cohen et al. [13],
Hurst [28], Wang and Hu [64], Lerman et al. [37], Kim and Lee [32], Jung and
Kwon [30], Gatterbauer et al. [26], Okada and Miura [47], Crestan and Pantel
[16], Elmeleegy et al. [20], Fumarola et al. [24], Lautert et al. [34], Ling et al.
[39], Son and Park [59], Braunschweig et al. [1], Chu et al. [9], Eberius et al.
[18], Nishida et al. [46], and Liao et al. [38] did not report on this task.

Most of the other authors reported on naive solutions. Chen et al.’s [7]
proposal works on tables with a single tuple that can spread across several
blocks, each of which has its own headers; for each component of the tuple, it
creates field descriptors by joining the meta-data cells in the corresponding rows
and/or columns. Embley et al.’s [22] proposal is similar, but they focused on
tables with a single block. Milošević et al. [44] reported on a naive approach,
too: in matrices or listings, they create descriptors for each component from the
meta-data in the corresponding column and/or row; in enumerations, they use
the caption of the table as a descriptor for every component in the tuples. Yang
and Luk [68] proposed a similar procedure, but it takes multiple header rows or
columns into account, in which case the cells are simply merged to create field
descriptors, as well as cells that contain both meta-data and data, in which case
the meta-data are transformed into simple descriptors.

The proposal by Cafarella et al. [3] goes a step forward in cases in which a
table does not provide any meta-data cells. In such cases, they collect the data
on a per-column basis and attempt to find the most similar data in the ACSDb
database, which is a resource that has many data with correct descriptors. The
authors did not report on the evaluation of this task. Wu et al. [66] went also
a bit further since they used several ad-hoc interpretation methods depending
on the structure of the table identified in the discrimination task. They only
reported on a method to extract information from horizontal listings with head-
ers using some heuristics that are related to how the th and the td tags encode
a subject-predicate-object relation. They conducted their experimentation on a
repository with 100 horizontal listings from Wikipedia. The authors evaluated
their proposal on a repository with 5 000 tables that were randomly selected
from the Wikipedia.
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4. Comparison of proposals

In this section, we compare the proposals that we have summarised in the
previous section by means of a comparison framework with both general and
task-specific characteristics.

The general characteristics are the following: a) Foundation: it is a hint on
the technique behind each proposal. b) Tables required: it is the minimum num-
ber of tables required for a proposal to work; the less tables required, the better.
c) Effectiveness: it is the extent to which a proposal succeeds in implementing
a task correctly according to an effectiveness measure; the higher the effective-
ness, the better. d) Efficiency: it is the amount of computing power that a
proposal requires to implement a task; the more efficient (i.e., the less comput-
ing power is required), the better. e) Resources: it refers to the resources that a
user must provide so that a proposal can work properly; the less resources, the
better. f) Features: it refers to the features onto which the input data must be
projected in order to machine learn a predictor or to make a decision accord-
ing to a heuristic. Features can be either structural, which are related to the
HTML or the DOM representation of the input documents, visual, which are
related to how they are displayed, or content features, which are related to the
contents of the cells. g) Parameters: it refers to the settings that must be tuned
so that a proposal works well, which can be either pre-defined, learnable, or
user-defined parameters. Pre-defined parameters have a value that the authors
of a proposal have found generally appropriate; they are preferable to learnable
parameters, whose values must be experimentally learnt by the user; in turn,
they are preferable to user-defined parameters, which must be set by the user
using his or her intuition; the less parameters, the better.

Note that it is easy to make decisions building on the general features that
we presented above since we have characterised their preferred contents; the
same applies to the task-specific features that we describe in the following sub-
sections. The only exceptions are the foundation characteristic and the features
characteristic. The reason is that it is not generally clear whether a heuristic-
based approach is preferable to a machine-learning approach or vice versa, or
whether structural, visual, or content features are preferable to each other. Note,
too, that effectiveness and efficiency are decision-making characteristics, but
the figures provided by an author are not generally comparable to the figures
provided by a different author because they evaluated their proposals using
different approaches, learning sets, evaluation sets, and machinery.

4.1. Location

Table 2 summarises our comparison regarding location proposals. The task-
specific characteristics are the following: a) Body encodings: it refers to how the
tables that a proposal can locate must be encoded; the more kinds of encodings
are identified, the better. b) Context-data encodings: it refers to how context-
data cells are encoded; the more kinds of encodings are identified, the better.

Regarding the general characteristics, it is surprising that all of the location
proposals are based on heuristics; there is no record in the literature of a single
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proposal that has tried a machine-learning approach. Most proposals can work
on a single table, but the ones by Lerman et al. [36, 37] and Ling et al. [39] require
at least a pair of tables to perform table alignment. None of the proposals
was presented in isolation, but as a component of a larger system, which is
the reason why no author reported on effectiveness or efficiency. Realise that
only the proposal by Gatterbauer et al. [26] projects the input documents onto
structural and visual features in order to apply their heuristics; note, too, that it
is the only one that requires a pre-defined parameter. The proposal by Crestan
and Pantel [16] is the only that requires the user to set a learnable parameter.

Regarding the task-specific characteristics, most of the proposals locate ta-
bles that are encoded using tabular tags, a few focus on tables that are encoded
using listing tags, and only Gatterbauer et al.’s [26] and Fumarola et al.’s [24]
proposals are independent from the tags used since they analyse how the input
documents are displayed. Note, too, that the vast majority of proposals focus
on locating the tables themselves, not their context data. Chen et al. [7] and
Ling et al. [39] are the exceptions: the former presents a simple approach that
searches for caption tags and the latter presents a more sophisticated approach
that analyses the title tags and the text that surrounds the tables.

4.2. Segmentation

Table 3 summarises our comparison regarding segmentation proposals. The
task-specific characteristics are the following: a) Spanned cells: it describes if
a proposal is able to identify cells that span multiple columns and/or rows; a
proposal that can identify spanned cells is better than a proposal that cannot.
b) Multi-part cells: it describes if a proposal is able to identify cells that provide
partial contents and must be merged; a proposal that can identify multi-part
cells is better than a proposal that cannot. c) Context data: it describes if a
proposal can identify context data or not; a proposal that can identify context
data is better than a proposal that cannot.

Regarding the general characteristics, it is easy to realise that only the pro-
posals by Lerman et al. [36, 37] have tried machine-learning approaches; the
others rely on heuristics that their authors have proven to work well in practice.
Furthermore, most of them can work on as few as one input table, but the ones
by Lerman et al. [36, 37] and Ling et al. [39]. Unfortunately, roughly 72% of
the authors did not report on the effectiveness of their proposals; the others re-
ported on precision, recall, and/or the F1 score. Only Elmeleegy et al. [20] and
Chu et al. [9] reported on the efficiency of their approaches; their figures reveal
that the algorithms behind the scenes might not be scalable enough. Regarding
the resources required, only the proposals by Elmeleegy et al. [20] and Ling
et al. [39] require the user to provide a few, but they do not seem to be difficult
to find. Only the proposals by Lerman et al. [36, 37] and Gatterbauer et al.
[26] require to project the input tables onto some simple features. Regarding
the parameters, only the proposals by Elmeleegy et al. [20], Ling et al. [39], and
Chu et al. [9] need the users to set a few.

Regarding the task-specific characteristics, it is surprising that many pro-
posals do not make an attempt to analyse spanned cells and that none of them
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can identify multi-part cells, both of which are very common in practice. It is
also surprising that only the proposals by Chen et al. [7], Ling et al. [39], and
Embley et al. [21] can identify context data, which are also very common in
practice; unfortunately, the proposal by Chen et al. [7] cannot be considered a
general solution to the problem since it is very naive.

4.3. Discrimination

Tables 4–7 summarise our comparison regarding discrimination proposals.
The only task-specific characteristic is Types of data tables , which refers to the
kinds of data tables that a proposal can discriminate; the more types can be
discriminated, the better.

Regarding the general characteristics, it is easy to realise that 64% of the
proposals use a machine-learning approach and the rest use heuristic-based ap-
proaches. The former require at least two tables to learn a predictor that imple-
ments the discrimination task, whereas the latter can generally work on a single
table. Except for Wu et al.’s [65], the other authors report on effectiveness mea-
sures that are specific to this task; most of the authors selected precision, recall,
and the F1 score as effectiveness measures; the exceptions are Cohen et al. [13],
Lautert et al. [34], and Nishida et al. [46], who report on the F1 score only,
Okada and Miura [47], who reported on accuracy, and Fumarola et al. [24], who
reported on recall only. Apparently, the effectiveness of the machine-learning
proposals is higher than the effectiveness of the heuristic-based proposals; how-
ever, due to the differences in the evaluation processes, this conclusion is not
sound. Unfortunately, only Son and Park [59] and Eberius et al. [18] reported on
the efficiency of their proposals, which does not seem to be very good according
to their figures; Wu et al. [65] did not report on the efficiency of their proposal
but they mentioned that it relies on a linear clustering algorithm. The only pro-
posals that require resources are the ones by Eberius et al. [18] and Nishida et al.
[46]; fortunately, they do not seem to be a major obstacle since they consists in
a corpus that was gathered from the Wikipedia. The ones that rely on machine
learning project the input data onto a space of structural, visual, and/or con-
tent features that seem simple to compute. Regarding their parameters, most
of them have pre-defined parameters for which the authors recommend some
values that are expected work generally well; none of the proposals require any
learnable parameters, but a few require user-defined parameters.

Regarding the task-specific characteristics, the only proposals that can sub-
classify data tables are the following ones: Crestan and Pantel [16] distinguishes
amongst listings, forms, matrices, and enumerations; Lautert et al. [34], Eberius
et al. [18], and Nishida et al. [46] distinguish amongst listings, forms, and matri-
ces; and Liao et al. [38] distinguishes between complete and incomplete tables
(which are encoded as independent tables, but must be stitched together so that
they can be properly interpreted).

4.4. Functional analysis

Table 8 summarises our comparison regarding functional analysis proposals.
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The task-specific characteristics are the following: a) Context-data cells: it
describes if a proposal is able to make context-data cells apart from the others;
a proposal that can identify context-data cells is better than a proposal that
cannot. Decorators: it refers to the ability of a proposal to identify decorator
cells; a proposal that can find decorators is better than a proposal that cannot.

Regarding the general characteristics, 83% of the proposals rely on heuris-
tics and rest rely on machine-learning approaches. Most of them can work on
as few as a single table, with the exception of the proposals by Cafarella et al.
[3], Chen et al. [7], and Chen et al. [7], we need to compare at least two ta-
bles. Many of the authors report on the effectiveness of their proposals; realise
that most of the measures are below 0.90, which means that there is enough
room for improvement regarding this task. Unfortunately, only Embley et al.
[21] reported on the efficiency of their proposal, which seems scalable enough.
Regarding the resources required, Yoshida et al.’s [69] and Gatterbauer et al.’s
[26] proposals require domain-specific ontologies, whereas Cafarella et al.’s [4]
requires a publicly-available database. The proposal by Cafarella et al. [4] is the
only that projects the input data onto a space of simple structural and content
features. The proposal by Yoshida et al. [69] requires a pre-defined parameter
that is auto-adjusted, and the proposals by Yang and Luk [68], Kim and Lee
[32], and Milošević et al. [44] require another pre-defined parameter for which
the authors provide a default value; the only proposals that require user-defined
parameters are the ones by Chen et al. [7], Kim and Lee [32], Jung and Kwon
[30], and Ling et al. [39].

Regarding the task-specific characteristics, note that only the proposal by
Milošević et al. [44] can identify some decorator cells and context-data cells.
This is a bit surprising since, according to our experience, these kinds of cells
are very common in practice.

4.5. Structural analysis

Table 9 summarises our comparison regarding structural analysis propos-
als. The task-specific characteristics are the following: a) Header structure: it
describes the kinds of headers that a proposal can identify according to their
structure, namely: none, which means that it can analyse tables without head-
ers, simple, which means that it can analyse simple headers that consists of one
meta-data cell only, and complex, which means that it can identify complex
headers that consists of multiple meta-data cells; the more header structures a
proposal can identify, the better. b) Header layout: it describes the kinds of
headers that a proposal can identify according to how they are laid out, namely:
none, which means that it can identify that a table does not have any headers,
single, which means that it can identify headers in the first rows and/or columns
of a table, horizontally repeated, which means that it can identify that the head-
ers are repeated every some rows, vertically repeated, which means that it can
identify that the headers are repeated every some columns, and split, which
means that it can identify series of headers that are split across several non-
adjacent rows or columns; the more header layouts a proposal can identify, the
better. c) Tuple dimensionality: it describes the dimensionality of the tuples

32
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that a proposal can identify, namely: 0 if it can identify the tuples in an enumer-
ation, 1 it can identify the tuples in a listing or a form, and 2 if it can identify
the tuple in a matrix; the more tuple dimensionalities a proposal can identify,
the better. d) Tuple multiplicity: it describes the number of tuples that a table
is intended to show, namely: 1 in the case of forms and matrices, and * in the
case of listings and enumerations; the more tuple multiplicities a proposal can
identify, the better. e) Tuple orientation: it describes the orientations that it
can identify, namely: none in the case of matrices and enumerations, horizontal
or vertical in the case of listings and forms; the more tuple orientations a pro-
posal can identify, the better. f) Separators: it describes whether a proposal can
identify separator rows and/or columns; a proposal that can identify separators
is better than a proposal that cannot.

Regarding the general characteristics, many proposals rely on heuristic-based
approaches; the exceptions are the proposals by Lerman et al. [36, 37], which
leverage some grammar induction techniques, and Cohen et al.’s [13] proposal,
which leverages inductive logic programming. Most of the proposals require
as few as one input table; the exceptions are the proposals by Lerman et al.
[36, 37], Yoshida et al. [69], and Fumarola et al. [24], which require two tables for
comparison purposes. Unfortunately, only Yang and Luk [68], Elmeleegy et al.
[20], and Milošević et al. [44] reported on the effectiveness of their proposals,
and none of the authors reported on their efficiency. Note that none of the
proposals require to project the input data onto a space of features, but the one
by Chen et al. [7]. Note, too, that Chen et al. [7], Yang and Luk’s [68], and
Fumarola et al.’s [24] proposals are the only that have parameters.

Regarding the task-specific characteristics, it is surprising that most of the
proposals assume that the tables do not have any headers or they are simple,
except for Milošević et al.’s [44] proposal; it is also surprising that the only
proposal that can identify single and split headers is the one by Yoshida et al.
[69]. Regarding the tuple dimensionality, only the proposals by Yang and Luk
[68] and Milošević et al. [44] can make uni-dimensional tuples apart from two-
dimensional tuples; Milošević et al.’s [44] can also deal with zero-dimensional
tuples; the proposal by Fumarola et al. [24] implicitly assumes that the tuples
in a table are zero-dimensional and does not make an attempt to analyse the
structure of the corresponding cells; the other proposals implicitly assume that
the tuples are uni-dimensional. Regarding the tuple multiplicity, it is interesting
to see that all of the proposals assume that tables may display more than one
tuple; simply put, they cannot make listings apart from forms. Regarding the
tuple orientation, most proposals implicitly assume that the tuples are oriented
horizontally; the only exceptions are the proposals by Yoshida et al. [69], Cohen
et al. [13], and Yang and Luk [68], which can make horizontal tuples apart from
vertical tuples. It is surprising that none of the proposals that we have surveyed
can identify separators, even though they are very common in practice.

4.6. Interpretation

Table 10 summarises our comparison regarding interpretation proposals.
The task-specific characteristics are the following: a) Descriptors: it reports
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on the kind of descriptors that a proposal can assign to the data in a table;
the more kinds of descriptors a proposal can generate, the better. b) Empty

contents: it refers to the ability of a proposal to make a difference between
empty cells whose contents are factorised and cells that are actually empty; a
proposal that can make a difference between factorised and void cells is better
than another proposal that cannot. c) Content structure: it refers to the ability
of a proposal to make a difference between atomic cells and structured cells; a
proposal that can make a difference between atomic cells and structured cells is
better than a proposal that cannot.

Regarding the general characteristics, most proposals rely on heuristics that
have proven to work well in practice; the only exception is the proposal by
Cafarella et al. [4], which uses a reference matching approach. Wu et al. [65]
were the only authors who reported on effectiveness, but they measured precision
only; unfortunately, none of the proposals report on efficiency. Cafarella et al.’s
[4] proposal is the only one that requires a publicly-available resource. None
of the proposals project the input data onto a feature space and none of them
require any parameters to be set.

Regarding the task-specific characteristics, all of the proposals can generate
simple descriptors; only the proposals by Chen et al. [7], Yang and Luk [68],
and Milošević et al. [44] can generate field descriptors. Unfortunately, none
of the proposals can make a difference between factorised cells and void cells.
Regarding making a difference amongst atomic and structured cells, it seems
that only the proposal by Yang and Luk [68] can deal with this problem.

5. Conclusions

This article summarises and compares many proposals that have been pub-
lished between 2000 and 2018 regarding extracting data from tables that are
encoded using HTML. The problem is not trivial insofar many tables are en-
coded using a subset of table-related tags that help locate and segment them,
but do not provide a clue on the function of the cells or their structure; many
others are encoded using listing tags, block tags, or other tags that look like a
table when they are displayed, which hampers locating and segmenting them.

Our analysis makes it clear that none of the proposals that we have listed
provide a complete solution to the data-extraction problem. Most of them
address only some of the tasks involved and they differ regarding the problems
that they address within each task. Regarding the location task, most proposals
focus on tables that are encoded using table-related tags, there are a couple
that focus on listing tags, and also a couple that are independent from the
tags used; what seems an actual challenge is to identify context data, since the
few proposals that take this problem into account are very naive. Regarding
the segmentation task, it is surprising that no proposal can identify multi-part
cells and that most of them do not attempt to segment the context data. The
discrimination task is the one that has been paid more attention, but not many
proposals attempt to go further than making non-data tables apart from data
tables; recent proposals attempt to classify data tables in more categories since
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this definitely helps interpret them. Regarding the functional analysis task,
it is surprising that almost none of the proposals pay attention to identifying
context-data cells or decorators cells. Regarding the structural analysis task,
the problems that have got none or very little attention are identifying split
headers and zero- and two-dimensional tuples. Regarding the interpretation
tasks, creating artificial descriptors in cases in which not enough meta-data are
available, analysing whether an empty value is actually empty or factorised, and
analysing the structure of the contents of a cell are problems that have not been
addressed sufficiently. Addressing these problems would help expand the kinds
of tables from which data can be extracted.

Last, but clearly not least, the evaluation of the proposals is also a very
relevant problem. We have found that many authors have used Wang and Hu’s
[64] repository in addition to their own repositories; unfortunately, the subsets of
tables selected were different and their sizes range from as many as 342 795 tables
to a hundred tables or less. Definitely, recent repositories like DWDTC [18] or
WDC [35] will help. We have also found many authors who used k -fold cross
evaluation, but there is not a general consensus; there is not even a consensus
regarding the value of k in the cases in which this procedure was used. As a
conclusion, the experimental results reported are not comparable to each other.
Neither is it common to find figures regarding efficiency, which makes it difficult
to realise if a proposal might work well in a production scenario. Jiménez et al.
[29] set a foundation regarding how to evaluate information extraction proposals
in general, but they did not focus on the tasks involved in extracting information
from tables that are encoded using HTML.

Summing up: extracting data from tables that are encoded in HTML is an
active research field in which we expect new results to be published in the near
future. We hope that this article helps researchers sift through the state-of-the-
art proposals in this field.
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