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Abstract. The currently burst of the Internet of Things (IoT) tech-nologies
implies the emergence of new lines of investigation regarding not only to hardware
and protocols but also to new methods of pro-duced data analysis satisfying the
IoT environment constraints: a real-time and a big data approach. The Real-time
restriction is about the continuous generation of data provided by the endpoints
connected to an IoT network; due to the connection and scaling capabilities of an IoT
network, the amount of data to process is so high that Big data tech-niques
become essential. In this article, we present a system consisting of two main
modules. In one hand, the infrastructure, a complete LoRa based network designed,
tested and deployment in the Pablo de Olavide University and, on the other side, the
analytics, a big data streaming sys-tem that processes the inputs produced by the
network to obtain useful, valid and hidden information.
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1 Introduction

The current technological reality points to two main lines of research and devel-
opment. First, the line of industry and services wherein the rise of the advanced
technology to M2M communications or the Internet of Things (from now on,
IoT) [21] is changing our means of production and our service management sys-
tems. This fact leads our society to a new industrial revolution, the 4.0 industry
[12]. On the other side, the line of data science and big data [2] emerges as a
consequence of the vast amount of it generating, day by day, in our society.

There is an intimal relation between IoT technology and the data science
and big data. The IoT networks can potentially manage a massive amount of
data depending on the number of endpoints connected to it. Although the man-
agement of the data traffic of an IoT network is a critical element, the useful
and efficient treatment of this data is another crucial point to take into account.
Due to the huge amount of data involved in this new framework, issues like data
storage, data buffering appears implying the use of Big data solutions. Further-
more, Data science techniques are needed to analyze the real-time data of the
IoT network and obtain useful, valid and hidden information [14].
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In this article, we present the an IoT agent system consisting in an in-
production LoRa based IoT network deployed, whose usability has been tested
in the Pablo Olavide University (Seville, Spain) and a big data streaming sys-
tem, based on HDFS and Spark, that analyzes in real time the data provided by
the earlier mentioned IoT network.

The rest of the article is structured as follows. A summary of the previous
researches related to the paper’s topic is presented in Sect. 2. The architecture of
the proposed system and the methods used in the development can be found in
Sect. 3. The experimental setup carried out, and the yielded results are reported
in Sect. 4. Finally, the conclusions and future work are provided in Sect. 5.

2 Related Works

Nowadays, GPRS, Sigfox, Narrowband Internet of Things (NB-IoT), and LoRa
are four widely used IoT technologies providing the best coverage for IoT devices.
These technologies have been deeply studied in terms of coverage in [13]. The
authors simulated the coverage of the previously mentioned IoT networks com-
paring them in an area of 7800 km?. This study aimed to obtain the technology
that provides better coverage for the connected IoT devices concluding that
NB-IoT provided a better coverage but having a maximum signal coupling and
a signal loss of 164 dB.

By contrast, the authors in [17] demonstrated the low-consumption devices
connected to LoRaWAN based IoT networks could transmit the data more effi-
ciently compared with other devices and network servers. The authors carried
out field testing with line of sight and no line of sight in an Indonesian University
campus.

An architectural study was carried out in [18]. Here, the authors analyzed the
LoRa technology and demonstrated the LoRaWAN based network architectures
shows a good match with the measurement systems. Furthermore, their experi-
mental results confirmed the capability of a low-cost transceiver to schedule the
transmission of frames with a standard uncertainty less than 3 ws.

Related to the data, we can distinguish between two concepts. On the one
hand, we find the discovery or extraction of valid, useful and hidden information
from data sets; that discipline is known as data mining, the main step within
the knowledge discovering in databases process. The Data Mining covers the
data source selection processes, pre-processing, and the application of machine
learning algorithms providing us of descriptor, predictor or classifying models of
the data. These models extract those mentioned above valid, useful and hidden
information that implies a huge number of applications like variable predictions,
client segmentation or fraud detection [8], among others.

On the other hand, we find the processing and management of vast volumes
of data form a new state-of-the-art discipline called big data [14]. The big data
applies to an extensive collection of fields. In [5] a big data environment is devel-
oped to electricity market field, managing volumes of 1 TB of data with the
aim of detect fraudulent clients. The authors in [6] present a software tool for



behavior pattern discovery in vast amounts of biological data and they develop
in [7] a methodology to process and evaluate the results of the previous tool that
they are equally big.

In this paper we present a new aspect into the big data and the data mining:
the analysis of significant flows of data, coming from IoT sensors of a LoRaWAN
network, in real time with auto-incremental machine learning algorithms. This
field is called big data streaming. There are a few works related with this new
approach; however, in [11], the authors propose a comparison between the main
frameworks to work in streaming context these are Storm, Flink y Spark Stream-
ing; the parameters of the study are performance and failure tolerance. The
authors in [1] conduct an analysis of the performance of the linear regression
algorithm with the Spark MLIib library and the Massive Online Analysis plat-
form (MOA). Finally, in [16], a real-time methodology to detect cybercrimes and
credit card fraud based on Spark Streaming is presented.

3 System Architecture

The proposed architecture is illustrated in Fig. 1. We can observe that the system
is composed of several modules. Each of them is responsible for a task in the
system and are connected by input/output links. In a general way, the LoRa
based infrastructure is in charge of obtaining and manage the data form several
IoT devices. The preprocessing module takes these data as input and decodes and
prepares to the following subsystems. The real-time or experimental environment
manages the data streams and feed to the big data streaming engine. This engine
performs the training of an auto-incremental machine learning algorithm and
makes predictions of the measured variables by the sensors.

Next, each module is separately analyzed in the following sections: the LoRa-
based infrastructure in Sect. 3.1, the JSON payload buffering and preprocessing
in Sect. 3.2 and the real-time environment in Sect. 3.3.

Fig. 1. Proposed IoT architecture.

3.1 LoRa Based Infrastructure

We present our LoRa based infrastructure whose function is to collect the data
that will be processed and analyzed by the real-time big data analytics system.



The inputs of the LoRa infrastructure will be de data picked by IoT sensors;
specifically, these devices will measure values of two variables, this is pressure
and temperature. The outputs of this subsystem will be the raw metrics of
pressure and temperature registered in the LoRaServer software.

In Fig.1 we can observe the elements of this module. Firstly, we have three
ToT devices with two sensors measuring temperature (in Celsius, C) and pressure
(in kilopascals, kPa).

The next element is the LoRa network based on the LoRaWAN standard.
LoRaWAN defines an IoT communication protocol and a system architecture for
the deployment of a network. The protocols and the architecture of a network
are the most influencer elements to determine the life of the batteries, the net
capability, the quality of the service and the security [17]. We have chosen the
LoRaWAN standard for two main reasons: LoRaWAN is an open standard, it
offers excellent performance for our purpose, and there are several open-source
software solutions to net managing (LoRaServer software).

Then, we can see the group of three LoRa gateways. These devices carry out
the management of the access points to the network and, thanks to a piece of
software called LoRa Gateway Bridge, transmit the collected data to the con-
troller software. As a part of this transmission, the binary packets from the
sensors are transformed into a JSON that can managed by for LoRaServer sys-
tem. The protocol between LoRa gateways and LoraServer is called Semtech
packet forwarder protocol and is included in the LoRa Gateway Bridge.

The last part of the LoRa infrastructure is the LoRaServer system that man-
ages and controls every payload that travels for the IoT net. Three subsystems
compose the LoRaServer system: the LoRa server module responsible for the
management of the gateways and end points. Next, we found the LoRa App
Server that manage the applications, users, services and devices. Finally, the
core of the system is the MQTT broker Eclipse Mosquito that connects the
LoRa server with the LoRa Gateway Bridge and the LoRa App Server with any
application.

3.2 JSON Payload Buffering and Preprocessing

The inputs of this module will be the LoRa JSON payloads acquired by a MQTT
consumer. The outputs will be Kafka producers. Apache Kafka is an open-source
software developed and maintained by Apache Software Foundation. The main
objective of this software is to provide a unified platform with high performance
and low latency for the manipulation of data sources in real-time environments.
It can be interpreted like a message queue, developed as a register of distributed
transactions using the publisher-subscription pattern. Apache Kafka is a large
scale scalable, partitioned and replicated platform [3,10,15].

The general function of this module is to receive the JSON payloads from
the LoRa network, then performing a JSON parsing to extract the data field.
This information is encrypted by the Base64 method; then, the next step will be
decrypting the data for, afterward, carry out device-driven decoding. After these



steps, we will have the measures of pressure and temperature in a legible form
(in kPa and C respectively).

Finally, the module checks the environment of the system. For this particular
proposal, a real-time environment is used. Each W-dependent instance is sent
to its corresponding module via Kafka producer.

3.3 Real-Time Environment

This module carries out the set up of the environment needed for training and
testing the auto-incremental machine learning algorithm. In this module a real-
time environment is settled; therefore, every time that a new instance with a W
learning window is building, it will arrive at it using a Kafka consumer channel.

The elements of this module can be observed in Fig. 2. There, we can see how
the Kafka consumer channel forwards the instances to a software layer called
Kappa architecture [14]. It is a software architecture pattern whose purpose is
to process streams of data in real-time and to store the results as mentioned
earlier.
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Fig. 2. Real-time big data analytics environment.

The Kappa architecture has two different elements. On the one hand, the real-
time layer, implemented by Apache Spark Streaming is in charge of processing
the instances coming from the Kafka channel and adapts the data for machine
learning algorithm training and testing. On the other hand, we found the service
layer, implemented by Apache Hadoop Distributed File System (HDF'S) file sys-
tem [19] which is in charge of storing the results of machine learning processing.

At this point, a brief explanation of Spark Streaming and Apache Hadoop
HDFS is given:

— Apache Spark Streaming: It is an API of Apache Spark whose purpose is
enabling scalable, high-throughput, fault-tolerant stream processing of live
data streams. The streams of data can come from multiple sources (Apache
Kafka, in our case). The processing results can be stored, likewise, in multiples
systems like databases, dashboards, and, (in our case) HDFS.



— Apache Hadoop HDFS': 1t is one of the modules of Hadoop. HDFS is a dis-
tributed file system designed to run on commodity hardware. Furthermore, it
is highly fault-tolerant and is designed to be deployed on low-cost hardware
and provides high throughput access to application data and is suitable for
applications that have large datasets.

3.4 Big Data Streaming Engine

This section describes the engine used in order to forecast big data streaming.

Data are received continuously, and therefore the prediction of a given time
horizon, h, must be made in real time. The Apache Spark Streaming machine
learning library (MLIib) is proposed for this purpose. In particular, the linear
regression algorithm [9] is used to forecast future values for the target variables
(temperature and pressure in our case).

MLIib’s linear regression algorithm does not support multi-step forecasting
and, for this reason, the algorithm must be adapted as previously done in [4,20].
Therefore, the problem that must be solved is:

[(t+1),z(t+2),...,2(t+h)] = flzt),z(t-1),...,2t—w—-1)) (1)

where w represents the window of past values considered for predicting the A
future values.

For each data stream received from any sensor at the instant ¢, a forecasting
model M; is generated at the training stage. This model is incrementally updated
along with new coming data, thus generating new models at different time stamps
M1, Myyo,...;M;4y,. When a prediction is made, the last generated model is
used.

4 Results

This section describes the experimentation that has been carried out for the
extraction of information with the input data and application of a big data
streaming algorithm.

4.1 Dataset Construction and Linear Regression Parametrization

The data used are those obtained by the sensors of the LoRaWAN network. The
measurement of the data has been performed every ten seconds for a period of
one month, having a raw data set of approximately seventy thousand records.

The dataset contained erroneous records, so a pre-processing of the data was
applied, checking that the data had a correct measurement and eliminating the
erroneous measurements. At the end of the cleaning pre-processing, five thousand
seven hundred and twenty-six records are obtained.

The linear regression algorithm with gradient descent [9], used for experi-
mental study in streaming, requires the optimization of two main parameters as
indicated in the previous section:



— . It is the size of the step that moves the gradient in the downward direction.
— ¢. The number of iterations necessary for the method to converge.

To obtain the optimum value of these two parameters, an exhaustive search
algorithm has been developed. Finally, the optimum parameters obtained are
shown in Table 1, when the mean relative error (MRE) is minimized.

Table 1. Optimum parameters obtained for the linear regression algorithm.

Data o | a (stepSize) | MRE
Pressure 10| 3.33E-11 1.27E-05
Temperature | 15 | 3.61E-05 4.18E-05

4.2 Experimental Setup

After analyzing the input data, building the datasets, and obtaining the optimal
execution parameters for the linear regression model, the following experimental
design is proposed to test the effectiveness of the Apache Spark streaming linear
regression model in a real streaming situation.

The aim of this study is to test the MRE variation when the self-incremental
learning model is fed with new learning data through the streaming channel to
which it is connected.

Thus, for each variable measured V = {P, T} by the pressure and temper-
ature sensor and for each time window w; = {ws, ws, w12, Wag, Wop, Wwisp} the
following process is performed:

1. Activate the streaming system.

2. Parametrize the incremental Linear regression algorithm with the optimal
parameters {(a, o) for V and w;.

3. Inject training dataset into the training channel with a time lapse of 5s,
generating a M; model for each dataset.

4. For each M; model a prediction of the complete test set is made, measuring
the associated MRE.

Once this process is executed, the MRE is obtained for each model generated
My, My, M3, ..., Myy. At the same time, the observed values will be compared
with the predicted values, highlighting the models of the streaming channel that
reaches lower MRE in the prediction.

4.3 Analysis

In this section different experiments are carried out in order to perform an
exhaustive analysis of the incremental learning of the different online models
that are generated to estimate the predictions in a streaming environment. First,



the section on errors evaluates the quality of the prediction, in terms of the
average relative error, while adding LP to the training package used to obtain
the prediction model. Finally, the predictions section presents the results of
the prediction of the set of tests obtained with the best model for each time
window. To obtain the online models, the training data set has been divided
into 30 batches. Each of these subsets will be injected one at a time at 5s
intervals. In this way, 30 prediction models will be obtained in real time in an
incremental way to predict the test set. These models are obtained using the
optimal configuration of the parameters o and o, necessary for linear regression,
which is shown in Table 1.

Table 2. MRE for pressure sensor data stream.

w3 We w12 W24 W90 w180

M; |5.08E-03 | 9.25E-03 |5.76E-03 |5.74E-03 | 5.80E-03 |4.48E-03
Mo | 4.95E-03 |4.54E-03 | 4.55E-03 |4.49E-03 |4.44E-03 |4.52E-03
Mz | 4.89E-03 | 4.66E-03 |4.65E-03 |4.31E-03 |4.70E-03 |4.52E-03
My |4.99E-03 |4.59E-03 |4.40E-03 |4.56E-03 |4.44E-03 |6.29E-03
Ms | 4.89E-03 |4.51E-03 | 4.63E-03 |4.31E-03 4.65E-03 | 4.92E-03
Ms |4.96E-03 | 4.52E-03 |4.38E-03 |4.60E-03 | 4.42E-03 | 5.13E-03
M7 | 4.98E-03 |4.52E-03 | 4.58E-03 |4.32E-03 |4.49E-03 |4.73E-03
Mg | 4.89E-03 |4.53E-03 |4.40E-03 |4.48E-03 | 4.81E-03 |5.31E-03
My |4.96E-03 | 4.54E-03 |4.36E-03 |4.61E-03 | 4.42E-03 |5.40E-03
Mo | 4.90E-03 |4.69E-03 |4.56E-03 |4.32E-03 |4.53E-03 |4.72E-03
M1 | 4.88E-03 | 4.68E-03 | 4.65E-03 |4.52E-03 | 5.41E-03 |5.13E-03
M2 |4.98E-03 | 4.67E-03 | 4.39E-03 |4.33E-03 | 4.59E-03 |5.21E-03
M3 | 4.90E-03 |4.64E-03 | 4.36E-03 | 4.31E-03 |5.17E-03 |4.73E-03
My | 4.89E-03 | 4.64E-03 | 4.60E-03 |4.55E-03 | 4.42E-03 |5.25E-03
Mis | 4.99E-03 | 4.54E-03 | 4.70E-03 |4.34E-03 |4.46E-03 |4.76E-03
Mie | 4.89E-03 | 4.54E-03 |4.37E-03 |4.31E-03 | 4.50E-03 |5.44E-03
M7 |4.96E-03 | 4.55E-03 | 4.59E-03 |4.49E-03 | 5.23E-03 |4.71E-03
Mg | 5.00E-03 |4.62E-03 |4.37TE-03 |4.32E-03 |4.59E-03 |5.88E-03
Mg | 4.90E-03 |4.74E-03 |4.56E-03 |4.49E-03 | 4.98E-03 |4.75E-03
Mao | 4.89E-03 | 4.53E-03 | 4.63E-03 |4.32E-03 | 4.50E-03 |5.26E-03

The errors made in the prediction of the test set when using the different
models that are generated in an incremental way are now discussed. Table 2
shows the MRE made when predicting the test set for the pressure sensor, using
each of the models obtained online for different lengths of historical data. In
bold type, the models that have obtained the minimum error for each window
are highlighted. Similar results are reported for both pressure and temperature
but, due to space limitations, they are not shown here.



5 Conclusions

In this article we propose a complete system to collect information from the
environment through the use of a IoT architecture using LoRa technology and
the LoRaWAN standard. The system has been successfully deployed at Pablo de
Olavide University (Seville, Spain). The implementation of an architecture for
data analysis, called Kappa architecture, for real-time analysis and development
of experimentation is also described, and it is based on the underlying pache
Spark Streaming and HDFS technologies. Experiments carried out using the
physical IoT network and real sensors are reported in order to evaluate the
incremental models and the quality of the predictions made.
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