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Abstract. This paper presents a new forecasting algorithm for time series in streaming 
named StreamWNN. The methodology has two well-differentiated stages: the algorithm 
searches for the nearest neighbors to generate an initial prediction model in the batch 
phase. Then, an online phase is carried out when the time series arrives in streaming. In 
par-ticular, the nearest neighbor of the streaming data from the training set is computed 
and the nearest neighbors, previously computed in the batch phase, of this nearest 
neighbor are used to obtain the predictions. Results using the electricity consumption 
time series are reported, show-ing a remarkable performance of the proposed algorithm 
in terms of fore-casting errors when compared to a nearest neighbors-based benchmark 
algorithm. The running times for the predictions are also remarkable.

Keywords: Forecasting · Nearest neighbors · Streaming time series · Electricity 
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1 Introduction

The explosive increase of global data, based on technology improvements, has led 
to the gathering of information as an automatic and relatively inexpensive task 
[16], taking us to the big data era. Data science offers a solution to gain knowledge 
from these enormous amounts of data, by means of adapting the existing models 
to the big data paradigm. This adaptation is a challenge for the research 
community.

There are several fields in which the application of the new big data anal-ysis 
techniques represent a great improvement in problem solving, such as the energy 
consumption forecasting [17,25]. Governments and private companies are 
focusing on this topic as the improvement in the prediction levels will have both 
economic and environmental positive consequences [22]. In this sense, some clas-
sifiers have already been successfully applied to electricity consumption forecast
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[24], such as the weighted k-nearest neighbors classifier (WKNN). The WKNN
[4] is a generalization of the k-nearest neighbors method (KNN) [2] that assigns
weights to the neighbors based on their distance from the element to predict.

The direct application of these methods to the big data domain is not feasible
due to the computational needs, in terms of time and memory. Several proposals
have adapted nearest neighbor proposals to the big data paradigm using the
Apache Spark distributed computation framework [16,21,22].

Data streams are generated in many practical applications as temporally
ordered, fast changing and massive flows of data [13]. Mining these data streams
is concerned with extracting knowledge structures represented in models and
patterns in non-stopping streams of information [6], and the research on this
area has gained a high attraction. In this proposal, we go a step further and
propose a general purpose forecasting algorithm based on nearest neighbors for
big volumes of streams of data, to create a method capable to be integrated in
real-world systems in which data are constantly generated as streams, such as
the demand prediction in the electricity market.

In this work, we propose the StreamWNN algorithm for streaming time series
forecasting based on nearest neighbors. This algorithm consists of two phases: a
batch phase to generate an initial model, and an online phase for forecasting in
real time by using the model previously created in the batch phase. The proposal
has been applied to a dataset of 497,832 samples of electrical energy consumption
in Spain.

The rest of the paper is structured as follows. Section 2 describes a review of
the state of the art approaches related to data streaming and forecasting analysis
int the electricity market. Section 3 presents the methodology applied for time
series forecasting in streaming. The experimental setup along with the results
obtained using electricity demand time series can be found in Sect. 4. Finally, in
Sect. 5, the final considerations extracted from this work are presented.

2 Related Works

A wide range of approaches for data streaming analysis is currently emerging.
The primary trend of this research field is the development of machine learning
methodologies to the streaming environments. From this perspective, the authors
in [26] presented an online version of the support vector machine model to predict
air pollutant levels from the monitored air pollutant in Hong Kong. An online
version of the linear discriminant analysis algorithm for dimension reduction
was presented in [14]. On the other hand, it has carried out research efforts
to develop frameworks for adaptation of standard machine learning methods to
streaming [10]. Another streaming framework is SAMOA presented in [1], where
the authors developed an API to apply machine learning algorithms to streams
of data in a big data context. Different algorithms to analyze data streams from
the Internet of Things (IoT) networks are also currently being developed. In [5],
the authors presented a streaming linear regression method to forecast streams
data generated by IoT networks. Finally, several surveys have been published



about the streaming analysis. In this sense, the authors in [20] analyzed the
difference between the real-time processing and the stream processing of big
data, and by contrast, a survey of the open-source technologies that support big
data in a real-time/near real-time environments was introduced in [15].

Concerning researches focused on forecasting for the electricity demand time
series data, in addition to the nearest neighbors for a big data environment pro-
posed in [22] and the new big data-based multivariate and multi-output forecast-
ing approach in [21], other approaches have been published. In [7], the authors
applied decision gradient boosted trees and random forest ensemble methods to
the electricity demand problem. Also, deep learning techniques have been applied
to predict energy power consumption in big data environments [23]. A Temporal
Convolutional Network has been used in [11] for demand energy forecasting. A
complete review of deep learning architectures for time series forecasting was
published in [12]. On the other hand, several streaming techniques have been
applied to this problem. In [3], the authors presented an incremental pattern
characterization algorithm to mine data streams from smart meters of RMIT
University for the purpose of applying it to electricity consumption analysis
and forecasting. The authors in [8] proposed a complete data streaming analysis
system combining an online clustering model and neural-networks to predict in
real-time the electricity load demand from sensor networks.

Besides the forecasting, other problems related to energy have been
addressed. The authors in [19] presented a methodology to extract electric energy
consumption patterns in big data time series based on the application of the dis-
tributed version of the k-means algorithm. In [9] the authors presented a big
data system to classify fraudulent behaviors of the leading electricity company
in Spain. Regarding the streaming environment, an incremental ensemble learn-
ing method is developed for the on-line classification of the electricity pricing in
Australia in [18]. Furthermore, in [27], the authors presented the DStreamEPK
algorithm, a new streaming clustering method applied to electric power data.

3 Methodology

This Section presents the proposed algorithm, named StreamWNN, for stream-
ing time series forecasting based on nearest neighbors.

The time series forecasting problem consists in predicting the next h values
from the historical past values. The StreamWNN forecasting algorithm has of
two phases: a batch phase to generate an initial model, and an online phase for
forecasting in real time by using the model created in the batch phase.

A time series Xt is defined as a set of ordered chronologically values
{x1, ..., xt} and can be always transformed into N instances formed by features
and class as follows:

Xt = {(x1, y1), ..., (xN , yN )} xi ∈ R
w yi ∈ R

h (1)

where xi are the features of the i− th instance, representing the past w values to
the class yi formed by the next h values. For the batch phase, the time series Xt



from Eq. (1) is divided into training set and test set. Then, the prediction method
based on nearest neighbors searches for the k closest neighbors to a window
composed of the past w values to the h values to be predicted. Afterwards, a
weight is calculated for each neighbor depending on its distance to the past
values window. Thus, the initial model M consists of the pairs of the features
of the instances from the test set and a list of the classes corresponding to the
neighbors of theses features from the training set. That is:

M = <xi, <y(n1(xi)), ..., y(nK(xi))>> (2)

where K is the number of neighbors, xi are the w features of the i− th instance
of the test set, nj(xi) is the j − th neighbor of the xi and y(nj(xi)) is the class
corresponding to the j − th neighbor.

When a time series is received in streaming, a temporal data stream dst can
be a chunk of the time series of length w, that is, dst = <xt, xt+1, ..., xt+w−1>.
For the online phase, once the dst data stream is received, the nearest neighbor
of the dst from test set is obtaining by this equation:

x∗ = arg min
xi∈Test

d(xi, dst) (3)

Then, the prediction is obtained using the K neighbors of x∗ and weights already
computed in the M model from Eq. (2). In particular, the prediction is made by
applying a weighted average of the h samples following those k closest neighbors.
Thus, the StreamWNN algorithm predicts by means of the following equation:

ŷ(dst) =
1

∑K
j=1 w

∗
j

K
∑

j=1

w∗
j y(nj(x∗)) (4)

where nj(x∗) is the j− th neighbor of x∗, y(nj(x∗)) is the class corresponding to
the j− th neighbor, and w∗

j is the weight associated to the j− th neighbor. This
weight depends on the distance, with a greater weight to the closest neighbors
and a smaller weight to the farthest neighbors according to a distance d. In this
work, the Euclidean distance has been chosen, and the weights are defined by:

w∗
j =

1
d2(x∗, nj(x∗))

(5)

Consequently, it is possible to obtain forecasts in real time as the prediction
consists of making an average with neighbors and weights previously computed
in the batch phase using the historical data.

4 Experimental Results

This section specifies the dataset used in the experimentation and reports the
results obtained after the application of the proposed streaming algorithm. In
particular, Sect. 4.1 describes the dataset and the experiments carried out, speci-
fying in each case the parameters of the algorithm. Finally, in Sect. 4.2 the results
of the experimentation are shown and discussed.



4.1 Dataset and Experimental Setup

The experimentation uses a dataset of 497,832 samples of electrical energy con-
sumption in Spain. Each sample has 12 attributes related to electricity. For this
work, only two attributes are used: the energy demand in megawatt (MW) and
the date and time of the measured value.

In particular, the dataset contains 1 sample for every 10 min during 9 years
and 6 months, starting the 1 January 1st 2007 and finishing June 21st 2016.
The whole dataset is chronologically divided into 3 sets of data: training, test
and streaming sets. The training and test sets are approximately a 70% of the
dataset: the training set contains data from January 1st 2007 to August 23rd

2011 and the test set contains data from August 24th 2011 to August 19th 2013.
The algorithm predicts almost 3 years, i.e., the streaming set is from August
20th 2013 to June 21st 2016.

In this study, the experiments are carried out with the same parameters
and prediction horizons established in [22]. Each of the four experiments has a
different horizon: 4, 8, 12 and 24 hours. As the dataset contains 1 sample each
10 min, the prediction horizons are 24, 48, 72 and 144 samples, respectively. The
goal is to analyze the behaviour of the algorithm for different prediction horizons
considering the optimal parameters of [22].

The parameters for each experiment are listed below, where h is the predic-
tion horizon, w corresponds to the number of past values used for predicting the
next h values and K is the number of nearest neighbors of the training set to
consider when creating the M model, as defined in Sect. 3:

– For the prediction horizon h = 24, optimal parameters are w = 144 and K = 4.
– For the prediction horizon h = 48, optimal parameters are w = 288 and K = 2.
– For the prediction horizon h = 72, optimal parameters are w = 576 and K = 4.
– For the prediction horizon h = 144, optimal parameters are w = 864 and
K = 4.

4.2 Results

The four experiments are run on a cluster located at the Data Science and
Big Data Laboratory in Pablo de Olavide University. The cluster is formed by
4 nodes: 3 slaves and 1 master. The whole cluster has 4 Processors Intel(R)
Core(TM) i7-5820K CPU with 48 cores, 120 GB of RAM memory. It uses Ubuntu
16.04.1 LTS, Apache Spark 2.3.4, HDFS on Hadoop 2.7.7 and Apache Kafka 2.11.

The metrics used to evaluate the performance of the algorithm are the
mean absolute percentage error (MAPE), expressed as a percentage, and the
mean absolute error (MAE), expressed in MW [24]. Table 1 presents the above-
mentioned metrics of error when forecasting the streaming set of data for the
different prediction horizons. Moreover, the maximum, minimum and standard
deviation (st. dev.) of the MAPE for the streaming set are depicted. It can be
noticed that both MAPE and MAE increase with higher values of the prediction
horizon. Considering that in this work the offline summary model is not updated,



the standard deviation and values of MAPE and MAE lead to think that the
offline summary model represents in an accurate way the streaming data.

Table 1. Metrics of errors for different prediction horizons

h w k Maximum MAPE Minimum MAPE St. dev. MAPE MAPE MAE

24 144 4 33.0031 0.2464 2.0745 2.4288 670.1298

48 288 2 31.2719 0.4101 2.0842 2.7617 766.8640

72 576 4 34.3861 0.6002 2.8199 3.3535 933.9924

144 864 4 29.3277 0.6548 3.6136 3.8465 1072.8357

Figures 1 and 2 show the worst forecasts (the maximum MAPE) and the
best ones (the minimum MAPE) for each prediction horizon, respectively. They
both show the real and forecasted electricity demand values in the vertical axis
and the hours of the day in the horizontal axis. Each sub-figure includes the
day (in format day/month/year) and the horizon of the maximum or minimum
MAPE. All worst days correspond to public holidays in Spain: in summer for
the prediction horizons 24 and 48 and, in winter for the prediction horizons
72 and 144. For prediction horizons 24, 48 and 72, it can be observed abrupt
changes at the last time sample of the horizon as the following forecasted values
correspond to the next prediction horizon on the same day. On the other hand,
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Fig. 1. Days with the worst forecasts for each h horizon



Fig. 2 shows that, in these days, the data used in the offline phase represents
well the online data because even without any update of the summary offline
model, the forecasted values are quite accurate.
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Fig. 2. Days with the best forecasts for each h horizon

Table 2 shows the MAE obtained when applying the algorithm recently pub-
lished in [22] and the proposed StreamWNN algorithm using the same set of
data and the same parameters for comparison purposes. It can be observed that
the error of the proposed algorithm is higher just for h = 24. However, the
MAEs of the StreamWNN are quite smaller than the ones in [22] for all the
other prediction horizons.

Table 2. The MAE (in MW) for the StreamWNN and the algorithm in [22].

h [22] StreamWNN

24 524.14 670.13

48 920.87 766.86

72 1313.40 933.99

144 1514.92 1072.84

Figure 3 represents the mean values for each hour, both of the forecasted and
of the real energy demand values of the h = 24 prediction horizon setup. The



representation of the other three forecast horizons is very similar. It confirms
that the forecast results have behave very similar to the ones of the real data.

Besides the good performance, a streaming algorithm has to provide timely
results during the online phase. Even if the offline phase of the streaming algo-
rithm is not limited in execution time, the offline phase of the proposed algorithm
is fast considering the huge amount of data, both in training and test sets. The
offline phase of the proposed algorithm for h = 24 takes 222.09 s, 167.16 s for
h = 48, 153.47 s for h = 72 and 122.50 s for h = 144.

The online execution time for all four prediction horizons is presented in
Fig. 4. This figure shows for every 200 iterations of the algorithm, the time in
seconds from the beginning of the online phase. The number of iterations for
each experiment is different as w and h changes. In addition, as smaller these
values are, less time is taken to compute the iterations (as in the offline phase).
It can be observed that the algorithm increases linearly the execution time as
more iterations have been previously made, which is very important in streaming
algorithms. Considering these results, a forecast of h values is made in an average
of 1.4 s for h = 24, 1.6 s for h = 48, 1.9 s for h = 72 and 2.3 s for h = 144. These
results are presented in Table 3.
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Table 3. Computation times (in seconds) for different prediction horizons

h Offline phase time Online prediction time of h values

24 222.09 1.4

48 167.16 1.6

72 153.47 1.9

144 122.50 2.3

5 Conclusions

The StreamWNN algorithm for time series forecasting in the streaming environ-
ment has been proposed. The StreamWNN consists of two stages: an offline or



batch phase and an online phase. The first stage creates a summary prediction
model with the K nearest neighbors for each window of w samples and their
next h samples of the training set. Afterwards, in the second stage, the time
series of the streaming set are processed satisfying the streaming requirements.
When streams arrive, the model predicts the h next values with a weighted
average using the selected K nearest neighbor from the batch prediction model.
The algorithm has been applied to an electricity demand time series dataset
containing records over nine years. The performance of the algorithm has been
evaluated with the MAPE and MAE error metrics for each prediction horizon.
A good performance has been shown when comparing these errors with a bench-
mark algorithm, that used the same dataset and parameters.

The future works will be focused on some characteristics of the algorithm
such as updating the summary batch model considering the knowledge of the
previous time series streams, detecting novelties and outliers in the streams or
studying the process to select the optimal values of the parameters.
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data time series forecasting based on nearest neighbours distributed computing
with spark. Knowl. Based Syst. 161, 12–25 (2018)

23. Torres, J.F., Galicia, A., Troncoso, A., Mart́ınez-Álvarez, F.: A scalable approach
based on deep learning for big data time series forecasting. Integr. Comput. Aided
Eng. 25(4), 335–348 (2018)

24. Troncoso, A., Riquelme-Santos, J.M., Gómez-Expósito, A., Mart́ınez-Ramos, J.L.,
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