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Abstract Studies conducted along the southern Iberian
coastline validate macrobenthic community analyses at
taxonomic levels higher than that of species. Twelve
studies on littoral benthic communities, carried out by
the same research team, were selected spanning both a
variety of sampling strategies (spatial, temporal, spatio-
temporal) and substrate/habitat types (sediment, rock,
algae). In order to establish differences between the re-
sults obtained at the taxonomic levels of species, family
and order, similarities among stations were calculated
using Spearman’s coefficient for ranges. A subset of
three studies was selected to investigate possible differ-
ences in ‘best-explaining’ environmental variables with
taxonomic level. The environmental variables selected at
species level were the same as those found at levels of
family and order. It is concluded that studies at the
different levels of taxonomic resolution (species, family,
order) lead to similar results both with regard to relative
community distributions and the environmental vari-
ables associated with these. The importance of this result
for monitoring similar benthic communities is discussed.

Keywords Taxonomic resolution Æ Benthic
communities Æ Southern Iberian Peninsula

Introduction

The analysis of zoobenthic communities as a tool to
assess ambient water quality is a complex and fine-
consuming procedure. Ideally, the analysis should pro-
ceed to the species level. However, in many taxa species
identification is complex and laborious (see Gaston
2000, and references therein). Additionally, some taxa
require specialised methods of sampling and sample
treatment. With sufficient time and resources all these
problems may be overcome, but unfortunately results
have to be achieved within ever-shorter timescales. This
has led to many instances where the more classical ap-
proaches such as physico-chemical water analyses were
considered more favourable.

Ways to simplify community analyses have been
studied extensively in recent years (Resh and Unzicker
1975; Stephenson and Cook 1977; Ellis 1985; Ferraro
et al. 1989; Sale and Guy 1992; Smith and Simpson
1993; James et al. 1995; Somerfield and Clarke 1995;
Balmford et al. 1996a, b; Vanderklift et al. 1996). The
general tendency in these studies has been to analyse
potential information loss when data from a taxonomic
level higher than that of species were used, and to cal-
culate the cost–benefit relationships of analyses per-
formed at different taxonomic levels. In other studies
which mainly focussed on the detection of impacts on
the marine environment, it has become evident that in
many groups of benthic organisms changes in commu-
nity composition can be detected at levels above that of
species (Herman and Heip 1988; Warwick 1988a, b;
Ferraro and Cole 1990; Gray et al. 1990; Warwick et al.
1990; Warwick and Clarke 1993; De Grave and Whi-
taker 1999; Pagola-Carte et al. 2001; Sánchez-Moyano
et al. 2004). Even where environmental perturbations
were relatively weak and remained undetectable by
univariate methods (such as diversity indices) at species
level, multivariate analyses at higher taxonomic levels
could reveal such effects (Warwick 1993). In general, the
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majority of these studies have given comparable results
for different taxonomic levels. This may be due to the
fact that there are substantially fewer species but nev-
ertheless more higher taxa in the marine environment
than on land (Vincent and Clarke 1995). This may
contribute to a greater similarity across taxonomic
groupings in marine ecosystems.

We carried out a number of studies along the
southern Iberian coastline to determine temporal and
spatial patterns of macrobenthic communities within a
wide range of environmental conditions (natural, pol-
luted, environmentally stressful), habitats and substrate
types. In the present study, we evaluated whether the use
of different degrees of taxonomic resolution (species,
family and order) affects the results of ordinations and
the resulting organism–environment relationships. For
this purpose we selected 12 studies: 11 of them had been
carried out within the Bay of Gibraltar (southern Spain)
on sediment macrofauna (Estacio 1996) and on algal-
associated or epiphytic fauna (Sánchez-Moyano 1996),
whereas 1 study on rocky littoral macrofauna (Fa 1998)
covered a larger spatial scale, the southern Iberian
Peninsula. We thus wanted to include a variety of
methodologies, habitats and substrate types. We evalu-
ated whether the environmental variables explaining the
observed distributions remain the same at each level of
taxonomic resolution.

Methods

Details of the 12 studies are outlined in Fig. 1 and Ta-
ble 1. Studies N1–N5 (Estacio 1996) analysed the tem-
poral variation of macrobenthic communities at five
locations within the Bay of Gibraltar, differing in envi-
ronmental and granulometric characteristics, whilst
study N6 (Estacio 1996) analysed the spatial distribution
of sediment macrofauna within the same bay.

Study N7 was carried out within the Saladillo Har-
bour, south of Algeciras, an area with high levels of
urban and sewage discharge (Estacio et al. 1997); the
effects of these effluents on the macrofauna were com-
pared with regard to the hydrodynamism experienced
inside and outside the harbour. Study N8 was carried
out to investigate the effects of algal density on the
associated macrofauna in a Caulerpa prolifera Forskaal
meadow located within the port of San Felipe, La Lı́nea
(Sánchez-Moyano 1996; Sánchez-Moyano et al. 2001a,
b). Study N9 analysed the spatial variation of the epi-
phytic communities on the alga Halopteris scoparia (L.)
Sauvageau within the Bay of Gibraltar as a consequence
of varying environmental conditions (Sánchez-Moyano
1996; Sánchez-Moyano et al. 2000). Study N10, carried
out in the estuary of the Palmones river in 1994, sought
to analyse community distributions along the entire
estuarine zone of influence (15 stations). Study N11, also
carried out in the estuary of the Palmones river, evalu-
ated the spatial distribution of sediment communities at

four sampling stations located at varying distances from
the river mouth (one exterior and three interior stations),
and included the temporal variations observed over the
period 1992–1997 (Estacio et al. 1999).

Study N12 was a large-scale distributional study of
the intertidal macrofauna along the southern Iberian
Peninsula (Fa 1998), from Vila Nova de Milfontes on
the Portuguese Atlantic coast to La Manga del Mar
Menor on the Spanish Mediterranean coast, spanning
an approximate distance of 1,500 km. A total of 20
different locations along the coast were sampled using a
fixed belt-transect method and all macrofaunal species,
their abundances and zonations were noted.

In all these studies, specimens were determined and
quantified at the taxonomic levels of species, family and
order as these are the most commonly used (Clarke and
Warwick 2001).

Following a root–root transformation, abundance
data for each study and taxonomic level were analysed
using the Bray–Curtis index of similarity (Bray and
Curtis 1957). The percentage similarities obtained from
the similarity matrices at each taxonomic level were
contrasted within each study using Spearman’s rank-
correlation coefficient using the RELATE programme
from the PRIMER statistical package.

Non-metric multi-dimensional scaling (nMDS) ordi-
nations were obtained from the initial similarity matrices
which allowed the visual assessment of the results ob-
tained at each of the three taxonomic levels investigated.
This analysis was selected as it is particularly sensitive to
both spatial and temporal variations in community
structure (Clarke 1993).

In studies N2 and N6–N12 the composition of the
various taxa and their contribution to the results ob-
tained were analysed. In each case the number of species,
families and orders were quantified, as were the number
of families containing only one species (unispecific) and
those containing more than one species (multispecific).
In the latter case the number of multispecific families
dominated by a single species (>70% of the total
abundance for the family) was also noted. At the level of
order we recorded how many contained only a single
family (unifamilial orders) and how many of these were
unispecific or contained a single dominant species. In the
same way the number of multifamilial orders was also
quantified, again noting how many of these families were
dominated by a single species each. Data on families and
orders represented by either a single species or by a
dominant one are expressed as percentages (S) of the
total number of families and orders present, and as
abundance percentages (A) of the total number of
organisms at each taxonomic level.

The programme SIMPER from PRIMER was used
to establish which taxa contributed to more than 70% of
the differences found between groups of periods or sta-
tions following similarity analysis. These representative
taxa were further analysed to quantify the percentage of
unispecific or single-species dominated families and or-
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ders so as to help determine the causes of the similarities
between results across the three taxonomic levels.

Additionally, for studies N6, N7 and N9, we analysed
the influence of the various environmental variables on
the distribution of organisms at each of the three taxo-
nomic levels. Table 2 shows the environmental variables
considered in these studies. This was carried out by
canonical correspondence analysis (CCA; Ter Braak
1986, 1990), a form of analysis based on a unimodal
response model that constrains the ordination axes to be
linear combinations of the environmental variables that
maximize the dispersion (variance) of sample or species
scores. In the ordinations, stations were represented as
points and statistically significant environmental vari-

ables (after a Monte-Carlo permutation procedure) as
arrows.

Results

Studies on temporal variations in community
composition (N1–N5; Fig. 2)

The results of the nMDS, the corresponding stress val-
ues, and the relevant Spearman rank-correlation coeffi-
cients (Table 3, study type: temporal) indicate high
levels of similarity across all taxonomic levels regardless
of sediment type or environmental conditions. The

a

c

b

Fig. 1 a Map of the Iberian
Peninsula; b sampling stations
for study N12; c sampling zones
for the studies N1–N11
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highest correlation coefficients were always obtained
between species and families, and the lowest between
species and orders.

Studies on spatial variations in community composition
(N6–N10 and N12; Fig. 2)

Again high similarities were obtained at all three levels
of taxonomic resolution with regard to the nMDS, stress
values and Spearman’s rank-correlation coefficients
(Table 3, study type: spatial) which furthermore are of
the same order as those obtained for the temporal
studies. As for studies N1–N5, the highest correlations
were generally obtained between species and families,
and the lowest between species and orders.

Studies on spatio-temporal variations in community
composition (N11; Fig. 2)

The nMDS ordinations and stress values obtained for
both stations and sampling periods in the Palmones
estuary, again show high levels of similarity at each of
the taxonomic resolutions, as evidenced by the Spear-
man’s rank-correlation coefficient between matrices, al-
though in this case the highest correlation coefficients
were obtained between species and order (Table 3, study
type: spatio-temporal).

Composition and abundance of taxa at different
taxonomic levels

The results of studies N2 and N6–N12 show that there
were generally more single-species than multispecies

families (N6 being the only exception). Moreover, a
large proportion of multispecies families were domi-
nated by a single species that accounted for over 70% of
the total abundance (Table 4). Families containing ei-
ther a single or overridingly dominant species comprised
71–96% of all the families present, with abundances
ranging from 66 to 99% of the total number of collected
organisms.

The number of single-family orders was also higher
than that of orders encompassing two or more families
(except for studies N7, N9 and N11—see Table 5).
Within these single-family orders, a great number were
unispecific or dominated by a single species, and even in
multifamilial orders, the greater number corresponded
to single-species dominated groups. Thus, single-species
and/or single-species dominated orders comprised be-
tween 66 and 87% of the total number of orders, with
abundances ranging from 34 to 99% of the total abun-
dances.

Contribution of the various taxa to similarity

Using the programme SIMPER (from the PRIMER
package), we obtained in each case the taxa that best
discriminated between the groups of stations or sam-
pling periods identified in the multivariate analyses.

Unispecific and single-species dominated families
were superior in numbers (79.6–93.1%; Table 6). A
similar result was found for orders (range 55.5–80%).

Relationship between environmental variables
and taxonomic resolution

For study N6 (infaunal macrobenthic distributions in
the Bay of Gibraltar) the CCA indicated a similar dis-
tribution of stations independent of taxonomic level
(Fig. 3a). The environmental variables that best ex-
plained the observed community distributions were the
same at all taxonomic levels, although one factor, depth,
had no influence at the level of order. At all three tax-
onomic levels, stations clustered according to one of
three environmental variables: those influenced by clay
and organic carbon content (E1, F2, F3, and F4), those
where the sediment had a high sand content (C1, C2, C3
I1 and I4), and finally stations that had high levels of
coarse material and carbonates (K1, K2, K3 and K4).

The same pattern was found in study N7, carried out
in the Saladillo Harbour. High similarities were obtained
among CCA ordinations at different taxonomic levels
(Fig. 3b): stations located closest to sewage effluents
within the harbour (1, 2 and 3), separated from those
more distant from the pollution foci (6 and 7) or located
outside the harbour (9, 11, 13 and 17). The environ-
mental variables that best explained the community
distributions were the same for all three taxonomic
categories. However, with decreasing taxonomic reso-
lution the degree of differentiation between the more

Table 2 Environmental variables considered in the studies N6, N7
and N9

Variable N6 N7 N9

Sediment Granulometry + + �
Organic carbon + + �
Organic content + + �
Total nitrogen + + �
Carbonates + + �
Hydrocarbons � + �
Oils � + �
Phosphates � + �
Humectation � + �

Water Hydrodynamism + � +
T(�) max.–min. + + +
Sedimentation load + � +
Organic materials in sedimentation + � +
Solids in suspension + � +
Organic materials in suspension + � +
Nutrients � + �
Chlorophylls � + �
pH � + �
Visibility � + �
DO and BOD � + �
Hydrocarbons–oils � + �
Agitation � + �
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perturbed stations (1, 2, 3, 6 and 7) was reduced. At the
species level, some species such as Malacoceros fuligi-
nosus present in stations 1, 2 and 3, and Spio martinensis

as well as Polydora sp. and Pseudopolydora antennata in
stations 6 and 7 differentiated the two groups (SIMPER
analysis). However, at the level of family and order their

Fig. 2 Results of the nMDS
analyses for each of the studies
at each taxonomic level. Stress
values for each case are shown
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Fig. 2 (Contd.)
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abundances were aggregated under a single taxon blur-
ring the difference found at the species level.

In the CCA ordinations for the spatial variation of
epiphytes on Halopteris scoparia (study N9: Fig. 3c), all
ordinations showed the same separation of stations along
axis 1. Stations located at the more external zones of the
Bay (IP—Palomas Island, SG—San Garcı́a Point and
CU—Cucareo inlet) were separated from those located
more interiorly (GU—Guadarranque, CR—Crinavis
shipyard). The external zones are exposed to higher levels
of hydrodynamism and water renewal due to their
proximity to the strong currents in the Straits of
Gibraltar, whilst in the inner part of the Bay, lower levels
of water movement, coupled with contamination from
urban and port areas, industries and river estuaries serve
to differentiate the sites. At the level of family and order,
external stations were grouped closer to each other
leading to greater discrimination between internal zones.
As in study N6, differences that were apparent at the

species level, were blurred at higher taxonomic levels.
Nonetheless, the responses at different taxonomic levels
were, in general terms, similar, although at the level of
order hydrodynamism was found to have no determining
influence.

Discussion

In all evaluated studies, which covered a diverse spec-
trum of habitats, environmental conditions, coastal
zones and substrate types, the results obtained at dif-
ferent taxonomic levels were very similar. The environ-
mental variables identified as primary structuring factors
in the selected studies (N6, N7 and N9) were the same
across different taxonomic levels, although there was
some information loss at the level of order and family.

The potential importance of alternative taxonomic
levels other than that of species has been treated previ-

Fig. 2 (Contd.)
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Table 3 Correlations between results obtained at each of the three taxonomic levels for all of the studies

Study number: location (substrate type) Pairings N R (Spearman’s) P

Study type: temporal N1: Getares (sta. C1) (fine sand) Species–Family 66 0.846 <0.0001
Family–Order 66 0.774 <0.0001
Species–Order 66 0.658 <0.0001

N2: Los Ladrillos (sta. F2) (mud) Species–Family 78 0.953 <0.0001
Family–Order 78 0.911 <0.0001
Species–Order 78 0.883 <0.0001

N3: Acerinox (sta. I4) (mud/sand) Species–Family 66 0.929 <0.0001
Family–Order 66 0.776 <0.0001
Species–Order 66 0.762 <0.0001

N4: Guadarranque (sta. I1) (medium-grained sand) Species–Family 91 0.865 <0.0001
Family–Order 91 0.785 <0.0001
Species–Order 91 0.751 <0.0001

N5: Cepsa (sta. K4) (sandy mud) Species–Family 91 0.905 <0.0001
Family–Order 91 0.785 <0.0001
Species–Order 91 0.751 <0.0001

Study number: location (habitats–substrates) Pairings N R (Spearman’s) P

Study type: spatial N6: Bay of Gibraltar (marine–sediment) Species–Family 120 0.94 <0.0001
Family–Order 120 0.86 <0.0001
Species–Order 120 0.82 <0.0001

N7: Saladillo Harbour (marine–sediment) Species–Family 36 0.987 <0.0001
Family–Order 36 0.955 <0.0001
Species–Order 36 0.952 <0.0001

N8: Caulerpa prolifera meadows (marine–algae) Species–Family 45 0.960 <0.0001
Family–Order 45 0.924 <0.0001
Species–Order 45 0.861 <0.0001

N9: Halopteris scoparia meadows (marine–algae) Species–Family 78 0.982 <0.0001
Family–Order 78 0.927 <0.0001
Species–Order 78 0.909 <0.0001

N10: Palmones Estuary (1994) (Estuarine–sediment) Species–Family 105 0.974 <0.0001
Family–Order 105 0.961 <0.0001
Species–Order 105 0.933 <0.0001

N12: Southern Iberian coastline (intertidal–rock) Species-Family 190 0.860 <0.0001
Family–Order 190 0.906 <0.0001
Species–Order 190 0.770 <0.0001

Study number: area (period) Pairings N R (Spearman’s) P

Study type:
spatio-temporal

N11: Palmones Estuary (1992–1997) Species–Family 253 0.66 <0.0001
Family–Order 253 0.58 <0.0001
Species–Order 253 0.79 <0.0001

Table 4 Number of unispecific and multispecific families in the
selected studies

Study Unispecific
families

Multispecific
families (families
species-dominant)

S (%) A (%)

N2 39 23 (16) 88 90
N6 64 92 (47) 71 86
N7 39 27 (22) 92 98
N8 62 23 (20) 96 66
N9 92 46 (36) 93 79
N10 49 19 (9) 84 97
N11 57 25 (15) 88 97
N12 39 15 (10) 91 99

Figures in brackets refer to the number of families with a single
dominant species
S Percentage of unispecific and single-species dominated families, A
percentage of abundance of unispecific and single-species domi-
nated families

Table 5 Number of unifamilial orders (figures in brackets refer to
unispecific or single-species dominated) and multifamilial (figures
in brackets refer to orders dominated by a single species) in the
selected studies

Study Unifamilial order
(unispecific-
dominant)

Multifamilial order
(ordered species-
dominant)

S (%) A (%)

N2 19 (12) 11 (8) 66 78
N6 28 (26) 23 (15) 80 52
N7 10 (10) 14 (11) 87 96
N8 21 (19) 13 (7) 76 42
N9 20 (15) 23 (11) 60 34
N10 23 (19) 11 (7) 76 97
N11 16 (15) 16 (7) 69 91
N12 16 (13) 13 (9) 76 99

S Percentage of unispecific and single-species dominated orders, A
percentage of abundance of unispecific and single-species domi-
nated orders
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ously by numerous authors and has been tested in a
variety of habitats, both terrestrial and marine, and on
selected types of organisms such as insects (Kaesler et al.
1978; Waterhouse and Farrel 1985; Cain et al.1992), fish
(Kaesler and Henricks 1979; Dawson-Shepherd et al.
1992; Sale and Guy 1992), fauna associated with algal
and seagrass meadows (Smith and Simpson 1993; Sán-
chez-Jerez and Ramos-Esplá 1996), meiofauna (Heip
et al. 1988; Herman and Heip 1988; Ferraro and Cole
1992) and benthic macrofauna (Warwick 1988a, b;
Ferraro and Cole 1990, 1992; Gray et al. 1990; Warwick
et al. 1990; Somerfield and Clarke 1995).

Cost–benefit analyses for studies performed at dif-
ferent taxonomic levels are necessary to justify the use of
taxonomic levels other than species (Green 1979; Ken-
nelly and Underwood 1984; Ferraro et al. 1989; Kings-
ton and Riddle 1989). Clearly, studies carried out at
higher taxonomic levels may lower the high costs of
biological studies by reducing the degree of specialist
intervention (Ferraro and Cole 1990) and the time re-
quired to analyse samples.

Moreover, identification to species level can generate
greater error than that to the level of higher taxa (Ellis
and Cross 1981). From biological and statistical view-
points the limitation to higher taxa may be preferable to
incorrect species identification (Green 1979). In addi-
tion, the ecology of many species is little known, so the
information they provide is very limited (James et al.
1995).

The restriction to higher levels of determination may
allow for extending the study area, for analysing higher
numbers of samples per site and time (Warwick 1993;
Warwick and Clarke 1993) or for completing a study
within a much shorter time period. A further benefit of
this approach is to create an alternative form of data
reduction to the commonly employed method of
excluding rare species (usually those contributing less
than 5% of the total abundance—Clarke and Warwick
2001) prior to statistical analysis. Although not included
in this study, results obtained from dataset reduction by
rare species removal or by limitation to higher taxo-
nomic levels were very similar.

The use of levels of taxonomic determination above
that of species may be sufficient to detect impacts on

organisms (Edwards et al. 1975; Kaesler et al. 1978).
Although Ferraro and Cole (1990) indicated that the
species level would be most sensitive for the evaluation
of pollution impacts, variations in abundance of mac-
robenthic species in response to small perturbations may
be hard or impossible to detect due to the large range of
variability (Stull et al. 1986).

According to Warwick (1988b) natural environmen-
tal variation has a greater effect on macrofaunal
assemblages at the species level, whereas anthropogenic
impacts do so at higher taxonomic levels. In contrast,
James et al. (1995) suggested that in natural situations,
the spatial distributions of macrofaunal communities
remained the same irrespective of whether they were
analysed at the family or species level. In this sense, the
aggregation of species into higher taxonomic groups
reduces the natural variability in species abundances,
and may therefore improve the chances of detecting less-
obvious impacts.

In some instances changes in the degree of taxonomic
resolution had no influence on the results of community
analyses via diversity measures (Waterhouse and Farrel
1985; Ferraro and Cole 1990, 1995) or multivariate
techniques (Somerfield and Clarke 1995).

In the present study, we found that interpretations
arrived at from different taxonomic levels are very similar,
as shown by the Spearman rank-correlation coefficients
and nMDS ordinations. Correlations were consistently
higher, however, between analyses at species and family
levels. Thus, the use of higher taxonomic levels would be
justified for the analysis of macrobenthic community
data from various habitats (marine, estuarine, intertidal,
infralittoral) and substrates (rocky, sediment, algal).
Moreover, consistent results across taxonomic levels were
obtained from localities under both environmental per-
turbations (N2–N5, N6–N10 and N11) and natural con-
ditions (N1 and N12), supporting the results obtained by
James et al. (1995). There was also consistency across
taxonomic levels when intertidal systems (N12) were
compared with more diverse ones such as estuaries (N10
and N11), a result also described by Somerfield and
Clarke (1995). Finally, the similarities between results
obtained in studies at a local scale (N1–N10 and N12)
and at a broad-scale (N11) illustrates the applicability of
these treatments across a wide range of spatial scales, as
proposed by Balmford et al. (1996a, b).

In contrast to Somerfield and Clarke (1995) who
obtained higher stress values with decreasing taxonomic
resolution, our results showed no important variations
in stress between species, family or order.

James et al. (1995) showed that results obtained at
differing taxonomic levels depended on the number of
species per family and the species-abundance distribu-
tions. Thus, a single species in each family will produce
identical results at both taxonomic levels. Very similar
results should be obtained if only a few species are
present in each family and these are in turn dominated
numerically by a single species.

Table 6 Percentage of unispecific or single-species dominated
families and orders that contribute to differentiate (‡70%) the
groups highlighted by similarity analysis

Study Family (%) Order (%)

N2 91.3 69.2
N6 81.8 76.9
N7 93.1 72.7
N8 92.4 77.2
N9 79.6 73.9
N10 88.8 80
N11 81.5 55.5
N12 75 62.5

252



The latter was the case in the studies N2 and N6–
N12: the families and orders which aggregated the
majority of species and abundances were indeed the

major contributors to the groupings obtained in each
study. Our results are consistent with those of Herman
and Heip (1988); they found that the information con-

N7: SALADILLO HARBOUR

K1

K2

K3

K4
K6

I1

I2

I4

I5

F2

F3 F4

E1

C1

C2

C3

COARSE SED.

SANDS

SILT-CLAY

ORG.C.

CARBONATES

DEPTH

I3

SPECIES

N6: BAY OF GIBRALTAR

SANDS

CARBONATES

E1

F2

F3

F4

I4

I1

C3

C2

C1

I3

I2

I5

K4
K6

K2

K1K3

FAMILY

COARSE SED.

ORG.C.

DEPTH

SILT-CLAY

SANDS
CARBONATES

E1

F2

F4

F3

C3

I4
I1

C2
C1

I
3

I5

K2

K3

K1K4
I2K6

ORDER

COARSE SED.

ORG.C.

SILT-CLAY

1

2

3

6

7

9

11

13

17

OXYGEN

FATS

PHOSPHATES

ORG. MAT.

DEPTH

HYDRO.

SPECIES

1

2

3

6 7

9

11

13

17

HYDRO.

FAMILY

OXYGEN

DEPTH

ORG. MAT.

PHOSPHATES

FATS

1 2
3

6
7

9

11

13

17

HYDRO.

ORDER

OXYGEN

DEPTH

ORG. MAT.

PHOSPHATES

FATS

N9: HALOPTERIS SCOPARIA

IP1
IP2

IP3

SG1

SG2

SG3

CU1
CU2

CU3

GU1

GU2

CR1

CR3

SED. ORG. MAT.

SUS. MAT.

SUS. ORG. MAT.

HYD.

IC

SPECIES

IP1

IP2

IP3

SG1

SG2

SG3

CU1

CU2
CU3

GU1

GU2

CR1

CR3

HYD

IC

FAMILY

SED.ORG.  MAT.

SUS. MAT.

SUS. ORG. MAT.

IP1

IP2IP3

SG1SG2

SG3

CU1

CU2
CU3

GU1

GU2

CR1

CR3

IC

ORDER

SED. ORG. MAT.

SUS. MAT.

SUS. ORG.MAT.

A

B

C

Fig. 3 Graphical representations of the CCA analyses obtained at each of the three selected taxonomic levels for studies N6, N7 and N9.
The significance of these ordinations were assessed by means of a Monte Carlo permutation test
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tained in species abundances was conserved, albeit par-
tially, when these were aggregated into higher taxonomic
groupings.

Graphical representations of the CCA ordinations at
each level of taxonomic resolution show how commu-
nities are primarily structured by the same subset of
environmental variables. Study N6 showed high levels of
similarity between the distribution of stations at each
level of resolution and the best explaining environmental
variables. However, decreasing taxonomic resolution
creates a greater level of similarity between internal
stations (I and K—which are physically close to each
other) and a greater differentiation between the three
main groups of stations (internal, external—C, and
harbours—F and E).

The results of the same analyses for study N7 again
reflected high similarities between the three taxonomic
groups studied, but some differences were also present.
While there were two clear groups (harbour interior and
exterior), sites exposed to high contaminant levels within
the harbour showed greater similarities at higher taxo-
nomic levels. This means that whilst differences between
outer and inner sites were still present, the gradient
associated with pollution was less defined at the family
and order levels.

Hydrodynamism was not selected as an important
environmental factor at the level of order in study N9,
possibly due to species-specific hydrodynamic require-
ments within the same taxonomic group. This is par-
ticularly evident when orders such as amphipods are
important to determine the overall community structure
(Sánchez-Moyano and Garcı́a-Gómez 1998).

We conclude that, at least for the systems studied,
data analysis at higher taxonomic levels, particularly
that of family, retains important ecological information
whilst having the added advantage of being more robust
with regard to the vagaries of species-level taxonomy.
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