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Abstract: Blind separation of speech sources in reverberant environ-
ments is usually performed in the time-frequency domain, which gives
rise to the permutation problem: the different ordering of estimated
sources for different frequency components. A two-stage method to
solve permutations with an arbitrary number of sources is proposed.
The suggested procedure is based on the spectral consistency of the
sources. At the first stage frequency bins are compared with each other,
while at the second stage the neighboring frequencies are emphasized.
Experiments for perfect separation situations and for live recordings
show that the proposed method improves the results of existing
approaches.
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1. Introduction

Blind separation of speech signals is a challenging problem whose solution strongly
depends on the mixing conditions and on the assumed hypotheses. In reverberant envi-
ronments it is usual to work in the time-frequency domain, thus decoupling the prob-
lem into a set of instantaneous problems with complex-valued sources.1 In spite of this
advantage, an obstacle arises, the permutation problem, consisting of the fact that the
ordering of the estimated sources does not coincide for different frequency bins. Meth-
ods for solving the permutation problem can be grouped into two categories:1 methods
exploiting the consistency of the filters coefficients and methods exploiting the consis-
tency of the spectrum of the sources. The second group of methods is based on the
inter-frequency coherence of the spectrum of speech signals, known as the amplitude
modulation correlation property.2 In this work we introduce a new method based on
this property to solve the permutation problem in a general reverberant environment
with N sources and N sensors. Unlike the best of the state of the art methods,3 which
have been conceived for the 2� 2 case, but not directly extended to the N�N case, in
this work N can be greater than 2.

The paper is structured as follows. The signal model and notation are pre-
sented in Sec. 2. In Sec. 3, the proposed method for solving permutations is intro-
duced. In Sec. 4 experiments and results are presented. Finally, conclusions are sum-
marized in Sec. 5.

2. Signal model and notation

Let us consider a time-invariant convolutive mixture of N independent speech sources,
sj(n), with j¼ 1,…, N, observed in an array of N sensors. In the absence of noise, each
observation is given by
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xiðnÞ ¼
XN

j¼1

X1
k¼�1

hijðkÞsjðn� kÞ; i ¼ 1;…;N; (1)

where hij(n) is the impulse response from jth source to ith sensor. If Xi(f, t) and Si(f, t)
are the STFTof xi(n) and si(n), respectively, and Hij(f) is the Fourier transform of
hij(n), then

Xiðf ; tÞ ¼
XN

j¼1

Hijðf ÞSjðf ; tÞ; i ¼ 1;…;N: (2)

By defining X(f,t)¼ [X1(f,t),…,XN(f,t)]T, S(f,t)¼ [S1(f,t),…,SN(f,t)]T, and H(f) so that
Hij(f)¼ [H(f)]ij 8i, j, Eq. (2) can be rewritten as X(f,t)¼H(f)S(f,t). The separation prob-
lem is then decoupled since there is an instantaneous mixture for each frequency bin.
The separation matrices B(f) can be estimated independently for each frequency bin by
any appropriated instantaneous separation method, thus providing the vector of out-
puts or estimated sources

Yðf ; tÞ ¼ ½Y1ðf ; tÞ;:::;YNðf ; tÞ�T ¼ Bðf ÞXðf ; tÞ: (3)

Due to the scaling and ordering ambiguities in blind source separation problems, the
recovered signals have an arbitrary (and, in general, different) permutation and scaling
in each frequency bin. So the outputs vector is given by

Yðf ; tÞ � PðfÞDðfÞSðf ; tÞ; (4)

where P(f) is a permutation matrix and D(f) is a diagonal matrix of complex scalars.
The scaling ambiguity, causing a filtering of the sources, is not a serious problem. Sev-
eral methods can be used to reduce this effect; for example, the minimal distortion
principle, where B(f) is replaced by diag{B(f)�1}B(f). However, the permutation ambi-
guity is critical. Indeed, if the ordering of the estimated sources is not the same for ev-
ery frequency bins, the transformation into time domain will be erroneous even when
perfect separation is achieved. Therefore, to guarantee a constant ordering for all fre-
quency bins, we have to estimate P(f) and to correct the permutations.

3. Proposed method

A key property of speech signals is their amplitude modulation correlation, i.e., the
similarity or high correlation between all the frequency components of a speech signal
when its STFT is transformed into a logarithmic scale.3 This transformation is justified
since perceived loudness is approximately logarithmic.4 We define the normalized loga-
rithmic magnitude of the jth output at the fth frequency bin as

Y dB
j ðf ; tÞ ¼

log Yjðf ; tÞ
�� ��2� �

� log Yjðf ; tÞ
�� ��2� �D E

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logj Yjðf ; tÞ

�� ��2� �
� log Yjðf ; tÞ

�� ��2� �D E
t

���2� �
t

s (5)

where � � �h it is the average over time. Note that due to this normalization, every base
taken for the logarithm provides the same results. In these conditions, a good measure
of similarity between two different frequency components is their cross-correlation,

Cijðfk; flÞ ¼ Y dB
i ðfk; tÞY dB

j ðfl ; tÞ
D E

t
; (6)

Durán-Dı́az et al.: JASA Express Letters [DOI: 10.1121/1.3678657] Published Online 23 January 2012

EL140 J. Acoust. Soc. Am. 131 (2), February 2012 Durán-Dı́az et al.: Solving permutations for speech separation



since from the entropy power inequality5 the difference between logarithmic magnitude
of different human voices can be approximated as Gaussian. Then, for each frequency
bin fk and for each output Y dB

i fk; tð Þ, a measure of its similarity with respect to all the
frequency bins of another output, Y dB

j fl ; tð Þ, is

�CijðfkÞ ¼
XnF

l¼1
l 6¼j

Cijðfk; flÞ; (7)

where nF is the number of frequency bins in the STFT. Since two different components
with the same frequency must belong to different outputs, the comparison between
them does not make sense. For this reason, the frequency fk should be excluded from
the sum.

With the measure of similarity given by Eq. (7) we aim to determine the
output corresponding to each frequency component. Following the optimal pairing
principle,6 the correct ordering for a frequency bin is given by the permutation that
maximizes the sum of all the �Cij fkð Þ corresponding to the permutation. With the aim
of reordering the outputs at a frequency fk, we can apply N! possible permutation mat-
rices. Let P be one of these matrices, so that the new outputs vector at the frequency
fk is given by YP f ; tð Þ ¼ PY f ; tð Þ. We define the function

qPðfkÞ ¼
X
ði;jÞ2XP

�CijðfkÞ; (8)

where XP¼ {(i, j): [P]i,j¼ 1} is the set of pairs of indexes involved in the permutation
matrix P. Then the correct order for the frequency bin fk is given by

PoðfkÞ ¼ arg max
P

qPðfkÞ: (9)

3.1 Improvement of the results

If we order the frequency components according to the rule expressed in Eq. (9), each
frequency component will be assigned to the closest output. Generally, by repeating
the process, all permutations are solved in a few iterations. However, in some cases, a
few isolated permutations might still remain. This is due to the fact that the coherence
between frequency components decreases as their distance (in frequency) increases.
Therefore when all frequency bins have been assigned, we can solve these remaining
permutations by defining a localized measure of similarity, emphasizing the neighbor-
ing frequencies. In this second stage, the measure of similarity given by Eq. (7) is then
replaced by

�Cw
ij ðfkÞ ¼

1
nF

XnF

l¼1
l 6¼j

wðfl ; fkÞCijðfk; flÞ; (10)

where w(fl, fk) is a localized window, decreasing its value as fl � fkj j increases. Now the
function to be maximized, qP fkð Þ, is substituted by

qw
PðfkÞ ¼

X
i;j2XP

�Cw
ij ðfkÞ: (11)

This function should only be used at the second stage, when there are few and isolated
permutations at the outputs, since the localized window is less robust to large or block-
wise permutations.
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3.2 Summary of the proposed algorithm

The algorithm consists of two stages: the first one compares each frequency component
to every other frequency component of each output by means of Eq. (8); in the second
one the neighboring frequencies are emphasized by using Eq. (11). The procedure is
iterative, so that at each iteration, each frequency component is associated with the
most similar output to this component. The algorithm can be summarized as follows.

Stage I: Comparison to all frequency components.

1. Calculate qP fð Þ for all possible permutations and for all frequency bins.
2. For fk¼ 1: nF.

i) Find the reordering matrix P0 fkð Þ ¼ arg maxP qP fkð Þ;
ii) reorder the outputs as Y(fk,t) / P0(fk)Y(fk, t).

EndFor
3. If Po fkð Þ ¼ I8 fk : GoTo Stage II;

Else: GoTo step 1.

Stage II: Neighboring frequencies emphasized.

1. Calculate qw
P fð Þ for all possible permutations and for all frequency bins.

2. For fk¼ 1:nF.
i) Find the reordering matrix Pw

o fkð Þ ¼ arg maxP qw
P fkð Þ;

ii) reorder the outputs as Y fk; tð Þ  Pw
o fkð ÞY fk; tð Þ.

EndFor
3. If Pw

o fkð Þ ¼ I 8 fk: END of the ALGORITHM;
Else: GoTo step 1.

3.3 Computational cost

The computational cost of the proposed method is determined by the computation of
�Cij fkð Þ, and is of order O N2n2

F T
� 	

, where T is the number of time bins. The computa-
tion of qP fkð Þ has a cost of order O (N!N nF). Since the number of frequency bins is
much greater than the number of sources (nF � N), the first computation is the limit-
ing one. Nevertheless, it should be emphasized that the global complexity of the
complete separation process in frequency domain is dominated by the computational
complexity of the separation algorithms.

4. Simulations

We performed two set of experiments. The first one illustrates the performance of the
proposed algorithm in a situation of perfect separation (i.e., when, at each frequency
bin, the sources are completely separated at the outputs, but randomly permuted). The
second one tests the performance of the proposed method with a live recording.

4.1 Performance in a perfect separation situation

In order to illustrate the performance of the proposed method after a perfect separa-
tion, we applied permutation matrices, P(f), to a set of speech sources. We did several
experiments, for N¼ 2,…,7 sources, running the proposed algorithm in order to
recover the original spectrograms. For each experiment, we made 30 simulations, ran-
domly selecting the permutation matrix for each frequency. We used male and female
sources, with a duration of 5 s (sampled at 10 KHz), randomly chosen from the data-
base http://www.imm.dtu.dk/pubdb/p.php?4400 of 12 individual recordings. The STFT
were computed using Hanning windows of length 1024 samples, FFT of 2048 points,
and 90% overlap, giving a number of 479 time bins, which are used for the temporal
average. For the second stage of the proposed method we used as localized window in
frequency a Hamming window of 1024 samples that was truncated when necessary.
The results showed that, for all simulations, the proposed method completely reordered
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the frequency components, except for certain very low frequencies (lower than 50 Hz)
that remained permuted for some pairs of speakers. This is due to the fact that for
very low frequencies the sources do not always satisfy the property of spectral coher-
ence. However, this does not affect the quality of the recovered sources.7 For the 2� 2
case we show a comparison with two other methods3,8 (see results in Table 1). The
proposed method exhibited the smallest number of unsolved permutations, both on av-
erage (about three times smaller than the method proposed in Ref. 3) and in each run.
Also, it fails less (we consider a fail when there is at least one unsolved permutation).
So we can conclude that this method outperforms the others. We also made 30 simula-
tions for each of the cases with N¼ 3,…,7 sources, obtaining very good results, with a
maximum for the average number of unsolved permutations per simulation of 24.1
(7� 7 case) and a minimum of 2.6 (3� 3 case), always for very low frequencies.
Results are shown in Fig. 1.

4.2 Performance for live recording

With the aim of illustrating the behavior of the proposed algorithm in a real environ-
ment we applied it to a live recording of 10 s, with a sample rate of 16 kHz, provided
in http://sisec2010.wiki.irisa.fr/tiki-index.php. Three speech sources were played and
then recovered by three omnidirectional microphones in a room of 3.55 m of width,
4.45 of length, and 2.5 m of height. The distance between sources and microphones
was around 1 m, and the maximum distance between two microphones was 5.7 cm
(corresponding to a delay of about 1/6 ms, greater than the sample period). The STFT
was computed by using a window length of 2048 samples, an FFT of 4096 points, and
an overlap of 95%, resulting in 1543 time bins. The original sources were estimated
from the observations by means of the THINICA algorithm using the initialization proce-
dure proposed by us in Ref. 7 followed by the proposed method for permutations

Table 1. Results for a perfect separation situation with N¼ 2 sources. 30 simulations were made by applying a
randomly selected permutation matrix to each frequency bin. The proposed algorithm was compared with two
other (Refs. 3, 8). The averaged number of remaining permutations (errors) per simulation and the number of
simulations for which there is one remaining permutation at least are shown.

Average number of errors per simulation Number of simulations with errors

Proposed 1.8 7
Pham-Servière (Ref. 3) 5.3 15
Rahbar-Reilly (Ref. 8) 121.4 23

Fig. 1. (Color online) Performance of the proposed algorithm in a situation of perfect separation when the
number of sources are N¼ 3,…,7. The number of remaining permutations per simulation are represented for
different cases.
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correction, which used 1.1% of the global process duration. The quality of the estimated
sources was measured in terms of source to interferences ratio (SIR) by E. Vincent, since
the original sources are not public; an average SIR of 10.1 dB was obtained. The obser-
vations can be listened to in Mm. 1, Mm. 2, and Mm. 3, while the estimated sources
can be listened to in Mm. 4, Mm. 5, and Mm. 6.

Mm. 1. Observation 1. Live recording sampled at 16 kHz. This is a file of type “wav”
(312 kb)

Mm. 2. Observation 2. Live recording sampled at 16 kHz. This is a file of type “wav”
(312 kb).

Mm. 3. Observation 3. Live recording sampled at 16 kHz. This is a file of type “wav”
(312 kb).

Mm. 4. Mm. 4: Estimated source 1. This is a file of type “wav” (312 kb).

Mm. 5. Mm. 5: Estimated source 2. This is a file of type “wav” (312 kb).

Mm. 6. Mm. 6: Estimated source 3. This is a file of type “wav” (312 kb).

5. Conclusions

We proposed a method for solving the permutation problem that arises in blind N�N
separation of convolved speech signals when working in the time-frequency domain.
The proposed method combines the assumption of spectral coherence for the speech
sources and an optimal pairing scheme. We defined for each frequency bin a measure
of coherence based on the amplitude modulation correlation property and derived a
method which consisted of two stages: the first one considers all the frequency bins,
whereas the second one emphasizes the neighboring frequencies. We illustrated the
good performance of the proposed method in terms of the SIR by means of a set of
experiments for perfect separation situations and for live recordings.
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