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Abstract: This article addresses the problem of the unsupervised separa-
tion of speech signals in realistic scenarios. An initialization procedure is
proposed for independent component analysis (ICA) algorithms that work in
the time-frequency domain and require the prewhitening of the observations.
It is shown that the proposed method drastically reduces the permuted solu-
tions in that domain and helps to reduce the execution time of the algorithms.
Simulations confirm these advantages for several ICA instantaneous algo-
rithms and the effectiveness of the proposed technique in emulated reverber-
ant environments.
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1. Introduction

This article considers the problem of the blind separation of speech signals that are recorded in
a real room, assuming the same number of microphones and speakers. It is well known that any
acoustic signal acquired from microphones in a real recording environment suffers from reflec-
tions on the walls and surfaces inside the room. Therefore, the recorded signals can be accu-
rately modeled as a convolutive mixture, where the mixing filter is usually considered a high-
order finite impulse response filter.

We focus on the time-frequency domain approach for blind source separation (BSS).
In this approach, the convolutive mixture is approximated by a set of parallel instantaneous
mixing problems for each frequency, being each of these problems solved independently with a
suitably chosen independent component analysis (ICA) algorithm. Since the separated sources
can have an arbitrary ordering, with this technique, a postprocessing to align the solutions be-
fore reconstructing them in time domain is necessary. The ordering ambiguity for each fre-
quency, which is known as the permutation problem, is ubiquitous when working in the time-
frequency domain and is especially important in real recordings, where the length of the room
impulse response can be very long (greater than 250 ms) and can contain strong peaks corre-
sponding to the echoes. Several methods have been proposed to overcome the permutation
problem, which can be divided into two groups. Some methods solve independently, for each
frequency, the instantaneous mixture and then a known property of the signals or of the mixing
filter are used in order to fix the permutation ambiguity. Examples of these properties are the
following: the assumption of similarity among the envelopes of the source signal waveforms,
the estimation of the direction of arrival, and the continuity on the frequency response of the
mixing filter. A second group of methods tries to avoid permuted solutions by choosing a suit-
able initialization of the ICA algorithms for each of the frequencies. Our proposal belongs to
this second group of methods and suggests an initialization procedure for those ICA algorithms
that use the whitening of the observations in the time-frequency domain. The experiments show
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that this initialization, which exploits the local continuity of the demixing filter in such domain,
reduces drastically the number of the solutions that are permuted and also may be used to re-
duce the execution time of the ICA algorithms while keeping intact the quality of the separation.

2. Problem formulation

We model the microphone observations xi�n�, i=1, . . . ,N, of a real room recording by a convo-
lutive mixture of the speech sources si�n�, i=1, . . . ,N, in a noiseless situation, i.e.,

xi�n� = �
j=1

N

�
k=0

P−1

hij�k�sj�n − k�, i = 1, . . . ,N , �1�

where hij�n� is the impulse response (of P taps) from the source j to the microphone i. In order
to blindly recover the original speech signals (sources), one can apply a matrix of demixing
filters to the observations xi�n� that yields an estimate of each of the sources

yi�n� = �
j=1

N

�
k=0

M−1

bij�k�xj�n − k�, i = 1, . . . ,N , �2�

where bij�k� denotes the �i , j� demixing filter of M taps. Let Xi�f , t� and Si�f , t� be, respectively,
the short-time Fourier transform (STFT) of xi�n� and si�n�. The time-domain convolutive mix-
ture in Eq. (1) can be approximated in the time-frequency domain by a set of parallel instanta-
neous mixing problems:

X�f,t� = H�f�S�f,t� , �3�

where X�f , t�= �X1�f , t� , . . . ,XN�f , t��T and S�f , t�= �S1�f , t� , . . . ,SN�f , t��T are the observation and
source vectors for each time-frequency point, respectively, and H�f� is the frequency response
of the mixing filter whose elements are Hij�f�= �H�f��ij∀ i , j. The separation model is given by

Y�f,t� = B�f�X�f,t� , �4�

where Y�f , t�= �Y1�f , t� , . . . ,YN�f , t��T is the vector of outputs or estimated sources, and B�f� are
the separating matrices to be estimated for each frequency f.

Due to the decoupled nature of the solutions across different frequencies, the corre-
spondence between the true sources and their estimates suffers from ambiguities in the scaling,
phase, and order. Thus, the vector of source estimates can be modeled approximately as

Y�f,t� � P�f�D�f�S�f,t� , �5�

where P�f� is a permutation matrix and D�f� is a diagonal matrix of complex scalars. P�f� and
D�f� constitute ambiguities for each frequency that need to be determined before being able to
recover the estimated sources in time domain.

3. Initialization procedure for ICA algorithms

The ICA algorithms used for estimating the optimal separation system B�f� in each frequency
are often started at any arbitrary point. However, a suitable initialization of the algorithm has
several advantages. For instance, when the algorithm is initialized near the optimal solution, a
much faster convergence of the algorithm will be obtained. Furthermore, the initialization can
exploit prior information on the mixture in order to avoid permutation ambiguity. One interest-
ing initialization approach considers the continuity of the frequency response of the mixing
filter H�f� and its inverse. Under this assumption, the initialization of the separation system B�f�
from the optimal value of the separation system at the previous frequency Bo�f−1� seems rea-
sonable. However, we cannot directly apply B�f�=Bo�f−1� in those ICA algorithms that whiten
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the observations. The whitening is performed by premultiplying the observations vectors with
an N�N matrix W�f�. After that, the new observations Z�f , t� can be expressed as another
mixture of the sources:

Z�f,t� = W�f�X�f,t� = U��f�S�f,t� , �6�

where the new mixing matrix U��f�=W�f�H�f� is unitary. Then, the separation matrix B�f� can
be decomposed as the product of a unitary matrix and the whitening matrix,

B�f� = �U�f��HW�f� . �7�

Due to the variability of the sources spectra, in general, the whitening matrices W�f� and W�f
−1� in contiguous frequencies are different. Consequently, when solving B�f�=Bo�f−1� di-
rectly to obtain �U�f��H=Bo�f−1�W−1�f�, there is no longer guarantee that this matrix is still
unitary.

A classical initialization technique avoids the previously described problem in the
following way. First, it multiplies the observations X�f , t� by the optimal separation matrix at the
previous frequency. Then, it determines the matrix W�f� which whitens these new observations.
Therefore, the overall separation matrix is calculated as

B�f� = �U�f��HW�f�Bo�f − 1� . �8�

In this work, we propose a new initialization procedure that consists in initializing the
separation matrix B�f� trying to minimize the weighted distance with several of the optimal
separation systems previously calculated for nearby frequencies, while the matrix U�f� is con-
strained to be unitary. This leads to the constrained minimization problem,

�
i

�i�Bo�f − i� − B�f��F
2 s . t . �U�f��HU�f� = IN, �9�

where � · �F denotes the Frobenius norm and �i are non-negative weighting scalars. The solution
of this problem is given by U�f�=QLQR

H, where QL and QR are, respectively, the left and right
singular vectors of the singular value factorization which follows:

�QL,D,QR� = svd�W�f��
i

�i�Bo�f − i��H� . �10�

4. Experimental results

In this section, we present several experiments illustrating that the proposed initialization pro-
duces good quality separation with convolutive mixtures of speech signals by using different
ICA algorithms. In addition, we will discuss the ability of the initialization procedure to reduce
the permuted solutions, as well as its effectiveness to guarantee a high convergence speed of the
ICA algorithm in such reverberant conditions. In order to have the possibility to determine the
number of permuted solutions and some objective measures of quality of the separation, it is
needed to know the exact room impulse response and the sources without errors. For this rea-
son, we emulated real room recordings by means of synthetic mixtures. Therefore we created 25
synthetic mixtures of two speech sources. The sources were chosen from male and female
speakers in a database1 of 12 individual recordings of 5 s duration and sampled at 10 kHz. Those
sources were mixed using a simulated room mixing system, shown in Fig. 1, determined using
the ROOMSIM toolbox.2 We computed the STFT with a finite Fourier transform of 2048 points,
90% overlapping, and Hanning windows of length 1024 samples. Then, we estimated the sepa-
ration system Bo�f� by initializing the ICA algorithms with both the classical initialization and
the proposed initialization. After that, we fixed the permutation and scale ambiguities applying
the method described in Ref. 3, and finally filtered the observations to obtain the time-domain
estimated sources.
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We applied our initialization method to various ICA algorithms which have been
proved to be efficient to estimate the separation system Bo�f�. Since speech signals are highly
nonstationary, we used two popular ICA algorithms based on nonstationarity of signals, SOBI

(Ref. 4) and THINICA (Ref. 5). THINICA was used in two different configurations, by first extract-
ing one source and then reconstructing the other, and by the simultaneous extraction of the two
sources, referred hereinafter as THINICA-SIM. To quantify the quality of the estimated sources,
each output was decomposed, by the BSS_EVAL toolbox,6 into three terms yi�t�=star+eint+eart,
which represent, respectively, the target source, the interference from other sources, and a last com-
ponent of artifacts.Then, we calculated three performance measures: the source to interference ratio
(SIR), the source to artifact ratio (SAR), and the source to distortion ratio (SDR),

SIR = 10 log10
�star�2

�eint�2 , SAR = 10 log10
�star + eint�2

�eart�2 , SDR = 10 log10
�star�2

�eint + eart�2 .

�11�

The obtained results, presented in Table 1, show that for the THINICA case the initialization
improves up to 8 dB the SAR and SDR in comparison with the classical method. In the other
cases, the initialization does not achieve a significant improvement of the estimated sources
quality.

As an example, two sources can be listened to in Mm. 1 and Mm. 2. Mixtures from
these sources by means of a mixing system like that described in Fig. 1 are in Mm. 3 and Mm.
4. Finally, in Mm. 5 and Mm. 6, the sources recovered by the algorithm THINICA-SIM (Ref. 4)
with the proposed initialization can be listened to.

Mm. 1. [First source: female voice sampled at 10 kHz. This is a file of type “wav” (99 kbytes).]

Mm. 2. [Second Source: male voice sampled at 10 kHz. This is a file of type “wav” (99 kbytes).]

Mm. 3. [First observation of the mixture of the two sources. This is a file of type “wav” (99
kbytes).]

Mm. 4. [Second observation of the mixture of the two sources. File of type “wav” (99 kbytes).]

Mm. 5. [First recovered source. This is a file of type “wav” (99 kbytes).]

Mm. 6. [Second recovered source. This is a file of type “wav” (99 kbytes).]
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Fig. 1. �a� Microphone and loudspeaker positions for the simulated room recordings and �b� channel impulse
responses of the considered filter.
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In order to prove the effectiveness of the initialization to guarantee a high convergence
speed of the algorithm, we calculated the average CPU time that each algorithm uses to solve
the separation in each frequency. We also analyzed the performance of our initialization proce-
dure in terms of the number of permutations. The results, summarized in Fig. 2, corroborate that
the proposed initialization reduces both the computational effort of the ICA algorithms and the
number of permutations. The reduced number of permutations is particularly very interesting
because it allows us to design new algorithms to solve the permutations based on this reduction.
Also, it could be used to alleviate the computational burden of the algorithms that solve the
permutation problem.

We investigated those frequencies in which our initialization is not able to preserve the
permutation order. Without loss of generality, we considered the simulation results provided by
the THINICA-SIM algorithm using the proposed initialization. In Fig. 3, we represent the normal-
ized modulo of the frequency response of the optimal demixing filter from source 1 to micro-
phone 1 (upper plot), and the normalized histogram of the frequencies in which the solutions
remained permuted (lower plot). It could be noted that echoes in the impulse response of the
mixing filter introduce rapid oscillations on the frequency response, so our main assumption
about the continuity of the mixing filter is not valid in all the frequencies. For this reason, it can
be observed that frequencies presenting a high number of permutations correspond to those in
which the frequency response of the optimal demixing filter exhibits strong peaks. However,
there are also a set of frequencies in which, although the mixing filter does not exhibit those
oscillations, the solutions are still permuted. This can be explained when the source separation
problem is ill determined at these frequency bands or when the profiles across time of the sec-
ond order statistics used by the chosen algorithms are similar for both sources, since they can
fail to separate the sources in these situations.

Table 1. Comparison of the average SIR, SAR, and SDR for different ICA algorithms by initializing with both
the classical and the proposed initialization method.

SIR �dB� SAR �dB� SDR �dB�

Classic Ini-1 Classic Ini-1 Classic Ini-1

THINICA 20.16 22.03 0.86 9.32 0.70 8.92
THINICA-SIM 21.97 22.15 12.70 12.79 12.02 12.13
SOBI 22.48 22.15 13.02 12.83 12.43 12.16
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Fig. 2. �a� Average CPU time �ms� to run different ICA algorithms in each frequency by initializing with both the
classical and the proposed initialization method. �b� Number of permutations for different ICA algorithms by
initializing with both the classical and the proposed initialization method.
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5. Conclusions

In this article we have considered the problem of the blind separation of speech signals in re-
verberant scenarios. We have presented an initialization procedure for those ICA algorithms
that work in the time-frequency domain and use a whitening of the observations as a prepro-
cessing step. Computer simulations show that this initialization, when incorporated to the ex-
isting ICA algorithms, reduces drastically the number of permutations. In addition, the pro-
posed initialization helps to alleviate the computational execution time of the ICA algorithms
that solve the separation in each frequency, while preserving the quality of the separated speech
sources.
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Fig. 3. �a� Normalized modulo of the frequency response of the optimal demixing filter from source 1 to microphone
1 and �b� normalized histogram of the number of permutations for 25 experiments and using THINICA-SIM algorithm.
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