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Abstract
Computer simulations are invaluable tools for scientific discovery. However, accurate simulations
are often slow to execute, which limits their applicability to extensive parameter exploration,
large-scale data analysis, and uncertainty quantification. A promising route to accelerate
simulations by building fast emulators with machine learning requires large training datasets,
which can be prohibitively expensive to obtain with slow simulations. Here we present a method
based on neural architecture search to build accurate emulators even with a limited number of
training data. The method successfully emulates simulations in 10 scientific cases including
astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and
seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach
also inherently provides emulator uncertainty estimation, adding further confidence in their use.
We anticipate this work will accelerate research involving expensive simulations, allow more
extensive parameters exploration, and enable new, previously unfeasible computational discovery.

1. Introduction

Finding a general approach to speed up a large class of simulations would enable tasks that are otherwise
prohibitively expensive and accelerate scientific research. For example, fast and accurate simulations promise
to speed up new materials and drug discovery [1] by allowing rapid screening and ideas testing. Accelerated
simulations also open up novel possibilities for online diagnostics for cases like x-ray scattering in plasma
physics experiments [2] and to monitor edge-localized modes in magnetic confinement fusion [3], enabling
real-time prediction-based experimental control and optimization. However, for such applications to be
successful the simulations need not only be fast but also accurate; achieving both to the level required for
advanced applications remains an active objective of current research.

One popular approach to speeding up simulations is to train machine learning models to emulate slow
simulations [4–7] and use the emulators instead. The main challenge in constructing emulators with
machine learning models is in their need for large amounts of training data to achieve the required accuracy
in replicating the outputs of the simulations. This training data could be prohibitively expensive to generate
with slow simulations.

To construct high fidelity emulators with limited training data, the machine learning models need to
have a good prior on the simulation models. Most work to date in building emulators, using random
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Figure 1. The super-architecture used in this paper where d is the dimension of the output signal. The first numbers in the
brackets indicate the number of channels and the last numbers indicate the signal size. For cases where the output signal are not
250d, then all the sizes in the intermediate nodes are scaled accordingly. Close arrows indicate the operations in the same group.
The output of the identity layer and the selected of convolutional layer are added into the destination node.

forests [4], Gaussian Processes [5], or other machine learning models [6, 7], do not fully capture the
correlation among the output points, limiting their accuracy in emulating simulations with one, two, or
three-dimensional output signals. On the other hand, convolutional neural networks (CNN) have shown to
have a good prior on natural signals [8], making them suitable for processing natural n-dimensional signals.
However, as the CNN priors inherently rely on their architectures [8], one has to find an architecture that
gives the suitable prior for a given problem. Manually searching for the right architecture can take a
significant amount of time and domain-specific expertise, and often produces sub-optimal results.

Here we propose to address this problem by employing efficient neural architecture search [9, 10] to
simultaneously find the neural network architecture that is well-suited for a given case and train it. With the
efficient neural architecture search and a novel super-architecture presented in this work, the algorithm can
find and train fast emulators for a wide range of applications while offering major improvements in terms of
accuracy compared with other techniques, even when the training data is limited. We call the presented
method Deep Emulator Network SEarch (DENSE).

DENSE is largely inspired by ProxylessNAS [10] which starts by defining the search space of neural
network architectures in a form of super-architecture. A super-architecture consists of multiple nodes where
the first node represents the simulation inputs and the last node the predicted simulation outputs. Each pair
of nodes is connected by multiple groups of operations. Each group consists of a set of operations, such as
1× 1 convolution, 3× 3 convolution, or similar. Most of the operations, such as convolution, contain sets of
trainable values that are commonly known as weights. In one forward calculation of the neural network (i.e.
predicting a set of outputs given some input), only one operation per group is chosen according to its
assigned probability. The probability of an operation being chosen is determined by a trainable value
associated with the operation, which we call the network variable.

The super-architecture used in this work is shown in figure 1. In every group in the super-architecture,
there are convolutional layers with different kernel sizes and a zero layer that multiplies the input with zero.
The option of having a zero layer and multiple convolutional layers enables the algorithm to choose the
appropriate architecture complexity for a given problem. The super-architecture also contains skip
connections [11] (i.e. identity layers) to make it easier to train.

The super-architecture in figure 1 can be adapted to different output dimensions, including scalar
outputs (0D), 1D function outputs, 2D images, or 3D profiles, subject to the memory availability. The
adaptation can be done by choosing the appropriate convolution and transposed convolution operators. For
example, if the outputs are 2D images, then 2D convolutions are chosen.

Test cases with 0D outputs are special in that the convolution operators become standard linear
operators—matrix multiplication. Although the difference between various sizes of convolutional layers is no
longer present, the zero layers in the super-architecture can still provide options for the super-architecture to
choose lower-complexity architectures.

Training the neural network involves two update steps. In the first step, an operation for each group is
chosen according to its probability, forming one possible architecture. The weights, w, of the selected
operations are then updated to minimize the expected value of a defined loss function, L, between the
predicted simulation output and the actual simulation output,

w← w−α1 ∇wEa∼A(b) [L(w|Xt,yt,a)] , (1)

where α1 is the update step size, Xt and yt are the input and output from the training dataset, a is an
architecture sampled from the super-architectureA(b) according to the network variables, b. Randomly
choosing an operation in each group acts as a regularization during the training process, which can minimize
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Table 1. Summary of test cases considered in this paper. The inputs to all simulations are all 0D (scalars). The number of datasets for
relatively fast simulations is capped to 14 000 for convenience. For slower simulations the size of the dataset is limited by time and
resource constraints.

No. Test case # Inputs # Outputs Output type # Dataset Avg. simulation running time

1 XRTS 3 1 1D (250 points) 14 000 15 s
2 OTS 5 1 1D (250 points) 14 000 15 s
3 XES 10 1 1D (250 points) 14 000 20 min
4 ELMs 14 10 1D (250 points) 14 000 15 min
5 Halo 5 1 1D (250 points) 14 000 5 s
6 ICF JAG 5 4 2D (64× 64) 10 000 30 s
7 ICF JAG Scalars 5 15 0D (scalar) 10 000 30 s
8 SeisTomo 13 1 1D (250 points) 6100 2 h
9 MOPS 6 45 2D (128× 64) 410 144 CPU-hours
10 GCM 3 12 2D (192× 96) 39 1150 CPU-hours

overfitting. The loss function in this paper is defined as the Huber loss function [12] to minimize the effect of
outlier data and increase robustness.

The second update step involves evaluating the performance of various sampled architectures on the
validation dataset, which is different from the training dataset employed in the first step. The performance of
an architecture can be evaluated based on the loss function, inference time, power consumption, or some
other combination of relevant criteria. The architectures are then ranked based on their performance and
they are given rewards according to their rank. The network variables, b, are updated to increase the
probability of the high-ranked architectures and decrease the probability of the low-ranked architectures.
Formally, the update can be written as [13],

b← b+α2 Ea∼A(b) (Ra∇b log [π(a|b)]) , (2)

where α2 is the update step size,Ra is the reward value given to the architecture a based on its rank, and the
function π(a|b) is the likelihood of the architecture a being chosen given the network variables b.

In this case, we ranked the architectures based on the Huber loss [12] on the validation dataset and gave
the rewards to follow the zero-mean ranking function in CMA-ES [14]. The use of a zero-mean ranking
function reduces the update variance and makes the update step scale-invariant, increasing the robustness of
the algorithm.

2. Results

The combined update steps from equations (1) and (2), and the use of a ranking function in assigning
rewards, make DENSE a robust algorithm to simultaneously learn the weights and find the right architecture
for a given problem. To illustrate this, we apply the method to ten distinct scientific simulation cases:
inelastic x-ray Thomson scattering (XRTS) in high-energy-density physics [2, 15], optical Thomson
scattering (OTS) in laboratory astrophysics [16], tokamak edge-localised modes diagnostics (ELMs) in
fusion energy science [3], x-ray emission spectroscopy (XES) in plasmas [17, 18], galaxy halo occupation
distribution modelling (Halo) in astrophysics [19], seismic tomography of the Shatsky Rise oceanic plateau
(SeisTomo) [20], global aerosol-climate modelling using a general circulation model (GCM) in climate
science [21], oceanic pelagic stoichiometry modelling (MOPS) in biogeochemistry [22], and neutron
imaging (ICF JAG) and scalar measurements (ICF JAG Scalars) in inertial confinement fusion
experiments [23].

The tested simulations have ranging numbers of scalar input parameters from 3 to 14, and span outputs
from 0D (scalars) to multiple 2D signals (images). Datasets for simulations that run in less than 1 CPU-hour
were generated by running them 14 000 times with random sets of inputs. For more expensive simulations,
the number of generated dataset is limited by the time and resources available (see table 1 for more detailed
information). Each dataset is divided into three parts: 50% is used as the training dataset, 21% for validation,
and 29% as the test dataset. The test dataset was used only to present the results in this paper, never to build
the models. The hyperparameters (including the depth and width of the super-architecture) were obtained
by optimizing the result for OTS with CMA-ES [14, 24], and then used for the other cases without further
tuning.

2.1. Emulator results
The example outputs of the trained emulators with DENSE for some cases are shown in figure 2. The outputs
for other cases can be seen in figure 7. We see that the output of the emulators generally matches closely the
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Figure 2. Original simulations (a) and (d) compared with outputs from their DENSE emulators (b) and (e) on a representative
example from the test dataset. The relative differences are shown in (c) and (f). Outputs from the remaining eight cases are given
in the methods section in figure 7.

Figure 3. (a) The ratio between the loss function obtained by DENSE emulators and the best loss function found by non-deep
learning methods and a manually-designed deep neural network. (b) The achieved speed up of the emulators using a GPU
compared with the original simulations.

output of the actual simulations, even in MOPS and GCM where only 410 and 39 data points are available.
When only a limited number of data is available, the choice of model architectures that give the right priors
become important. Complex model architectures with bad priors could still fit the sampled training data,
but are likely to overfit, giving bad accuracy on the out-of-samples data.

With DENSE, the model architecture that gives a good prior on the problem is automatically searched for
by preferring models that can fit well the out-of-samples data (i.e. the validation dataset). Moreover,
randomly choosing an operation in every layer acts as a regularizer in updating the weights during the
training to minimize overfitting. These two advantages make DENSE suitable for learning to emulate a wide
range of simulations including expensive ones where only a limited number of datasets can be generated.

While the simulations presented typically run in minutes to days, the DENSE emulators can process
multiple sets of input parameters in milliseconds to a few seconds with one CPU core, or even faster when
using a GPU card. For the GCM simulation which takes about 1150 CPU-hours to run, the emulator
speedup is a factor of 110 million on a like-for-like basis, and over 2 billion with a GPU card. The speed up
achieved by DENSE emulators for each test case is shown in figure 3(b).

Compared with other non-deep learning techniques usually employed in building emulators [25], the
models found and trained by DENSE achieved the best results in all tested cases, and in most cases by a
significant margin. The DENSE model also performs better than an emulator designed specifically for ICF
JAG simulation [26] (i.e. CycleGAN in figure 1 of the supplementary material (available online at
stacks.iop.org/MLST/3/015013/mmedia)). As seen in figure 3(a), the emulators built by DENSE achieved a
loss function up to 14 times lower than the best performing non-deep learning model.

We also compared DENSE with a manually-designed deep neural network model by an architecture from
the super-architecture in figure 1, where all the convolutional layers have size 3. The use of kernel size 3 and
skip connections follows the idea of ResNet [11]. As with DENSE, the hyperparameters for
manually-designed deep neural network were tuned to optimize its result for OTS.

Shown in figure 3(a) is the comparison between DENSE emulators and manually-designed deep neural
network. Although in most cases their performances are similar, in some cases DENSE emulators can give a
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Figure 4. Histograms of the relative retrieval errors in solving the inverse problem with noisy data for the XRTS (a) and Halo
(b) test cases. Retrieval conducted using the full simulations is shown in blue, and the retrieval using DENSE emulators in orange.
Median values of the distributions are shown with the dashed lines.

considerable improvement in terms of loss function, as can be seen in Halo and MOPS. This illustrates the
robustness of DENSE emulators in a wide range of cases.

2.2. Emulators for inverse problems
The high fidelity emulators built by DENSE are sufficiently accurate to allow us to substitute simulations
even for more advanced tasks such as solving the inverse problem [27]. To illustrate this, we took a simulated
output signal randomly from the test dataset where the actual parameters are known. A small noise (∼1%)
was added to the chosen signal to closely mimic a real observed signal from an experiment. Using this signal,
we use an optimization algorithm [28] to retrieve the input parameters by minimizing the error between the
sample signal and the output of the emulators, which we call it the retrieval error.

The results of the parameter retrieval using the emulators are compared with the retrieval using the
simulations in figure 4, where we plot the relative retrieval error histograms for two cases. We observe that
the relative retrieval errors from the emulators are very similar to those from the simulations.

Without much loss in accuracy, the parameter retrieval with the emulators only takes about 800 ms with
a single GPU card. This is to be compared with using the actual simulations which could take up to 2 d (XES)
even when using 32 CPU cores. As the parameters can be retrieved in less than one second rather than in
hours or days, one can envisage employing this technique for online diagnostics, real-time data
interpretation, or even on-the-fly intelligent automation with an accuracy comparable to high-fidelity
simulations that are by far too computationally expensive to be used directly. The use of DENSE emulators
also enables parameter retrieval with resource-intensive simulations, such as MOPS and GCM, that were too
expensive before.

In addition to interpreting signals and parameter retrieval, the emulators can also be used to significantly
speed up Bayesian uncertainty quantification [27]. Bayesian uncertainty quantification is usually done by
constructing Bayesian posterior distribution using Markov Chain Monte Carlo (MCMC) algorithms.
However, the cost of running MCMC to collect sufficient samples from the Bayesian posterior distribution is
typically much larger than the cost for parameter retrieval, and is often intractable in practice. Here we
perform the Bayesian posterior sampling using an ensemble MCMC algorithm [29] with the same
conditions as in [27]. In short, we collect all parameters sets that produce spectra that lie in a certain band
around a central spectrum.

Figure 5 compares the results of sampling the posterior distribution using simulations and emulators in
two cases to interpret scattering and spectroscopy data. The posterior distribution sampled by the emulators
are very similar to those by actual simulations, and we see that the emulators are well-suited to capture the
correlations between parameters. However, note that while collecting 200 000 XES samples via simulations
takes over 22 d, the sampling process with the emulators was completed in just a few seconds. Interestingly,
building the emulator for XES from scratch only needs some 14 000 samples plus 8 h for training, so the
whole pipeline to build the emulator and use it for MCMC is still considerably faster than directly collecting
200 000 samples using the original simulation.

2.3. Prediction uncertainty
A final important advantage of building emulators with DENSE is the availability of an intrinsic estimator of
the emulator’s prediction uncertainty. The randomization of network architectures from the
super-architecture can be seen as a special case of dropout [30]. Thus, by adapting the theory of prediction
uncertainty with Monte Carlo (MC) dropout by [31], we can show that DENSE emulators can produce the
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Figure 5. Comparison of results of Bayesian posterior sampling when applied using simulations and emulators in solving inverse
problems. Histograms for the posterior distributions are shown for three retrieved parameters in the XES (a) and XRTS (b) cases.
The parameter posterior distribution scatter plots are shown in panels (c), (d) for the simulations, and (e), (f) for the DENSE
emulators.

Figure 6. Emulator prediction uncertainties: comparison of DENSE emulator predictions with outputs from simulations for 2D
(ICF JAG) and 1D models (Halo, ELMs, and XRTS). The orange lines in Halo, ELMs, and XRTS resemble the distribution of the
emulators outputs while the green lines are the output from the simulations.

uncertainty of their outputs. The expected value and variance of a DENSE emulator prediction can be
obtained by

E(y|x) = Ea∼A(b) (y|x,a)
Var(y|x) = Vara∼A(b) (y|x,a) , (3)

where a is the architecture sampled from the super-architectureA based on the final values of the network
parameters, b. Figure 6 shows the prediction uncertainty of the DENSE emulators for some cases, illustrating
regions where they are either uncertain or confident in their predictions. The prediction uncertainty for
other cases can be seen in figure 8.

As also observed in MC dropout [32], the prediction uncertainty in this case can be smaller than the
difference between the predicted and simulated output, indicating an overconfident prediction. This
problem of overconfidence can be resolved by stopping the training of network variables early. The
investigation of prediction uncertainty tuning will be the subject of future work.

3. Discussions

3.1. Limitations
Although DENSE has the capability of emulating a wide range of simulations, it is still limited to simulations
with a few scalar inputs. The DENSE algorithm has not been tested on building emulators with one, two, or
three-dimensional direct inputs. One way to fit a simulation with multi-dimensional inputs to DENSE is by
parameterizing the inputs using several scalar parameters (as done in ELMs) or employing a dimensionality
reduction techniques [33].

Another limitation observed in DENSE is that it does not learn very well in regions where output
variability is high, i.e. where changing the input parameters slightly changes the outputs significantly. This
limitation is also observed in other cases of deep learning [34]. Due to the difficulty in learning, regions with
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Figure 7. (a)–(i) Examples of emulator outputs compared with the simulation outputs for the remaining test cases not shown on
figure 2 (i.e. ICF JAG, Halo, XES, ELMs, OTS, SeisTomo, and XRTS).

Figure 8. Examples of emulator uncertainties for test cases not shown in figure 6 (i.e. ICF JAG, Halo, XRTS, GCM, MOPS, OTS,
XES, SeisTomo). The orange lines in 1D simulations resemble the distribution of the emulators outputs while the green lines are
the outputs from the simulations.

high variability tend to require more samples than regions with low variability. This problem can thus be
overcome by sampling the parameter space intelligently [35].

3.2. Applications
Our DENSE approach opens up numerous applications that require fast calculations. One of the main
applications of DENSE emulators is real-time diagnostics of complex systems. For research in some fields,
such as in plasma physics, diagnostics are usually done by solving an inverse problem using simulations,
which involves running the simulations hundreds of times or more. By using the fast emulators instead of
simulations, solving the inverse problem could be significantly accelerated without sacrificing the quality of
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the solutions, as shown in section 2.2. Real-time diagnostics are the key in automating operations of some
machines with complex systems, such as tokamaks [36] and particle accelerators [37].

Another application is the optimization of a very expensive simulations where the simulations can only
be executed a few times. The emulators can be used to make high-quality guesses about the optimum
parameters which can then be tested using the expensive simulations. This idea of utilizing a cheap model for
expensive simulation optimization has been used in surrogate-model optimization [38] and Bayesian
optimization [39]. By using a more accurate cheap model, such as DENSE emulators, the number of
simulations to be executed can be much lower than in previous approaches. This is a potential avenue for
future works.

4. Conclusions

We have shown that DENSE, a method based on neural architecture search, can be used to robustly build fast
and accurate emulators for various types of scientific simulations even with limited training data. The
capability of DENSE to accurately emulate simulations with limited data makes the acceleration of very
expensive simulations possible. With the achieved acceleration of up to 2 billion times, DENSE emulators
enable tasks that were impossible before, such as real-time simulation-based diagnostics, uncertainty
quantification, and extensive parameters exploration. This large acceleration in solving inverse problems
removes the barriers of using high fidelity simulations in real-time measurements, opening up new types of
online diagnostics in the future. The wide range of successful test cases presented here shows the generality of
the method in speeding up simulations, enabling rapid idea testing and accelerating new discovery across the
sciences and engineering.

5. Methods

5.1. Test cases
Here we provide a description of the test cases employed in the paper. A summary of the test case parameters
is given in table 1. All 1D simulation outputs are sampled to 250 points for convenience.

5.1.1. X-ray Thomson scattering (XRTS)
XRTS is a technique widely used in high-energy-density physics to extract plasma temperatures and densities
by measuring the spectrum of an inelastically scattered x-ray pulse [2, 40]. The spectrum of the scattered
light can be calculated from a set of plasma conditions and the scattering geometry [15]; this forms the
simulation on which our emulator is based.

In this paper we consider the specific experimental case presented in [2] where three parameters
(temperature, ionization, and density) are to be retrieved from a spectrum of x-rays scattered at a 90-degree
angle from a shock-compressed Beryllium plasma. The high-speed emulator for XRTS enables fast solutions
to the inverse problem and access to statistical information on the intrinsic uncertainty of the experiment,
allowing better control of the experimental optimization and information extraction.

5.1.2. Optical Thomson scattering (OTS)
OTS is conceptually similar to XRTS except that it uses optical light instead of x-rays. Optical Thomson
scattering is used in measuring electrons and ions temperatures and densities, as well as the flow speed of the
plasma using the Doppler shift [16].

Here we considered retrieving five physical parameters (electron and ion temperatures, electron density,
ionization, and flow speed) from a normalized scattered spectrum. The impact of building an emulator for
OTS is similar to XRTS as it enables access to real-time data interpretation and to uncertainty quantification.

5.1.3. X-ray emission spectroscopy (XES)
X-ray emission spectroscopy is a general technique to probe a system by measuring the emitted spectrum
and matching it with simulations or theoretical models. In this paper, we consider the diagnostic case of a
laser-driven implosion experiment at the National Ignition Facility [17], using the spectroscopic model
based on the CRETIN atomic kinetics code described in detail in [18].

5.1.4. Edge-localized modes (ELMs) diagnostics
ELMs are magnetohydrodynamic instabilities that occur in magnetically confined fusion plasmas with high
confinement [41]. ELMs are explosive events and cause detrimental heat and particle loads on the plasma
facing components of a tokamak. Various diagnostics are implemented to track ELMs [42]. Here, we
compare the emulator to the predictive model [43] for the temporal evolution of the electron density profile
using the transport code ASTRA [44].

8
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The 14 input parameters in this case describe the diffusion, convective velocity, and particle source
profiles [45] as a function of toroidal radial position and time. The output observable is the time-dependent
electron density as a function of toroidal radial position.

5.1.5. Galaxy halo occupation distribution modelling (Halo)
Here we considered simulations of the angular-scale correlation of a galaxy population. The simulation
software Halomod [46] was used to calculate the correlation function, angular scales, redshifts and the
cosmological model as described in [19]. The input parameters used in this simulation follows the
parameters described in [47]. Fast parameter retrieval is of particular interest here as often researchers are
interested in extracting parameters for multiple different galaxy populations.

5.1.6. JAG model for inertial confinement fusion (ICF JAG)
JAG simulates the observables from an inertial confinement fusion experiment [23]. There are five input
parameters in the case considered here. One simulation with five input parameters produces four
two-dimensional images and 15 scalar values. Constructing fast and accurate emulators of the model allows
for a more efficient exploration of the parameters space, and to obtain optimum sets of parameters more
efficiently.

5.1.7. Shatsky Rise seismic tomography (SeisTomo)
The case considered here is the seismic tomographic inversion problem of the Shatsky Rise oceanic
plateau [20]. Given the input parameters that describe the initial velocity profile and regularization in the
optimization, the software solves for the velocity structure and the crustal thicknesses as a function of
position in the Shatsky Rise that matches the seismic reflection data. Performing uncertainty quantification
of the tomographic inversion would require the execution of the software hundreds of thousand times which
is very expensive without a fast emulator model.

5.1.8. Global aerosol-climate modelling (GCM)
The model considered here is ECHAM-HAM [21] which calculates the distribution and evolution of both
internally and externally mixed aerosol species in the atmosphere and their affect on both radiation and cloud
processes. The model simulates the aerosol absorption optical depth as the observable for every month in a
year. The model receives three input parameters which are (a) a scaling of the emissions flux of Black Carbon
(BC; the main absorbing aerosol species), (b) a scaling on the removal rate of BC through wet deposition,
and (c) a scaling of the imaginary refractive index of BC (which determines it is absorptivity) between 0.2
and 0.8. All of these factors contribute to the different absorption aerosol optical depths we emulate.

The cost of running the model for one year (including three months of spin-up) is about 1150
CPU-hours which is prohibitively expensive when generating thousands of training data points.
However, we have shown that an accurate emulator over three parameters can be built with as few as 39 data
points.

5.1.9. The model of oceanic pelagic stoichiometry (MOPS)
The MOPS is a global ocean biogeochemical model [48] that simulates the cycling of nutrients (i.e.
phosphorus, nitrogen), phytoplankton, zooplankton, dissolved oxygen and dissolved inorganic carbon.
MOPS is coupled to the transport matrix method (TMM), a computational framework for efficient
advective-diffusive transport of ocean biogeochemical tracers [22, 49]. In this study we use monthly mean
transport matrices derived from a configuration of MITgcm [50] with a horizontal resolution of 2.8◦ and 15
vertical levels. There are 6 MOPS input parameters considered in this case, whose definitions and ranges are
described in an optimization study by [51]. Each simulation involves integrating the model for 3000 years to
a steady state starting from a uniform spatial distribution of tracers. Annual mean 3D fields of oxygen,
phosphorus, and nitrate at the end of the simulation are used for training. All code and relevant data used for
the simulations are freely available [49].

5.2. Super-architecture
The super-architecture employed for most cases is shown in figure 1. It consists of two fully connected layers
at the beginning, followed by combinations of different types of convolutional layers. Rectified Linear Units
are used as the nonlinearity. Most of the nodes contain 64 channels with a growing size of the signal from 4 to
250 at the end. For ICF JAG that has output signal of size 64× 64, the size written in figure 1 is capped at 64.

After the first two fully connected layers, each pair of adjacent nodes are connected by an identity layer
and a selection of multiple convolutional layers. The identity layers serve as the skip connection for each layer
which is always present in every sampled architecture. The member j in group i of layers is assigned a
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Table 2. List of hyperparameters used in training the emulators.

Hyperparameters For DENSE For manual design DNN Notes

nepochs 3000 3000 How many epochs
α1 3.06× 10−4 4.34× 10−3 Learning rate for weight update
m1 35 72 Size of minibatch in weight update
γ1 0.757 0.9913 Decaying multiplier for α1

s1 513 7 Apply the decay multiplier for α1 after this
many update steps

α2 4.88× 10−3 — Learning rate for architectural update
m2 142 — Size of minibatch in architectural update
γ2 0.701 — Decaying multiplier for α2

s2 918 — Apply the decay multiplier for α2 after this
many epochs

pval 2 1 Going through the validation dataset this
many times in one epoch

network parameters, bij, and the probability of member j being selected among the group is determined by
the softmax function,

pij =
expbij∑
k expbik

. (4)

Each group of layers consist of one zero layer which multiplies all the inputs to zero. This provides an
option for DENSE to remove the layer and make the neural network shallower.

For two nodes with different sizes, we added modified transposed convolutional layers in the group. In
the modified transposed convolutional layers, the signal is expanded just as in the normal transposed
convolutional layer, but the ‘holes’ are filled with a trainable constant instead of zeros. The convolutional
layers and identity layers between two nodes of different sizes operate by upsampling the previous node to
match the size of the target node using the nearest neighbor.

5.3. Hyperparameters
The list of hyperparameters used in the algorithm are given in table 2. The hyperparameters were chosen to
minimize the validation loss function for OTS using CMA-ES [14, 24]. The same hyperparameters were used
for all cases.

5.4. Other emulator builder methods
In training the emulators using non-deep learning methods, we employed the scikit-learn library [25] in
Python. We use the default parameters suggested in the library to build the emulators for all cases.

For models that can only predict a single output, an ensemble of models are trained to predict different
outputs in one simulation. For CycleGAN in the ICF JAG and ICF JAG Scalars cases, the model was trained
and obtained according to [23, 26].

5.5. Solving inverse problems with emulators
The parameter retrieval processes for XRTS and Halo to produce figure 4 were done using the CMA-ES [14]
algorithm with population size 32 and 1200 maximum function evaluations. Default parameters suggested in
[14]. were used. To give a fair results comparison, we used the same algorithm parameters and conditions in
parameter retrievals via simulations and emulators.

For the Bayesian posterior sampling process, we employed the affine-invariant ensemble MCMC
algorithm [29] with 256 walkers to collect 200 000 samples for XRTS and XES cases. The likelihood is
uniform when the generated spectrum lies in a given band and it is zero when it lies outside the band. The
band is 0.035 J keV−1 ster−1 in XES and 3.5% in XRTS as used in [27]. The justification of this form of
likelihood is also provided in the supplementary materials of [27].

5.6. Derivation of prediction uncertainty
The randomization of the network architecture can be seen as a special case of dropout. Therefore, the
derivation of the prediction uncertainty follows the derivation in Monte Carlo (MC) dropout very closely
[31].

Denote the input and output from the training dataset as X and Y respectively and write ω as the active
weights in the neural network. Given the training data, X and Y, the posterior distribution of the weights in
the neural network can be written as

10
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P(ω|X,Y) = P(Y|X,ω)P(ω)

Z
(5)

where Z is the normalization constant, P(Y|X,ω) is the likelihood of observing Y with weights ω, and P(ω)
is the prior distribution of the weights.

The posterior distribution of the weights are intractable, so we need to use variational inference in
making the approximation to the posterior distribution. Let the variational distribution takes the form of
Q(ω) where

ωij = wijzij, and (6)

zij ∼ Bernoulli[pij(bij)] (7)

where wij is the weights of layers j in group i, pij is the probability of being selected as a function of the
network variable, bij, as written in equation (4).

In order to get the best approximation of the posterior distribution P(ω|X,Y) withQ(ω), the
Kullback–Leibler (KL) divergence should be minimized. The KL divergence to be minimized can be
expressed as

KL=−
ˆ

Q(ω) log [P(Y|X,ω)]dω+KL [Q(ω)||P(ω)] . (8)

The integral on the first term on the right hand side can be approximated by drawing samples from
ωn ∼Q(ω) and performing the Monte Carlo integration on the negative log-likelihood,− log [P(Y|X,ωn)].

The second term on the right hand side is approximated to be
∑

ij
pijl
2 ||wij||

2 where l is the prior assumption
of the length scale of the distribution. We can take the prior assumption of small length scale to be able to
capture high variability region better and therefore making the second term small.

With various approximation above, the KL divergence in equation (8) to be minimized can be
expressed as

KL≈− 1

N

∑
n

log [P(Y|X,ωn)] . (9)

By defining the negative log likelihood as the Huber loss function, we obtain that minimizing the KL
divergence in the equation (9) is equivalent to minimizing the loss function in equations (1) and (2).
Therefore, the optimized parameters after the training can be used to approximate the posterior distribution
of the weights in the form ofQ(ω).
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