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Abstract

This paper uses an experimental method to estimate the variance of flowmeter errors (random errors or Type A errors), focusing 
on problems of detecting defects existing in sensors even with verysmall magnitudes. An inexpensive and simple but accurate test 
bed is shown, based on the detailed experimental estimation method submitted. Some of the difficulties and shortcomings of this 
estimation are highlighted and a simulation and a real estimation is given.
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1. Introduction

Many fault diagnosis methods have been developed in
the last few years. Recently, statistical methods have
developed rapidly and attracts many researchers. One of
these interesting methods, the generalized likelihood
ratio (GLR), introduced for the first time by Willsky
and Jones (1974) and then developed by Chafoux,
Aituche, and Wang (1994) and Men!endez, Biscarri, and
G !omez (1998), enables the detection of defects existing
on meters or sensors even with very small magnitudes.
However, in practice, the results of direct detection by
this method are not very satisfying when the variance of
errors (random errors or Type A errors) is not perfectly
known. In order to improve the test results, a method
for evaluating the variance of errors could be applied
previously.

The aim of this paper is to explore the use of a new
experimental method to estimate the variance of errors
in linear systems through the use of analytical redun-
dancy. This study is useful to perform an optimal flow
estimation and also allows us to monitor and improve
an on-line diagnosis of meters, keeping in mind that the
most detection methods, such as the GLR methods,
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assume as a preliminary hypothesis that the variance of
errors (random errors) is known. The theoretical results
are illustrated by means of two examples: a simulated
test, in Section 6, and a real test, in Section 7.
2. Measurement uncertainty

This paper agrees with the work by Abernethy
published in the US Air Force handbook on measure-
ment uncertainty (Abernethy et al., 1973). That work
was careful to divide error sources into two types: bias
(or systematic errors) and precision (or random errors).
Uncertainty variations are due to bias or/and precision
variations. This paper covers random errors on line
because they focus on a continuous estimation of
random uncertainties.

In this way, the first major error type considered is the
random error. Sources of random error will add a
component to the result which is unknown but, with
repeated measurements, changes in a random fashion.
The error component added to the second measurement
is uncorrelated to the one which was added to the first
measurement. This occurs in the same way with each
successive measurement. None of the components are
correlated.

Random error components are drawn from an error
distribution which is a Gaussian distribution or normal



distribution (ANSI/ASME PTC 19.1, 1985):

F ðX Þ ¼
1

a
ffiffiffiffiffiffi
2p

p e�ðX�mÞ2=2=s2 : ð1Þ

The term s describes the scatter in the X values of the
infinite population about its average, m: However, an
experimenter never has all the data in the infinite
population, but rather only a sample of n data points
with which to calculate the standard deviation. The
scatter in the data is characterized by the sample
standard deviation, SX : But S2

X is not always the
variance of error in X measurement. When the true
value of X ; noted Xtrue; is not a constant during the test,

S2
X ¼ S2

Xmeas�Xtrue
þ S2

Xtrue
; ð2Þ

where Xmeas is the measured value of X and ðXmeas �
XtrueÞ is the measurement error. The sample standard
deviation of measurement errors in X ; SXerror ; is only due
to the meter and it is defined by

SXerror ¼ SXmeas�Xtrue : ð3Þ

The main objective of all uncertainty analysis is to work
out SXerror to establish random error limits (random
uncertainty).

The fact is that systematic errors do not cause scatter
in the test results (they are not observable in the test
data). Coming up with an estimate of the magnitude for
a systematic uncertainty source is often difficult. ANSI/
ASME PTC (1985) provides five methods for obtaining
systematic uncertainties: the use of a calibration
standard, the use of independent methods to measure
the same thing,y . From the point of view of the
statistical data analysis, constant systematic errors
during the test are always assumed (EAL-R2, 1997).
Thus, these errors do not have any influence on variance
error estimation.
Fig. 1. Two meters in the same pipe.

Fig. 2. Three meters in the same pipe.
3. Flow optimal estimation by means of redundancy

A data reconciliation applied on a statistical process
defined by linear equations is the study principle for the
mass or energy flow measurements in a network. For
example, the technique of the reconciliation of data
named (FLow Optimal eStimation) (FLOS) (Men!endez
et al., 1998), based on the GLR method, enables one to
obtain a flow estimation in function of the slanted
measure. It requires some suppositions: unbiased errors,
not interrelated, with a known variance matrix half-
defined positive and with a determinist balance equation
set:

Qestimated ¼ ½HðHTRHÞ�1HTR�1�Qmeas; ð4Þ

where Qestimated is the vector of estimated flow in the
measurement network, Qmeas is the vector of measured
flow in the measurement network, H is the matrix of the
system incidence (resume node flow equation in a
distribution network) and R is the variance matrix.

In the example of Fig. 1, where jj symbolizes a
flowmeter, Q1 is the flow across flowmeter 1 and Q2 is
the flow across flowmeter 2, the FLOS algorithm allows
us to get the best estimate

Qestimated ¼
S2

Q2error
Q1meas þ S2

Q1error
Q2meas

S2
Q2error

þ S2
Q1error

: ð5Þ

However, before it is necessary to have knowledge of the
sample standard deviation of errors in meters, SQ1error

and SQ2error :
4. Random uncertainty estimation

The authors present a new method to obtain the
sample standard deviation of errors ðSQerror Þ: Taking up
again the network shown in Fig. 1, only the additional
cost of adding a new meter (Fig. 2) is required.

Experimentally, we can measure Q1; Q2 and Q3 with
errors which are independent. Standard deviation
differences between two redundant measurements are:

sD1;2 ¼ sðQ1meas�Q2measÞ ¼ ½ðsQ1error Þ
2 þ ðsQ2error Þ

2�1=2;

sD2;3 ¼ sðQ2meas�Q3measÞ ¼ ½ðsQ2error Þ
2 þ ðsQ3error Þ

2�1=2;

sD1;3 ¼ sðQ1meas�Q3measÞ ¼ ½ðsQ1errorÞ
2 þ ðsQ3errorÞ

2�1=2: ð6Þ

Even if the process varies, as long as the instruments are
observing the same process parameter at the same time,
their difference can be used to infer the standard
deviation of the three instruments. Thus, it can be
deduced that:

sQ1error ¼ ½0:5ðs2D1;2 þ s2D1;3 � s2D2;3Þ�
1=2;

sQ2error ¼ ½0:5ðs2D1;2 þ s2D2;3 � s2D1;3Þ�
1=2;

sQ3error ¼ ½0:5ðs2D1;3 þ s2D2;3 � s2D1;2Þ�
12: ð7Þ

Using a sample of measured flows, leads to an
estimation of sQ1; sQ2 and sQ3:

SQ1error ¼ ½0:5ðS2
D1;2 þ S2

D1;3 � S2
D2;3Þ�

12;

SQ2error ¼ ½0:5ðS2
D1;2 þ S2

D2;3 � S2
D1;3Þ�

1=2;

SQ3error ¼ ½0:5ðS2
D1;3 þ S2

D2;3 � S2
D1;2Þ�

1=2; ð8Þ



Table 1

Confidence intervals for the variance

Population variance Sample variance Confidence interval for s2

s2Q1error
S2

Q1error

1
2
ða12 þ a13 � b23Þ; 1

2
ðb12 þ b13 � a23Þ

� �
s2Q2error

Ss2Q2error

1
2
ða12 þ a23 � b13Þ; 1

2
ðb12 þ b23 � a13Þ

� �
s2Q3error

Ss2Q3error

1
2
ða13 þ a23 � b12Þ; 1

2
ðb13 þ b23 � a12Þ

� �
where

S2
Dp;q ¼

1

N � 1

XN

k¼1

½Qpk � Qqk � ðQp � QqÞ�2

for pq ¼ f12; 13; 23g;

Qjk is the kth measurement of Qj ðj ¼ 1; 2; 3Þ; Qj is the
average of Qj ðj ¼ 1; 2; 3Þ and N is the number of data
being averaged.
Fig. 3. Simulated aleatory sample.
5. Confidence intervals for the estimated standard

deviation

A statistical supplementary analysis allows us to infer
the confidence interval of sQ1error ; sQ2error and sQ3error for
a fixed level of confidence.

It may be assumed that Dp; q ¼ Qp � Qq follows a
Gaussian distribution of error, with standard deviation
sDp;q ¼ sðQp�QqÞ ¼ ðs2Qp

þ s2Qq
Þ1=2 and mean m;

Dp; qBNðm;sDp;qÞ: ð9Þ

Thus, it may be deduced that:
½ðN � 1ÞðSDp;qÞ

2�=ðsDp;qÞ
2 follows a chi-square distribu-

tion with n ¼ N � 1 degrees of freedom,

ðN � 1ÞðSDp;qÞ
2

ðsDp;qÞ
2

Bw2N�1; ð10Þ

where N is the number of data points with which to
calculate SDp;q; and w2N�1 denotes a chi-square variable
with N � 1 degrees of freedom.

Therefore,

P w21�a=2;N�1p
ðN � 1ÞS2

Dp;q

s2Dp;q

pw2a=2;N�1

" #
¼ 1� a; ð11Þ

where 1� a is the confidence coefficient and P½X �
symbolizes the probability of X ; w2a=2;N�1 is the upper
100a=2 per cent point, so P½w2N�1Xw2a=2;N�1� ¼ a=2; and
w21�a=2;N�1 is the lower 100a=2 per cent point, so
P½w2N�1Xw21�a=2;N�1� ¼ 1� a=2:

It is clear from this expression that

P½apqps2Dp;qpbpq� ¼ 1� a; ð12Þ
where

apq ¼
ðN � 1ÞS2

Dp;q

w2a=2;N�1

;

bpq ¼
ðN � 1ÞS2

Dp;q

w2
1�a=2;N�1

: ð13Þ

The cumulative distribution of w2N�1 is tabled in Pearson
and Hartley (1954). Confidence intervals for sQ1error ;
sQ2error and sQ3error may be obtained from Eqs. (7) and
(13). Table 1 gives the obtained results.

The probability that the confidence interval covers the
unknown parameter sQj ðj ¼ 1; 2; 3Þ is 100ð1� bÞ per
cent, with b ¼ 1� ð1� aÞ3:
6. Simulation

The simple network shown in Fig. 2 is considered in
the following. Here the new estimator (Eq. (7)) was
applied to a set of simulated flow measurements: Q1; Q2
and Q3 (Fig. 3).

Also presented in Fig. 3 is the simulated true value of
flow across the line, Qtrue: Note that it is always
unknown. This variable emphasizes that the variability
in Qj ðj ¼ 1; 2; 3Þ is due to variability in Qtrue plus the



Added systematic error ðm3Þ Added random error ðm3Þ

Qtrue zero zero

Q1 þ5 sQ1error ¼ 5

Q2 þ7 sQ2error ¼ 3

Q3 �3 sQ3error ¼ 2

Table 3

Results of the estimation process

Estimation of

the systematic

error ðm3)

Estimation of the

standard deviation of

errors ðm3Þ�

Estimation of

the standard

deviation of

measurements

ðm3Þ��

Qtrue zero zero zero

Q1 — 4.71 7.58

½3:74; 5:69�
Q2 — 3.26 7.56

½1:93; 4:51�
Q3 — 1.94 6.27

½0:00; 3:63�

� In brackets, the confidence interval for a level of confidence fixed

to 90%.
�� It is defined by

SQjmeas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðQjk � QjÞ

2

N � 1

s
j ¼ 1; 2; 3:

Fig. 4. Flowmeter and water meter test bed.

Table 2
Simulated flow and added errors
random error in meter j: If the measured variable cannot
be held constant, the random error of flowmeters are not
linearly dependent on the standard deviation of Qj

measurements.
Table 2 labels the simulated flow measurements.

Using this sample of data (Fig. 3), Table 3 shows the
estimation of standard deviation and confidence inter-
vals for a fixed confidence coefficient ð1� bÞ ¼ 0:90:
7. Industrial application: calibration test bed

An inexpensive, practical, simple and accurate flow-
meter calibration test bed is shown in Fig. 4. The test
bed is made up of a tank, a pump, almost three
flowmeters and a control valve. Liquid flowmeter
installations should be in an orientation which ensures
that the flowmeters remain full of liquid when a
measurement is desired. Also, the flow profile should
be predictable and not distorted. This is accomplished
by positioning a straight pipe upstream and downstream
of the flowmeters.

7.1. Test-bed considerations

The test bed presented has several advantages over the
self-validation scheme: a master flowmeter system
or a calibrated volumetric tank are not required, and
the flow during the test is not exactly known. It is just
necessary that sample standard deviations of errors
ðSQerror Þ are constant over a range of measured flows.

Test bed yield the totalized flow. Flowmeters are
commonly used to totalize flows, most often for
charging batches, for internal custody transfer and for
billing purposes. In custody transfer applications, flow
totalization provides the only basis for the cost of the
total fluid transfer. Pulse record is easily automated (by
a data-logger or a computer) and the installation
evaluates, without distinction, flowmeters and water
meters.

7.2. Standard 1
2

00
water meter installation

7.2.1. Water meter installation detail

To evaluate three domestic standard water meters
(C1, C2 and C3), a simple test bed is made (Fig. 5).

Water meters are designed and prepared for remote
reading and correspond to ISO 4064 standards, of class
B. This meter was tested and approved by the Spanish
Department of Weights and Measures. Limits on the
accuracy are set by the standards established for the
water industry by the ISO (Europe) and the American
Water Works Association (USA). The accuracy of the
meter is guaranteed by its manufacturer when it is
purchased by the water utility. Fig. 6 shows error
tolerance versus flow curve in the meter provided by our
manufacturer.

7.2.2. Experimental sample test

The experimental test has been made between Qt and
Qmax (2% zone). Figs. 7–9 show data samples.

The first assumption considered is that random errors
in C1, C2 and C3 are independent. That is why the
difference between two redundant measurements must
follow a Gaussian distribution of error. It is appropriate
to test this normality. A probability plot or a histogram
can help us to check it (Figs. 10–12).

A quantitative test for normality is the Kolmogorov–
Smirnov Statistical Test (Bowker & Lieberman, 1972).
This and other tests provide fine quantitative answers to
the question of normality. However, it is often more



Fig. 5. Experimental test bed.

Fig. 6. Error tolerance versus flow.

Fig. 7. C1 measurements.

Fig. 8. C2 measurements.
practical and instructive to use a more qualitative
technique such as probability plotting.

Now consider the data in Figs. 10–12. At first it
appears to be normally distributed. Average values
different from zero demonstrate low systematic errors
(bias). These errors are constant during the test and have
no influence on variance error estimation. Absolute
systematic error is not in the test data. If a significant
systematic uncertainty is detected, an additional sys-
tematic analysis will be necessary to ensure low global
uncertainty.



Fig. 10. Histogram of C1, C2 data.

Fig. 11. Histogram of C1–C3 data.

Fig. 12. Histogram of C2, C3 data.Fig. 9. C3 measurements.

Table 5

Maximum random error tolerance

Meter tolerance (l) Maximum random error tolerance (%)

C1 2.47 1.79

C2 2.35 1.72

C3 2.03 1.47

Table 4

Sample standard deviation of errors and confidence intervals

SXerror (l) Confidence intervals (l)

C1 1.24 ½1:04; 1:42�
C2 1.18 ½0:97; 1:36�
C3 1.01 ½0:76; 1:22�
7.2.3. Results

Thus, given this sample of data, Table 4 shows
estimated standard deviation of errors (SC1error ; SC2error

and SC3error ) and confidence intervals.
If Eqs. (14) and (15) are considered,

Meter tolerance ¼ t95;650SXerror ðlÞ ð14Þ

and

Maximum random error tolerance ð%Þ

¼ 100
Meter tolerance

%VCi

% ð15Þ

are the model of errors, where %VCi is the sample
average of Ci ði ¼ 1; 2; 3Þ: Table 5 presents the results
obtained.



All water meters tested comply with the manufac-
turer’s specification sheet.
8. Continuous monitoring and fault diagnosis

In order to discriminate normal and abnormal
behaviour, statistical confidence limits for each of the
measured variables must be calculated. Violations of
these limits are considered to be indicative of abnormal
behaviour (Gertler, 1998; Xun Wang, Uwe Kruger, &
Barry Lennox, 2003). The confidence limits relate
generally to the statistical properties of the process
variables and are defined typically in terms of the
percentage of data points which fall outside certain
thresholds in a given time interval.

Gallagher, Wise, Butler, White, and Barna (1997)
emphasized that most industrial processes are time-
variable and thus require an adaptative rather than a
fixed model. For the monitoring of such processes, it is
required that the model may be updated to accommo-
date for time-varying behaviour while still being able to
detect abnormal behaviour according to confidence
limits which may also have to vary with time.

Applications of this paper for industrial process
monitoring are based on a meter error estimation which
has been produced from the analysis of measured data
on the process and allows us to establish the limit of
abnormal behaviour. This application provides a con-
tinuous and easily monitored error estimation based on
measured data. Time- and flow-varying confidence
limits were set up.

Thus, from the point of view of stationary process
behaviour, this paper provides confidence limits varying
with flow (Fig. 6) and from a non-stationary point of
view, confidence limits which also vary with time,
because of ageing and small shifts.
9. Conclusions

The new method presented in this paper allows us to
deduce the variance of errors (random uncertainty or
Type A) in flowmeters Q1; Q2 and Q3 (Fig. 2) from a
sample of data with random and systematic errors. This
result can be extended to the other flowmeters in a
branched or multibranched line.
Random uncertainties make it possible to perform a
flow optimal estimation. Also, the study can be used as a
useful tool for:

* Testing the meters.
* Preventive maintenance.
* Bearing wear and/or damage detection.

On the other hand, the added flowmeter (Q3 in Fig. 2)
should be accessible and may require some routine
service to minimize systematic error.
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