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Despite the industrial sector accounts for about a quarter of total final consumption worldwide and great
efforts have been carried out to reduce its energy use in the last decades, there are still substantial oppor-
tunities to improve industrial energy efficiency. Among those opportunities, energy management sys-
tems (EMSs) are one of the most successful and cost-effective ways to significantly reduce energy use,
energy costs and environmental impact without affecting production and quality. This paper describes
the development of an energy management system for a naphtha reforming plant by the use of a data
mining approach. The paper shows how these techniques have been applied to identify key influence
variables on energy consumption and to develop an energy performance model of the plant. Energy base-
line and energy targets have been derived for the assessment of achieved and potential energy savings.
Plant results show how savings may be achieved after the implementation of the EMS by tracking and
adjusting performance against energy targets.
1. Introduction

Industry is a significant energy end-use sector comprising 27%
of the world’s total final consumption in 2009 [1]. Energy-intensive
industries (bulk chemicals, refining, paper products, iron and steel,
aluminum, food, glass, and cement) dominate industrial energy de-
mand, accounting for nearly two-thirds of industrial delivered en-
ergy consumption [2]. Additionally, worldwide projections on
industrial energy consumption predict a growing trend over the
next 25 years with an annual average rate of 1.5% [3]. However,
substantial opportunities to improve industrial energy efficiency
have been shown by the International Energy Agency (IEA) [4],
and much of this potential can be captured through policies for
the promotion of the implementation of energy management sys-
tems (EMSs). In this sense, the IEA has advised governments to re-
quire high energy-intensive industries to comply with ISO 50001
[5] or an equivalent energy management protocol.

Refining is a high-consuming industry, accounting for about 7%
of total energy consumption in US in 2002 [6]. A large variety of
opportunities exist within petroleum refineries to reduce energy
consumption while maintaining or enhancing productivity, as
clearly shown by competitive benchmarking data indicating that
most refineries can economically improve energy efficiency by
10–20% [7]. Particularly, implementing EMS is one of the most suc-
cessful and cost-effective ways to bring about energy efficiency
improvements.

Energy management aims to minimize energy costs and envi-
ronmental impact without affecting production and quality [8]
by the achievement of continuous improvement of energy perfor-
mance, energy efficiency and energy conservation. Energy perfor-
mance indicators (EPIs) should be identified to assess energy
performance and to subsequently evaluate progress towards objec-
tives and targets. Thus, measuring baseline performance, setting
goals and tracking performance against those goals are the key-
stones of every EMS [9].

Industrial patterns of energy use are complex, especially when
production rates are highly variable, when the product mix varies,
or when several interacting processes coexist at a single site. Re-
cently, the availability of massive performance data has increased
the interest in the application of data mining to industrial energy
management. Data mining is the process of extracting valid, new
and comprehensive information from massive data in order to im-
prove and optimize business decisions [10]. A multitude of meth-
ods are available for carrying out data mining procedures,
however, within the industrial field, they focus on process moni-
toring and control, soft sensors, expert systems, fault detection
and diagnosis [11]. Many industries have applied data mining by
the use of statistical methods [12–14] and neural networks or deci-
sion trees [15–19]. In the last decade, the research on crude distil-
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Fig. 1. Process flow diagram of the platforming unit.

Table 1
Annual energy consumption by energy source and unit.

Unit Energy source Equipment Energy use (GWh/year) Energy use (%)

RU Fuel gas Heater H3 62.8 27
Fuel gas Heater H4 68.5 29
Fuel gas Heater H5 25.9 11

DU Fuel gas Desbutanizer Heater H6 37.6 16
Med pres. steam Desbencenizer Boiler E20 25.5 11
Low pres. steam Despentanizer Boiler E13 12.9 6

Total 233.2

Fig. 2. Phases of a data mining project.
lation processes has put the focus on control and optimization.
Data mining has also been applied to predict quality of distillation
products [20,21] and to estimate the optimal operating conditions
of distillation process [22]. However, data mining has not been
used so far for the development of an EMS, despite energy manage-
ment has been identified as a priority for energy optimization in
refineries [23].

This paper presents the application of a data mining approach
to the definition, development and implementation of an EMS in
a naphtha reforming plant with the aim of assessing energy perfor-
mance and evaluating progress towards efficiency targets. The pa-
per shows the way to select the key influence variables for energy
performance, to identify the best performing periods in the past in
order to set energy performance targets for the future, and to de-
velop a baseline model. The main contribution of the paper is the
development of an EMS for a naphtha reforming plant that allows
measuring baseline performance, setting targets and tracking en-
ergy performance against those targets.
The paper starts with the description of the naphtha reforming
plant (Section 2) and the definition of EMS requirements (Sec-
tion 3). Then, in Section 4, the research methodology is presented.
Section 5 provides the main results of the application of the data
mining approach to the naphtha reforming plant. Finally, conclud-
ing remarks, benefits and limitations of the research are discussed.
2. Naphtha reforming plant

This section briefly describes the platforming unit and analyses
its energy structure in order to define the requirements for the
implementation of the EMS.

Catalytic reforming of heavy naphtha is a key process in the
production of gasoline. The major components of petroleum naph-
thas are paraffins, naphthenes, and aromatic hydrocarbons. The
aim of catalytic reforming is to transform naphthas hydrocarbons
with low octane to hydrocarbons with high octane. The chemical



Table 2
Data mining project objectives and requirements.

EMS phases DM phases DM objectives DM inputs

Plan Understanding – Understand process
– Analyse energy use
– Define energy performance indicator
– Identify PIV

– Process flow diagrams
– Historical energy data
– Other historical data

Processing – Obtain a suitable data set with EPI and PIV – Energy consumption data
– PIV data

Modeling – Obtain discriminant functions
– Identify KIV
– Classify external and controllable variables
– Obtain EPI regression models

– Suitable data set with EPI and PIV

Deployment – Obtain EPI targets
– Obtain EPI baseline

– Discriminant functions
– EPI regression models
– Actual measurement of KIV
– Past measurement of EPI and KIV

Check Deployment – Monitor actual EPI against targets
– Calculate achieved energy savings
– Calculate potential energy savings
– Calculate efficiency ratio

– Actual measurement of EPI
– EPI targets
– EPI baseline

Table 3
List of potential influence variables (PIVs).

ID Variables Unit Description

1 Tin_RX_V5 �C Input temperature reactor RX_V5
2 Tin_RX_V6 �C Input temperature reactor RX_V6
3 Tin_RX_V7 �C Input temperature reactor RX_V7
4 Tout_RX_V5 �C Output temperature reactor RX_V5
5 Tout_RX_V6 �C Output temperature reactor RX_V6
6 Tout_RX_V7 �C Output temperature reactor RX_V7
7 P_PP_V8 bar Pressure in separator PP_V8
8 RGD kg/Nm3 Recycle gas density (P_PP_V8)
9 PU_load m3/h Input stream to the platforming unit.

10 LPG Aromax m3/h Input stream from Aromax unit to debutanizer
11 WAIT �C This variable of the RU explain the catalyst degradation
12 F_PP-V8 m3/h Output stream from separator PP_V8 to debutanizer
13 F_PP_V11 m3/h Input stream to debutanizer
14 FL_PG GAS m3/h Gas fraction of the top flow of debutanizer
15 FL_PG LIQ m3/h Liquid fraction of the top flow of debutanizer
16 FG_H3 m3/h Fuel gas consumption in heater H3
17 FG_H4 m3/h Fuel gas consumption in heater H4
18 FG_H5 m3/h Fuel gas consumption in heater H5
19 FG_H6 m3/h Fuel gas consumption in heater H6
20 VM_E16 kg/h Low pressure steam consumption in reboiler E16
21 DEBE_load m3/h Bottom stream of debutanizer
22 DEBE_Top flow m3/h Gas fraction of the top flow of debenzenizer
23 DEBE_Bottom flow1 m3/h Liquid fraction of the bottom flow of debenzenizer to YT_135
24 DEBE_Bottom flow2 m3/h Liquid fraction of the bottom flow of debenzenizer to gasolines
25 VM_E20 kg/h Medium pressure steam consumption in reboiler E20
26 DEPE_Top flow m3/h Gas fraction of the top flow of depentenizer
27 DEPE_Bottom flow m3/h Liquid fraction of the bottom flow of depentenizer
28 VM_E13 kg/h Medium pressure steam consumption in the reboiler E13
29 RR debuta Reflux ratio: debutanizer’s top stream/liquid return to the column
30 RR debenze Reflux ratio of debenzenizer
31 RR depenta Reflux ratio of depentenizer
32 P_V13 Bar Pressure operation of debenzenizer
33 T_top_V13 �C Top gases output temperature of the debenzenizer
34 T_bottom_V13 �C Bottom liquid output temperature of the debenzenizer
35 P_V11 Bar Pressure operation of debutanizar
36 T_top_V11 �C Top gases output temperature of the debutanizer
37 T_bottom_V11 �C Bottom liquid output temperature of the debutanizer
38 P_V12 Bar Pressure operation of depentenizer
39 T_top_V12 �C Top gases output temperature of the depentenizer
40 T_bottom_V12 �C Bottom liquid output temperature of the depentenizer
41 DT_total �C Global Delta T in reactor
42 T ambient �C Ambient temperature
43 DT_RX_V5 �C Delta T in PP_V5 reactor
44 DT_RX_V6 �C Delta T in PP_V6 reactor
45 DT_RX_V7 �C Delta T in PP_V7 reactor
reactions that lead to these changes are guided by a catalyst under
well-defined operating conditions [24].
Naphtha reforming plants are composed of different operating
units to separate fractions and improve their quality. In particu-



Fig. 3. Location of the potential influence variables in the platforming unit.

Table 4
Categorization of the energy performance indicators (EPIs).

Concept hierarchies EPI discrete value SCPU (kWh/m3) SCRU (kWh/m3) SCDU (kWh/m3)

Very low �2 <405 <281 <114
Low �1 405 6 x < 462 281 6 x < 328 114 6 x < 129
Normal 0 462 6 x 6 576 328 6 x 6 423 129 6 x 6 158
High 1 576 < x 6 633 423 < x 6 470 158 < x 6 172
Very high 2 x > 633 x > 470 x > 172
lar, this research focuses on the platforming unit (PU). A process
flow diagram of the PU is presented in Fig. 1. The unit might be
divided into the reaction unit (RU), where the catalytic reforming
is carried out, and the distillation unit (DU). The RU consists of
three adiabatic reactors (RX V5, RX V6 and RX V7) in series with
intermediate heaters (H3, H4 and H5) through which naphtha is
converted to high-octane aromatics and others hydrocarbons.
Then, the stream enters the product separator (PPV8) where flash
separation of hydrogen and some light hydrocarbons is carried
out. The desired reformate is then pumped to the DU where
high-octane aromatics are separated of light hydrocarbons traces.
Separation of products is made in three distillation columns:
debutanizer, debencenizer and depentanizer. The first column is
fed with the liquid flow from the RU and a stream of aromatic
LPG from other refinery processes. Basic products are butane to
Table 5
Description and classification of key influence variables of SCPU.

ID KIV

8 Recycle gas density (P_PP_V8)
9 Input Stream to the Platforming unit

10 Input stream from Aromax unit to debutanizer
16 Fuel gas consumption in heater PP_H3
17 Fuel gas consumption in heater PP_H4
18 Fuel gas consumption in heater PP_H5
19 Fuel gas consumption in heater PP_H6
25 Medium pressure steam consumption in the debenzenize
29 Reflux ratio: debutanizer’s top stream/liquid return to th
30 Reflux ratio of debenzenizer
32 Pressure operation of debenzenizer
42 Ambient temperature
43 Delta T in PP_V5 reactor
45 Delta T in PP_V7 reactor
the top and platformed stream (rich in aromatics with high oc-
tane) to the bottom. Platformed stream is fed to the debencenizer
to obtain hydrocarbon C5–C6 to the top, which is fed to depent-
anizer, and heavy hydrocarbon to the bottom. Finally, the desired
products of depentanizer are toluene and benzene to the bottom.
The bottom product of the debencenizer and the top product of
debutanizer and depentanizer are stored up or sent to other units
of the refinery.

Table 1 shows annual energy consumption by energy source
(Fuel gas, medium pressure steam and low pressure steam) and
by unit (Reaction and Platforming). Fuel gas is consumed in the
reactors and desbutanizer heater while steam is used in desbence-
nizer and despentanizer boilers. The major energy consumers are
the three reactors and the debutanizer column. Annual energy
costs of the platforming unit are around 10.9 M€.
Units Type

kg/Nm3 External
m3/h External
m3/h External
m3/h Controllable
m3/h Controllable
m3/h Controllable
m3/h Controllable

r kg/h Controllable
e column – Controllable

– Controllable
Bar Controllable
�C External
�C External
�C External



Fig. 4. Specific consumption of the PU (SCPU) versus discriminant function (F1).

Fig. 5. Example of management report, showing hourly progress of current and
target SCPU.
The energy consumption of the plant in 2009 was 233.1 GWh,
67% in the RU and the remaining 33% in the DU.
3. EMS requirements

The aim of an EMS is to achieve continual improvement of en-
ergy performance, energy efficiency and energy conservation. Most
energy management systems are based on the Plan-Do-Check-Act
(PDCA) continual improvement framework [25,26]. ‘Plan’ phase
aims to set the objectives and targets to deliver results in accor-
dance with the opportunities to improve energy performance and
the energy policy of the organization. ‘Do’ means implementing
the plan. In the ‘check’ phase, energy performance is monitored
and measured to assess plant energy performance and to evaluate
progress towards targets. Finally, during the ‘act’ phase, corrective
and preventive actions are identified and implemented in order to
guarantee the accomplishment of the objectives.

This paper presents the application of a data mining approach
to the Plan-Do-Check phases of an EMS. The specific requirements
of these phases are described below.
3.1. Planning the EMS

Our planning of the EMS aims to define the energy performance
indicators and to set energy targets and energy baseline. EPI are
quantitative indices to assess, monitor and measure energy perfor-
mance. Energy targets are detailed energy performance objectives
to be reached and energy baseline is a quantitative reference for
comparison of energy performance.

First of all, energy performance indicators must be defined. EPI
generally refer to specific consumption and may combine energy
sources associated with a particular process. However, in some
processes the use of energy sources may not be closely related,
and individual EPI for each source may provide a clearer picture
of performance. Anyway, there is no EPI that can be applied in
every situation and appropriate indicators have to be defined on
a case by case basis [27].

Once EPI have been defined, a target for each EPI must be set. To
ensure accurate monitoring of EPI with continuous operational
improvement, we propose to set targets using best practices. A best
practice target identifies what a process or plant could achieve if it
would be best operated according actual conditions. These targets
can be set through the best value of the EPI that the process has
achieved in the past.

In addition to setting targets for continuous operational
improvement, the EMS must clearly show that actions taken to re-
duce energy use have been successful to justify ongoing invest-
ment, to validate energy-saving decisions, and to demonstrate
that improvements have been achieved. However, energy savings
cannot be directly measured, but are to be calculated from a com-
parison of the energy baseline with the post implementation en-
ergy consumption [28]. The energy baseline is the energy
consumption that would have occurred if no direct measures had
been taken to influence energy consumption [29] and it should
be defined before implementing any energy efficiency projects.
We propose the use of a predictive model to set a baseline based
on actual conditions to obtain reliable energy savings.

3.2. Checking the EMS

In the checking phase, EPI must be regularly measured and
monitored against targets and baseline to assess record and report
energy-savings. Achieved energy savings are calculated by com-
paring baseline with current performance (Eq. (1)), while potential
savings are the difference between baseline and target energy con-
sumptions (Eq. (2)). Then, the efficiency ratio (Eq. (3)) could be a
measure of the success in achieving potential energy savings.

Achieved sav ings ¼ Baseline consumption

� Actual consumption ð1Þ

Potential savings ¼ Baseline consumption

� Target consumption ð2Þ

Efficiency ratio ¼ Achieved sav ings
Potential sav ings

ð3Þ
4. Methodology

Data mining (DM) is a hybrid discipline that integrates technol-
ogies of databases, statistics, machine learning, signal processing
and high performance computing. It is helpful to analyze, under-
stand or even visualize massive data gathered from business and
scientific applications [30]. A systematic approach is required to
be successful in a DM project. In particular, Cross Industry Stan-
dard Process for Data Mining (CRISP-DM) [31] generally involves
four basic phases: understanding, processing, modeling and
deployment. The main phases of CRISP Data Mining project could
be represented in Fig. 2.

Understanding the business is the initial phase and focuses on
defining project objectives and requirements from a business per-



Fig. 6. Management report showing monthly current, target and baseline consumptions.

Fig. 7. Monthly potential and achieved energy savings.
spective. Processing collected data is mandatory to identify data
quality problems and to discover first insights into the data. Data
must be prepared to ensure that useful knowledge is derived from
data and to increase the data quality before the data mining mod-
els can be successful applied. Typically, up to 90% of the time and
effort in a data mining project is spent on data processing. In the
modeling phase, various modeling techniques are selected and ap-
plied and their parameters are calibrated to optimal values. Finally,
through the deployment phase, insight and actionable information
can be derived. Deployment involves the integration of data min-
ing models within applications, data warehouse infrastructure, or
query and reporting tools. Table 2 shows the relations between
the basic steps for the development of the EMS and the four phases
of our DM approach. This table provides the objectives and inputs
for each DM phases.

The initial DM phase focuses on understanding the process and
the energy use through the analysis of process flow diagrams and
the available historical data. It is important to focus on those areas
which a high consumption to define energy performance indicators
and to identify potential influence variables (PIVs) with may have a
large impact on energy performance.

Once EPI have been defined and PIV have been identified, input
data must be processed to obtain a suitable data set for the model-
ing phase. Before a useful model can be developed, data must be
provided in the amount, structure, and format suited to modeling
procedures. Processing phase starts with acquisition, description
and quality assessment of data and ends with data preparation.

In the modeling phase, some techniques may have specific
requirement on data and consequently, stepping back to the pro-
cessing phase is often necessary. In our case a Discriminant Func-
tion Analysis (DFA) technique is selected to extract key influence
variables (KIVs) from PIV and model EPI against these variables.
DFA is a multivariate statistical technique that is commonly used
to build models based on observed predictor variables. EPI must
be categorized into several groups and the potential influence vari-
ables are normalized. DFA measures the relevance of potential
influence variables and let us obtain discriminate functions, which
identify KIV and show how these variables can be linearly com-
bined to best classify EPI. Normalized variables ðx�i Þ and discrimi-
nant functions (F) are defined as follows:

x�i ¼
xi � xi;mean

Si
ð4Þ

F ¼
Xi

1

v i � x�i ð5Þ



where xi is the potential influence variable i; xi,mean is the mean va-
lue of variable i; Si is the standard deviation of variable i; vi is the
weighting coefficient for the variable x�i ; and x�i is the normalized
potential influence variable i.

KIV may be classified as external or controllable. An external
influence variable is a variable that influences energy performance
but over which operators have no control, while a controllable
influence variable is, or needs to be, controlled.

In the last step of the modeling phase, a regression model of EPI
versus discriminant function is obtained. This model condenses the
dependence of energy performance on KIV and will be used to ob-
tain EPI baseline.

Finally, in the deployment phase, the knowledge gained from
DM must be organized and presented in a useful way for energy
management. In this phase EPI targets and EPI baseline are calcu-
lated to be compared with actual EPI on a regular basis. EPI targets
represent best-practice performance and are calculated with the
best energy performance achieved in the past at current values
of the external influence variables. The progress towards energy
targets is tracked through efficiency ratio and potential energy sav-
ings, both periodically calculated and reported. EPI baseline is ob-
tained through EPI regression model depending on. For equipment
improvements there is no action on the operation conditions, so
baseline would be obtained from actual key influence conditions.
For operation improvements, which imply changes of controllable
variables to improve energy performance, baseline would be ad-
justed to actual external influence conditions. This allows a correct
evaluation of achieved energy savings from any implemented en-
ergy efficiency improvement.

5. Results and discussion

In this section we give details of the application of the DM ap-
proach to the planning and checking of the EMS of the naphtha
reforming plant. Results of the understanding, processing, model-
ing and deployment stages are presented and discussed below.
The software SPSS Modeler Clementine has been used as the basic
tool for our data mining analysis.

5.1. Understanding

We aim to develop an EMS to track the energy performance of
the PU and consequently, we must identify, define and measure
EPI of the plant. In our case, we have chosen the specific consump-
tions of platforming, reaction and distillation units (Eqs. (6)–(8))
for energy performance assessment.

SCPU ¼
PU energy consumption

Platforming load
kWh
m3

� �
ð6Þ

SCRU ¼
RU energy consumption

RU load
kWh
m3

� �
ð7Þ

SCDU ¼
DU energy consumption

DU load
kWh
m3

� �
ð8Þ

Many variables are measured and collected in the PU. Some are di-
rect measures of energy use, while others could affect it. Initially, 45
potential influence variables are selected and collected in an hourly
frequency from March 2008 to August 2009. The 45 potential influ-
ence variables are described in Table 3 and Fig. 3 indicates the loca-
tion of each one.

The whole sample is divided for analysis: the training set con-
tains 12149 records, while the validation set contains the remain-
ing 9402 records. The first is used to train the model, while the
second is used to test its final performance.
5.2. Processing

In a first step of processing phase, 120 outliers corresponding
to the days where the plant had unusual operation were filtered
and deleted from the training sample. Besides, the resulting sam-
ple was filtered on the basis of two quality requirements: per-
centage of benzene should be less than 1% and percentage of
toluene should be less than 10% at the bottom of the debenzeniz-
er. After this filtering, 132 records are deleted from the training
sample.

Once the training sample is filtered and cleaned, data set is pre-
pared for the modeling phase. Data preparation includes EPI cate-
gorization and potential influence variables normalization.
Categorization techniques would be used to reduce the number
of values for a given continuous attribute, particularly for the EPI.
Concept hierarchies are used to replace low-level concepts, such
as numeric values, by higher level concepts, such as very high,
high, normal, low and very low energy performance. EPI are cate-
gorized based on partitioning rules that split data distribution of
the EPI into five groups and define the variation range for each
one. The standard deviation (r) of the EPI histogram defines the
partitioning rules: very high (>2r); high (r,2r]; normal [�r,r];
low (�2r,r] and very low (<�2r). Table 4 shows variation ranges
for the five EPI categorization groups.
5.3. Modeling

The main objectives of the modeling phase are obtaining dis-
criminant functions, identifying KIV and developing EPI regression
models. Two canonical discriminant functions are obtained for
each EPI, but only one (F1) has statistical and practical significance
because it covers more than 90% of the variation between groups.
For instance, in the DFA of SCPU a total of 14 KIV are identified from
the 45 potential influence variables and the discriminant function
may be written as follows:

F1 ¼ �0:388 � x�8 � 1:897 � x�9 � 0:057 � x�42 þ 0:112 � x�10

� 0:701 � x�43 � 0:422 � x�45 þ 0:19 � x�29 þ 0:181 � x�30

þ 1:131 � x�16 þ 1:160 � x�17 þ 0:967 � x�18 � 0:378 � x�19

þ 0:486 � x�25 þ 0:093 � x�32 ð9Þ

The KIV are described and classified as external or controllable
in Table 5. A total of six external influence variables are identified,
being input stream to the PU and delta temperature in PP_V5 reac-
tor the variables that most influence the EPI. The rest of the KIV are
controllable and can be used to bring EPI closer to target through
system operation improvements.

The regression model of SCPU is presented in Fig. 4, showing a
strong correlation with F1 (R2 = 0.9029). This model represents past
typical performance versus KIV and will be used to obtain EPI base-
line in the deployment phase.
5.4. Deployment

The main goal of this phase is monitoring actual EPI against tar-
get and baseline on a regular basis. The comparison of EPI with tar-
get allows personnel to identify and implement continuous
operational improvements. The comparison of EPI with the base-
line allows managers to assess the progress of the EMS through
achieved energy savings and the efficiency ratio.

The energy performance of the plant is tracked through energy
management reports. It is important to ensure that the information
contained in these reports is displayed in such a way that it can be
easily understood, interpreted and applied by their potential users.



An example of the tracking process of SCPU is shown in Fig. 5,
where actual and target performances are compared on an hourly
basis. Poor performance can be detected due to deviation from the
target causing a performance alert and the operator can make pro-
cess changes in response. Investigation into the operational condi-
tions could then be shared across the business, resulting in
controllable variable changes within safety limits and consistent
energy savings across the shifts. Often, alerting personnel of poor
performance is enough; since personnel may be experienced to
understand the reasons for high energy use and take appropriate
remedial action. Poor performance detected during a report period
may also highlight a meter failure and help in maintaining the
integrity of the measurement system. Failure to do so will make
the energy performance checking process difficult. Regular energy
reports provide a tool for the early detection of failure of critical
meters.

It is also useful to summarize the results of the actual perfor-
mance versus the target and baseline in a clear and concise way.
The EMS was implemented in mid-September 2009 and it was
found that the EPI tracking process produces savings from opera-
tional improvements. Fig. 6 represents monthly energy consump-
tion in the post-EMS period, clearly showing achieved energy
savings ranging from 4% to 7%, so energy consumption and en-
ergy cost can be approximately monthly reduced in 830 MWh
and 37.500 € respectively, if average prices of different energy
sources are assumed. In this figure, it has only been recorded half
of September, so the consumption of this month is significantly
lower.

Fig. 7 shows monthly potential and achieved energy savings
during post-EMS period. We found that total potential energy sav-
ings during the post-EMS period were 9.5 GWh but only 2.82 GWh
energy savings have been achieved. If a constant baseline value,
equal to the average for the pre-implementation period is as-
sumed, energy savings would be 2.03 GWh, 28% lower than our
proposal, clearly showing that a constant baseline does not account
for the actual values of KIV, and highlighting the importance of
adjusting the baseline to current operating conditions to accurately
calculate energy savings. Monthly efficiency ratio grows from 27%
to 32%, showing that the EMS is helping to improve plant energy
efficiency through changes in controllable influence variables
within safety limits. Plant technical manager sets safety limits for
every controllable influence variable to avoid potential risk. The
EMS also allows a correct tracking of performance improvement
to other energy efficiency measures.

6. Conclusions

This paper provides a methodology for the definition and imple-
mentation of EMS in industrial sites where massive historical data
are available based on a data mining approach. The results show
that data mining helps to characterize the energy performance of
the plant, identifying the key influence variables and modeling en-
ergy performance indicators against these variables. Key influence
variables allow indentifying the best past operation in order to set
targets for tracking future energy performance, promoting a con-
tinuous operational improvement. The predictive models are used
to adjust the baseline to current influence conditions and to calcu-
late energy savings due to both operational and equipment
improvements.

The data mining approach has been successfully applied to the
definition, development and implementation of an EMS for a naph-
tha reforming plant. A total of 14 key influence variables have been
selected from 45 potential influence variables and an energy per-
formance model has been developed. The EMS allows setting base-
line and targets in real time, taking into account influence of actual
operation conditions and evaluates potential and achieved energy
savings. The success achieving potential energy savings is assessed
by an efficiency ratio which grows from 27% to 32%, showing that
significant savings have been achieved after EMS implementation.

Further investigation is necessary to develop decision-making
supporting methods that could help in taking strategic decisions
and corrective actions within the EMS.
References

[1] International Energy Agency. Online energy statistics. Energy balances; 2009.
<http://www.iea.org/stats>.

[2] US Energy Information Administration. Annual energy outlook 2012. Early
release overview; January, 2012. <http://www.eia.gov/forecasts/aeo>.

[3] US Energy Information Administration. International energy outlook 2011;
September, 2011. <http://www.eia.gov/forecasts/aeo>.

[4] International Energy Agency. 25 energy efficiency policy recommendations by
IEA; 2011. <http://www.iea.org/publications>.

[5] ISO 50001:2011. Energy management systems – requirements with guidance
for use; 2011.

[6] US Department of Energy Office of Industrial Technologies. Energy and
environmental profile of the US. Petroleum Refining Industry; November,
2007.

[7] Ernst Worrell, Christina Galitsky. Energy efficiency improvement and cost
saving opportunities for petroleum refineries. An ENERGY STAR� guide for
energy and plant managers. Ernest Orlando Lawrence Berkeley National
Laboratory; 2005.

[8] Abdelaziz EA, Saidur R, Mekhilef S. A review on energy saving strategies in
industrial sector. Renew Sust Energy Rev 2011:150–68.

[9] Van Gorp John C, CEM Services Marketing. Using key performance indicators to
manage energy costs. Strategic planning for energy and the environment;
2005. p. 9–25.

[10] Hooke James H, Landry Byron J, Eng P, David Hart MAC. Energy management
information systems: achieving improved energy efficiency: a handbook for
managers. Engineers and operational staff. Office of Energy Efficiency of
Natural Resources Canada; 2003.

[11] Platon Radu, Amazouz Mouloud. Application of data mining techniques for
industrial process optimization. CANMET Energy Technology Centre –
Varennes; 2007.

[12] Yoon S, Landry Jason, Kettaneh Nouna, Pepe William, Wold Svante.
Multivariate process monitoring an early fault detection (MSPC) using PCA
and PLS. In: Plant automation and decision support conference; 2003.

[13] Zhans Y, Dudzic MS. Online monitoring of steel casting processes using
multivariate statistical technologies: from continuous to transitional
operations. J Process Control 2006;16:819–29.

[14] Ahvenlampi T, Kortela U. Clustering algorithms on process monitoring and
control application to continuous digesters. Informatics 2005;29:101–9.

[15] Zhou Y. Data driven process monitoring based on neuronal networks and
classification trees. PhD dissertation. Texas A&M University; 2004.

[16] Edwardsy PJ, Murrayy AF, Papadopoulosy G, Wallacey AR, Barnard J. The
application of neural networks to the paper-making industry. In: European
symposium on artificial neuronal networks; 1999.

[17] Dayal Bhupinder S, MacGregor John F, Taylor Paul A, Kildaw R, Marcikic S.
Application of feed forward neural networks and partial least squares
regression for modelling kappa number in a continuous Kamyr digester.
Pulp Pap Canada 1994;95(1):26–32.

[18] Devogelaere D, Rijckaert M, Leon OG, Lemus GC. Application of feed forward
neural networks for soft sensors in the sugar industry. IEEE September Issue;
2002.

[19] Monedero I, Biscarri Félix, León Carlos, Guerrero Juan, González Rocío, Pérez-
Lombard Luis. Decision system based on neural networks to optimize the
energy efficiency of a petrochemical plant. Expert Syst Appl 2012;39:9860–7.

[20] Barbosa CH, Melo B, Vellasco M, Pacheco M, Vasconcellos LP. Bayesian neural
networks on the inference of distillation product quality. In: VII Brazilian
symposium on, neural networks; 2002.

[21] Fortuna L, Graziani S, Xibilia MG. Soft sensors product quality monitoring on
debutanizer distillation columns. Control Eng Pract 2005;13:499–508.

[22] Motlaghi S. An expert system design for a crude oil distillation column with
the neural networks model and the process optimization using genetic
algorithm framework. Expert Syst Appl 2008:1540–5.

[23] California Energy Commission. Energy efficiency roadmap for petroleum
refineries in California; April 2004. <http://www.eere.energy.gov/
manufacturing/industries_technologies/petroleum_refining/>.

[24] Parkash Surinder, editor. Refining processes handbook. Elsevier; 2003.
[25] Hooke James H, Landry Byron J, David Hart MA. Energy management

information systems – planning manual and tool. Office of Energy Efficiency
of Natural Resources Canada; 2003.
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