
On the Calculation of Process Performance1

Indicators ?
2

Antonio Manuel Gutiérrez–Fernández, Manuel Resinas, Adela del–Ŕıo–Ortega,3

Antonio Ruiz–Cortés4

School of Computer Engineering5

University of Seville6

{amgutierrez,resinas,adeladelrio,aruiz}@us.es7

Abstract. Performance calculation is a key factor to match corporate8

goals between different partners in process execution. However, although,9

a number of standards protocols and languages have recently emerged10

to support business process services in the industry, there is no stan-11

dard related to monitoring of performance indicators over processes in12

these systems. As a consequence, BPMS use propietary languages to13

define measures and calculate them over process execution. In this pa-14

per, we describe two different approaches to compute performance mea-15

sures on business process decoupled from specific Business Process Man-16

agement System (BPMS) with an existing BPMS-independent language17

(PPINOT) to define indicators over business processes. Finally, some op-18

timization techniques are described to increase calculation performance19

based on computing aggregated measures incrementally.20

Keywords: Business Process Management, Key Performance Indica-21

tors, Complex Event Processing22

1 Introduction23

Nowadays, Business Process Management Systems (BPMS) massively support24

enterprise task flows and human interactions. Tools facilitate different stages25

in Business Process lifecycle: modelling, deployment, execution or monitoring.26

Furthermore, standards such as BPMN [6] or UML [9] provide visual languages27

to define tasks, workflows and decision making points so we can describe and28

analyze them independently of technology or runtime aspects.29

However, certain kinds of problems (such as bottlenecks or resource under-30

utilization) can only be detected by monitoring and measuring process executions31

and, so far, no standard provides business process monitoring or performance32

measuring. On the contrary, each BPMS uses proprietary languages to define33

? This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes (grants TIN2012–32273 (TAPAS),
TIC–5906 (THEOS) and COPAS (P12–TIC-1867))

2

measures and calculate them over business process execution12 . Consequently,34

defining performance measures is locked to the BPMS.35

In this paper, we focus on the definition and development of BPMS inde-36

pendent operations to compute measures over business process executions. To37

achieve this, we use a set of tools and techniques for the definition and au-38

tomated analysis of Process Performance Indicators (PPIs) [8], which includes39

a metamodel and a visual notation. This language has been applied to pro-40

cesses described with BPMN in a number of previous works, although its se-41

mantics can be applied to generic workflow languages. Computing measures as42

non-intrusive methods depends on BPMS architecture and facilities to retrieve43

information from them. To avoid intrusiveness, this proposal provides two dif-44

ferent approaches as contribution: consuming API to get relevant data once and45

capturing events along the process instances execution. In both perspectives,46

complex calculations can be computationally expensive, so we introduce incre-47

mental techniques to avoid unnecessary processing and performance deteriora-48

tion. A number of Business Processes (BPs) execution tools, such as Camunda349

or BIMP4 are analyzed to apply these approaches and validate our proposal.50

In the next section, languages to describe performance metrics over business51

process are analysed using an example scenario. In section 3, operations on52

business process and approaches to calculate measures are proposed. Results for53

the example scenario are presented in Section 4. In the section 5, a computing54

optimization is introduced. Finally, conclusions and possible work extensions are55

described in section 6.56

2 Defining Performance Indicators57

As automation of business processes has increased, a number of standards to58

define workflows, resources assignment or decision making points have emerged.59

These standards assist business process analysis independently of the specific sys-60

tem chosen to automate them (or even in the absence of such system). Similarly,61

defining performance indicators independently of a BPMS requires a language to62

do it at design time. There already exists a number of languages for describing63

process-related performance indicators defined in the literature with, in some64

cases, supporting tools: Pedrinaci et al. [7] present a metric ontology to allow65

the definition and computation of metrics integrated in SENTINEL, a Semantic66

Business Process Monitoring Tool; Castellanos et al.’s approach [2] proposes the67

use of templates provided by a graphical user interface (integrated in the iBOM68

platform) to define business measures related to process instances, processes, re-69

sources or of the overall business operations; Momm et al.’s approach to develop70

process monitoring systems [5] includes a metamodel for the specification of the71

performance indicators monitoring and an automated generation of the required72

1 http://wso2.com/products/business-activity-monitor
2 http://www8.hp.com/us/en/software-solutions/business-process-monitoring
3 http://camunda.org/
4 http://qbp-simulator.cloudapp.net/

3

instrumentation and monitoring infrastructure; Wetzstein et al. introduce in [10]73

a framework for BAM as part of the semantic business process management, they74

describe a KPI ontology using WSML to specify KPIs over semantic business75

processes; Chau et al. [3] propose measuring process goals through capturing76

process events and defining an ad-hoc algorithm per measure to calculate the77

goal value.78

Nevertheless, they present several issues: its expressiveness in the type of in-79

dicators that can be defined is limited [1]; the explicit connection or relationship80

between the performance indicators and the business process elements is par-81

tially or not addressed in them, hindering its computation on existing BPMSs;82

finally, all of them are coupled to specific platforms or systems.83

An approach that overcomes the aforementioned issues is PPINOT[8], which84

proposes a language to express PPIs at design time, either graphically or by85

means of a template-based textual notation. However, although PPINOT has86

tooling support to define PPIs graphically, it lacks an implementation to compute87

them in process engines. This is why we will use PPINOT as starting point to88

define our approaches to compute PPIs in a way that is decoupled from specific89

BPMS. Metric definition in PPINOT is classified into three main categories90

depending on the number of process instances involved and the nature of the91

measure: base measures, aggregated measures, and derived measures.92

Base measures: They are obtained directly from a single process instance and93

do not require any other measure to be computed. Aspects that can be mea-94

sured include: 1) the duration between two time instants (time measures); 2)95

the number of times something happens (count measures); 3) the fulfillment96

of certain condition in both running or finished process instances (condi-97

tion measures); and 4) the value of a certain part of a data object (data98

measures).99

Aggregated measures: Sometimes, it is interesting not only knowing the value100

of a measure for a single process instance (base measures) but an aggregation101

of the values corresponding to the multiple instances of a process. For these102

cases, aggregated measures are used, together with an aggregation function103

such as average, maximum, etc.104

Derived measures: They are defined as functions of other measures. Depend-105

ing on whether the derivation function is defined over single or multi-instance106

measures, derived measures are classified accordingly as derived single-instance107

measures or derived multi-instance measures.108

To illustrate the definition of a business process and its performance indica-109

tors, we consider a simple business process for registering appointments in public110

health system. The procedure to book an appointment with doctors starts when111

the user logs. Figure 1 depicts the described process in BPMN and the related112

PPIs using PPINOT. Once a user has been identified, the system displays all113

the available days for his family doctor in the next two weeks (all users in public114

health system have always a family doctor assigned). When the User chooses115

a desirable day, the system displays available time slots for that day (15 min-116

utes slots). If the user selects one of these slots and confirms the decision, the117

4

system registers the appointment and sends a notification to the user118

personal inbox (mobile and/or email). If the user disagrees with the available119

slots, he can choose a different day to see its available slots. There are other ac-120

tivities related, such as choosing a new doctor or modify a previous appointment121

that are not considered in this example process.122

According to Spanish official stats, there are an average of 6 visits/person-123

/year5, so this process executes several hundreds of thousands times per day124

(240 million per year). This number can be even higher, considering the process125

instances that start but finish without a fixed appointment. Therefore, measur-126

ing performance indicators to optimize this process will have an impact on the127

computational resources.128

In this process, the following performance indicators are of interest:129

– Average time per appointment process instance (from the user logging to130

appointment registration)131

– Average of day changes to review time slots per doctors132

First metric gives basic performance information. Second metric gives hints133

about bad performance, as reviewing different days indicates the user finds it134

difficult to match available time slots to his preferences (useless schedule times135

or assignment between patient and doctors that could be improved).136

These two metrics are easy to define over the business process. The average137

total time for an appointment is measured as the average of the time difference138

between an appointment registration (end of task ”Register and Notify Appoint-139

ment”) and a user logs (end of task ”Identify Patient”). Time slot reviews per140

doctor is measured as the average number of times a user reviews different days141

per doctor (i.e., task ”Choose day” is executed). Both measures are Aggregated142

Measures of Time Measures in PPINOT.143

Fig. 1. Appointment Management BPMN + PPI

5 http://goo.gl/QWtqTn

5

3 Methods to Retrieve Performance Information144

Despite these indicators are simple, there is no standard in BPMSs to calcu-145

late them so they require to be interpreted and transformed in terms of the146

BAM facilities. So, even using a BPMS-independent definition language, such as147

PPINOT, for defining PPIs over BPMN business processes, indicator computa-148

tion depends on the specific BPMS chosen for BP execution.149

Regardless of the process engine, operation to compute PPIs in a generic150

interface is defined by:151

– List <MeasureValue>PPICompute(PPI currentPPI)152

That is, with the PPI properties, as the type of measure or the business process153

definition and task/s related to it, execution data are collected to get the appro-154

priate values for the measure. For a PPI with base measure -as base measures155

correspond a single measure value por each process instance-, this operation will156

return as many values as process instances. For a PPI with aggregated measure,157

the scope of aggregation determines the aggregation of values from single process158

instances. In Table 1, we trace example execution data for this process and the159

expected results for the measures indicated in the previous section (final aggre-160

gated values). The result of this operation relies on having access to execution161

data from the process engine. We have identified two different approaches to get162

this data:163

– Data capture164

– Event capture165

Once we have the required execution information, the indicator value is triv-166

ially processed with mathematical calculation.167

Table 1. Execution trace

BPInstance ID Process Execution Data Measure Value

1
Finished in 60 sec MediumRequestTime 60 sec
3 day changes, Doctor ”A” DayChangesPerDoctor ”A”:3

2
Finished in 75 sec MediumRequestTime 65 sec
4 day changes, Doctor ”B” DayChangesPerDoctor ”A”:3, ”B”: 4

3
Finished in 90 sec MediumRequestTime 70 sec
5 day changes, Doctor ”A” DayChangesPerDoctor ”A”:4, ”B”: 4

3.1 Data capture168

Process engines usually persist activities in an easy-to-understand database or169

even provide facilities to query them via an API. Both procedures, database170

query and API consumption, are depicted in Figure 2. PPICompute method171

6

Fig. 2. Data capture direct from Database 1) or using a provided API 2)

directly queries required task information from persistance system (Diagram 1)172

or consumes API provided by BPMS (Diagram 2).173

In this approach, the data capture provides at once all the required data for174

activities related to an indicator. Once the data are retrieved, some measures175

require post-processing these data. For example, in average time per process indi-176

cator, after retrieving timestamps from initial and final tasks, we have to get the177

difference between them for each process instance and then compute the average178

value for all the instances. Depending on the persistence or API components179

deployment, data querying may impact on process engine performance.180

3.2 Event capture181

Although data-capture based models are easy to design and implement, some182

process engines are not suitable for this approach. For instance, if we neither can183

access to persistence model nor to any data query API. In this case, we propose184

to capture relevant events6 in process execution and use them to compute in-185

dicators. This approach requires extending BPMS listeners mechanisms (if they186

exist) or modifying the BPMN model (i.e.: observer pattern) to generate the187

required events so all events that occur during process execution are sent as a188

stream of events to PPICompute using a method such as (depicted in Figure 3):189

void processEvent (RuntimeEvent event)190

Fig. 3. Event capture

6 when we talk about events here, we refer to any stage of interest in process flow, not
BPMN events

7

RuntimeEvent object usually includes information about process instance191

identification, timestamp and event trigger (task starting, data change, ...), so192

we can check if it is relevant for the PPI and compute it (in positive case).193

Once we get the information, we always require event data post-processing. Al-194

though events are simple to process, a continuos capture has an impact on the195

communication channel, commonly internet and http.196

4 Prototype Implementation197

Following the proposed approaches, we have developed indicator calculation com-198

ponents in different business process tools. The method to choice depends on199

BPMS capabilities or performance criteria, as both approaches are similar in200

terms of expressiveness. Camunda is an open source BPMN system forked from201

Activiti which features a REST API to get history execution so we applied data202

capture approach. On the other hand, BIMP is a business process simulator with203

no data persistence so we use event capture approach. Both approaches are204

4.1 Calculating indicators in Camunda205

Camunda interface offers methods to retrieve any activity (task, gateway or206

event) information so we can easily get timestamps for time indicators or ac-207

count tasks executions with the Camunda History Service. The implementation208

of timestamp capture for time measure in Camunda is illustrated in code 1.1,209

where camundaHistory is the Camunda History Service object.210

Listing 1.1. Data processing
List <PPIValue > computeMeasure(PPIValue ppi){211

// startTimes is a Map <String ,Long >212

String pName = ppi.getProcessName ();213

TimeInstantCondition startTime = ppi.getFrom ();214

String startTask = startTime.getTask ();215

State startState = startTime.getChangesToState ();216

HistoricProcessInstanceQuery processQuery =217

camundaHistory.createHistoricProcessInstanceQuery ();218

HistoricActivityInstanceQuery activityQuery =219

camundaHistory.createHistoricActivityInstanceQuery ();220

// Getting and Iterating Process Instances221

List <HistoricProcessInstance > processInstances =222

processQuery.processDefinitionName(pName).list ();223

for (HistoricProcessInstance pInstance:processInstances){224

String instanceId = pInstance.getId ();225

activityQuery = activityQuery.processInstanceId(instanceId);226

// Retrieving Measure Start execution data227

HistoricActivityInstance startActivity =228

activityQuery.activityId(startTask). singleResult ();229

if (startState.equals(GenericState.START)){230

startTimes.add(instanceId , startActivity.getStartTime ());231

}else{232

startTimes.add(instanceId , startActivity.getEndTime ());233

}234

// Similar for Time End Condition in Measure235

//After getting data , we calculate Average ...236

}237

}238

8

4.2 Calculating indicators in BIMP239

As BIMP does not provide any facility to retrieve information, the event capture240

approach is used. So we capture and filter the BIMP stream of activities for241

measures of interest. The processing of an event for time capture follows the242

algorithm depicted in code 1.2.243

Listing 1.2. Event processing

//startTimes , endTimes are Map <String ,Long >244

void process(RuntimeEvent entry) {245

if (entry.matches(Timer.START)) {246

startTimes.add(entry);247

} else {248

endTimes.add(entry);249

}250

if (startTimes.size() == endTimes (). size ()){251

// updateAverage252

average = getAverageTime ();253

}254

}255

5 Optimizing measure processing256

In both approaches, complex indicators in massive process instances scenarios257

can degrade performance. In the query method, data-capture measures, such as258

aggregations, require computationally expensive views (groups by), so real-time259

monitoring can compromise process engine enforcement if the database that260

stores history data is the same that stores runtime information. And, in both261

methods, processing a number of calculations have an impact on performance.262

Nowadays, improving big data processing is a research goal so a number of tech-263

niques and tools have been developed focusing on this topic. We take advantage264

of these techniques to extend our proposal[4].265

On this regard, we use incremental calculation technique. This technique is266

implemented by a number of tools to provide scalable processing in big data267

scenarios (such as Apache DataFu over Apache Hadoop). For the introduced268

example, to calculate average time on 30 days window, first result requires pro-269

cessing full data for 30 days. However, if we store intermediate daily times, future270

30 days windows processing can be made faster if we consider only the different271

day intervals. So, after computing the first 30 days window, calculating average272

for that window on the 31st day only requires adding data for the new day and273

removing the data from the 1st day (it is out of the new window). Incremental274

calculation is described below.275

Let InstDayi the number of process instances in a day i and TimeDayi the276

accumulated process Time for all the process instance in a day i (from ”Identify277

User” Task to ”Register Appoinment” Task):278

InstDayi = N (1)

9

Total Process Time per Day:279

TimeDayi =

N∑
j=0

ProcessInstanceT imej (2)

Accumulated Process Instances in the last 30 days:280

AccumInstDayi =

j∑
j=i−30

InstDayi (3)

Accumulated Process Time in the last 30 days:281

AccumTimeDayi =
i∑

j=i−30

TimeDayj (4)

Average Process Time in the last 30 days:282

AverageT imeDayi =
AccumTimeDayi
AccumInstDayi

(5)

If we store intermediate accumulated and daily number of instances, and283

total process time, we incrementally calculate average for the following day:284

AccumInstDayi+1 = AccumInstDayi − InstDayi−30 + InstDayi+1 (6)

AccumTimeDayi+1 = AccumTimeDayi − TimeDayi−30 + TimeDayi+1 (7)

AverageT imeDayi+1 =
AccumTimeDayi+1

AccumInstDayi+1
(8)

This process is depicted in Figure 4, where a 3-day window time is computed285

for the first 3 days and intermediate results are stored (Intermediate Stage 1).286

In our example, these intermediate data are accumulated process time and ac-287

cumulated number of instances. On the fourth day, instead of computing full288

measures for day 2, 3 and 4, we reuse previous results to extract data from day289

1 and add day 4 execution data and get the new valid result. So, measure calcu-290

lation leverages this technique to simplify queries, and avoid unnecessary data291

processing.292

In the measure for average day changes per doctor, incremental calculation293

can also be applied in simpler form since there is no need to use sliding time294

window (and subtracting old data) but just adding new daily information to295

calculation.296

10

Fig. 4. Time Window calculation

6 Conclusions and Future Work297

In this paper, we deal with BPMS-independent computation of process perfor-298

mance indicators. Specifically, we identify two mechanisms to implement this299

calculation over different BPMSs depending on the feasibility of data retrieving300

from them. Although Camunda and BIMP are analysed to succesfully implement301

these approaches, other BPMSs similar integration features so this proposal can302

easily be applied to them. As heavy processing of indicators can affect BPMS303

performance, we also provide mechanisms to increase efficiency. This proposal304

enables the run-time evaluation in different BPMSs of performance indicators305

defined in a BPMS-independent manner at design time. However, this work is306

applied to a synthetic scenario. A line of future work is to apply this proposal to307

real business process executions. Furthermore, it can also be extended to other308

BPMSs to be validated.309

References310

1. del-Ŕıo-Ortega et al., A.: On the Definition and Design-time Analysis of Process311

Performance Indicators. Inf. Syst. 38(4), 470–490 (2013)312

2. Castellanos et al, M.: ibom: a platform for intelligent business operation man-313

agement. In: Proc. of the 21st Int. Conf. on Data Engineering. pp. 1084– 1095.314

Hewlett-Packard Laboratories (2005)315

3. Chau, T., Muthusamy, V., Jacobsen, H.a., Litani, E., Chan, A., Coulthard, P.:316

Automating SLA Modeling. In: Proceedings of the 2008 Conference of the Center317

for Advanced Studies on Collaborative Research: Meeting of Minds. pp. 10:126–318

10:143 (2008)319

4. Hayes, M., Shah, S.: Hourglass: A library for incremental processing on hadoop.320

In: Big Data, 2013 IEEE International Conference on. pp. 742–752 (Oct 2013)321

5. Momm et al., C.: Towards a model-driven development of monitored processes. In:322

Proc. Tagung Wirtschaftsinformatik 2007. pp. 319–336 (2007)323

6. Object Management Group (OMG): Business process model324

and notation (BPMN) version 2.0 (Jan 2011), available from:325

http://www.omg.org/spec/BPMN/2.0/PDF326

11

7. Pedrinaci et al., C.: Sentinel: a semantic business process monitoring tool. In: Int.327

Workshop on Ontology-Supported Business Intelligence. pp. 26–30 (2008)328

8. del Ŕıo-Ortega, A.: On the Definition and Analysis of Process Performance Indi-329

cators. Ph.D. thesis, University of Seville (2012)330

9. Sinogas, P., Vasconcelos, A., Caetano, A., Neves, J., Mendes, R., Tribolet, J.M.:331

Business processes extensions to UML profile for business modeling. In: ICEIS (2).332

pp. 673–678 (2001)333

10. Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance indicators334

of semantic business processes. Bus. Inf. Syst. 7, 227–238 (2008)335

