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The virulence of the human and animal pathogen Salmonella enterica serovar Typhimurium is dependent
on two type III secretion systems. These systems translocate proteins called effectors into eukaryotic host
cells. SlrP is a Salmonella type III secretion effector with ubiquitin ligase activity. Here, we used two
complementary proteomic approaches, two-dimensional gel electrophoresis and iTRAQ (isobaric tags for
relative and absolute quantification) to study the consequences of the presence of SlrP in human
epithelial cells. We identified 37 proteins that were differentially expressed in HeLa cells expressing slrP
compared to control cells. Microarray analysis revealed that more than a half of differentially expressed
proteins did not show changes in the transcriptome, suggesting post-transcriptional regulation. A gene
ontology overrepresentation test carried out on the differentially expressed proteins revealed enrich-
ment of ontology terms related to several types of junctions mediating adhesion in epithelial cells.
Consistently, slrP-transfected cells showed defects in migration and adhesion. Our results suggest that
the modification of cellecell interaction ability of the host could be one of the final consequences of the
action of SlrP during an infection.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Salmonella are Gram negative bacteria belonging to the family
Enterobacteriaceae. The species Salmonella enterica is divided into
several subspecies and many serovars [1]. Some of the serovars
belonging to the subspecies enterica are pathogenic for humans and
other warm-blooded animals causing different diseases, from en-
teritis to typhoid fever, depending on the specific serovarehost
combination. More than 500000 human deaths occur each year
SPI, Salmonella pathogenicity
sobaric tags for relative and
acrylate; GO, gene ontology.
a, Facultad de Biología, Uni-
villa, Spain.
ordero-Alba), jjgarcia@us.es
ce), framos@us.es (F. Ramos-

work.
y (CNB-CSIC) Lab 211, C/Dar-

orman Building, 72 Huntley

Inc. This is an open access article u
worldwide as a consequence of these diseases [2,3].
Salmonella and many other Gram negative pathogens rely on

type III secretion systems (T3SS) for their relationships with the
host cells [4]. These systems are complex structures that form a sort
of molecular needle that spans the inner membrane, the periplas-
mic space and the outer membrane of the bacteria, as well as the
cell membrane of the host. They deliver effector proteins directly
into eukaryotic cells. Bacteria of the species S. enterica posses two
virulence-associated T3SS that are able to secrete more than 30
effectors [5]. The structural components and some of the effectors
of these two systems are encoded in two different Salmonella
pathogenicity islands, SPI1 and SPI2, respectively [6e8]. The SPI1-
related system, T3SS1, is necessary for the internalization of Sal-
monella into host cells using a mechanism characterized by the
formation of large membrane ruffles at the bacterial entry site [9].
This mechanism involves actin remodeling and membrane fusion
induced by specific Salmonella effectors. T3SS1 effectors have also a
role in the disruption of epithelial tight junctions [10,11] and in the
induction of different forms of cell death in epithelial cells and
macrophages [12]. Once inside the host cell, Salmonella resides in a
specific niche known as Salmonella-containing vacuole (SCV). The
environmental conditions found in this compartment induce the
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expression of the SPI2-related secretion system, T3SS2. This system
deliversmore than 20 effectors through the vacuolemembrane into
the host cytosol [13]. These effectors, together with a subset of
T3SS1 effectors, are involved in the biogenesis, maturation and
maintenance of the SCV [14]. An important host process that is
exploited by Salmonella through several T3SS effectors is the
ubiquitination system: some T3SS effectors are ubiquitination
substrates, act as E3 ubiquitin ligases or mimic deubiquitinases
[15].

One of the effectors involved in the manipulation of the ubiq-
uitination system is SlrP [16]. This is a protein of 765 amino acids
with three domains [17]: the N-terminal domain necessary for
secretion through T3SS1 and T3SS2 [18]; the central domain with
several copies of a leucine-rich repeat signature, a protein motif
frequently involved in proteineprotein interactions [19]; and the C-
terminal domain (NEL domain), which is conserved in other ef-
fectors and possesses E3 ubiquitin ligase activity [20,21]. SlrP in-
teracts with mammalian thioredoxin-1 (Trx1) and catalyzes
ubiquitination of this substrate in vitro [20]. We recently solved the
3D structure of the SlrP-Trx1 complex and determined the Trx1
ubiquitination site [22]. In addition, SlrP can interact with the
chaperone ERdj3 in the endoplasmic reticulum [23]. HeLa cells
stably transfected with slrP are more prone to cell death and our
experiments suggest that SlrP promotes death in host cells by
interfering with the functions of its targets Trx1 and ERdj3 [20,23].

Proteomic profiles reflect better the actual physiological condi-
tion of an organism than the transcriptomic ones. This fact is
leading to the implementation of these technologies to many fields
of biological research. Here, we use two proteomic approaches to
get insight into the global effect of SlrP on host cells. Previously
published works have suggested the complementary nature of
these methods [24].

2. Materials and methods

2.1. Cell culture and lysis

HeLa cells (ECAC No. 93021013) were cultured and lysed in NP40
buffer as previously described [20].

2.2. Two-dimensional gel electrophoresis

Proteins extracts for SlrP- and empty vector-transfected cells
were prepared in triplicate and resolved by two-dimensional gel
electrophoresis [25]. Protein detection was achieved with Coo-
massie Brilliant Blue R-250 (0.1% w/v in methanol 50% v/v). Iden-
tification of differentially expressed proteins was achieved using
mass spectrometric analysis at the Proteomics Facility of the Uni-
versity of C�ordoba (C�ordoba, Spain).

2.3. Isobaric tags for relative and absolute quantification (iTRAQ)
analysis

HeLa cells (107 per cell line) were lysed as described in Sup-
plementary materials and methods and 100 mg of proteins of every
extract were labeled with the iTRAQ reagent according to the
manufacturer's instructions (AB Sciex). The analysis was carried out
at the Proteomics Facility of the University of C�ordoba with the
protocol described in Supplementary materials and methods.

2.4. RNA preparation and gene array processing

Total RNA from HeLa cells stably transfected with pcDNA3 or its
derivative encoding the SlrP-3xFLAG fusion was isolated in tripli-
cate and processed for hybridization to GeneChip Human Gene 1.0
ST Arrays (Affymetrix) at the Genomics Unit of the Andalusian
Center forMolecular Biology and RegenerativeMedicine (CABIMER,
Seville, Spain) as previously described [26].

2.5. Immunoblot and antibodies

Proteins in cell extracts were resolved by SDS-PAGE. The gel was
blotted onto a nitrocellulose membrane (GE Healthcare) and pro-
bed with mouse monoclonal anti-CKB (B-9; 1:1000; Santa Cruz
Biotechnology) and mouse monoclonal anti-S100A4 (A-7; 1:1000;
Santa Cruz Biotechnology). Goat anti-mouse IgG horseradish
peroxidase-conjugated antibodies (1:5000; BioRad) were used as
secondary antibodies. Detection was via chemiluminescence pro-
cedures (Pierce). Ponceau S staining was used as loading control
[27].

2.6. Data analysis

Gene Ontology (GO) annotations were analyzed using the
PHANTER overrepresentation test (release 20150430) [28] with the
GO ontology database released 2015-08-06. Student's t test was
used to analyze differences in fold change, amount of protein and
relative migration. Differences with P values of 0.05 or less were
considered significant. Other analyses are described in Supple-
mentary materials and methods.

2.7. Cell adhesion and cell migration assays

These assays were carried out as previously described [26].

3. Results and discussion

3.1. Analysis of HeLa cells transfected with slrP by two-dimensional
protein gels

We previously generated a stable slrP-3xFLAG-transfected HeLa
cell line that was useful to show a role of the Salmonella effector
SlrP in interfering with host thioredoxin activity and in contrib-
uting to the induction of host cell death [20]. The same cells were
used in this study to explore the global effect of SlrP on the pro-
teome of human epithelial cells. Protein extracts were prepared
from these cells and from a control cell line that was transfected
with the empty vector. Proteins were separated using two-
dimensional gel electrophoresis and differentially expressed
products were isolated. Fig. 1 shows representative images of
control and SlrP-expressing cells with relevant spots marked. From
23 initially selected proteins, 16 were unambiguously identified by
mass spectrometric analysis (Table 1). All of them were down-
regulated in the presence of SlrP.

3.2. Analysis of slrP transfected cells versus control cells using
iTRAQ

The technique used in the previous section has some intrinsic
limitations linked to the chemical diversity of proteins and their
very divergent expression in cells [29]. In order to increase our
ability to identify proteins whose expression was affected by SlrP,
extracts from the same cells (two extracts from slrP-transfected and
two extracts from control cells) were also analyzed using a quan-
titative proteomics iTRAQmethod [30]. A total of 505 proteins were
identified (Table S1). Among them, 27 were differentially expressed
in the presence of SlrP according to the criteria of reaching a ratio
statistically different from 1 (P < 0.05) and higher than 1.3- (11
proteins) or lower than 0.7-fold (16 proteins) (Table 2). A compar-
ison between the results of the two techniques, two-dimensional



Fig. 1. Effects of SlrP on the proteome of HeLa cells. Protein extracts from HeLa cells stably transfected with pcDNA3 (control) or with pcDNA3-SlrP-3xFLAG (SlrP) were analyzed by
two-dimensional gel electrophoresis. Numbered arrows indicate species differentially expressed in the presence of SlrP.

Table 1
Differentially expressed proteins in HeLa cells expressing SlrP identified in two-dimensional gel electrophoresis and comparison with mRNA ratios.

Spota Gene symbol Protein name Protein scoreb Peptide count mRNA ratio P value (mRNA)

1 HSP90B1 Endoplasmin 824 28 e e

2 PRKCSH Glucosidase 2 subunit beta 267 14 e e

3 HSP90AB1 Heat shock protein HSP 90-beta 681 32 e e

6 RNH1 Ribonuclease inhibitor 792 24 1.02 ± 0.08 0.7707
7 CKB Creatine kinase B-type 876 23 0.96 ± 0.07 0.4019
8 SERPINB6 Serpin B6 625 21 0.82 ± 0.01 0.0012
9 SEC13 Protein SEC13 281 9 1.01 ± 0.11 0.9232
10 C1QBP Complement component 1 Q subcomponent-binding protein 63 5 1.08 ± 0.03 0.1222
11 YWHAE 14-3-3 protein epsilon 469 22 1.12 ± 0.11 0.0744
12 YWHAG 14-3-3 protein gamma 186 11 0.92 ± 0.07 0.2157
13 BASP1 Brain acid soluble protein 257 7 0.97 ± 0.02 0.3910
16 EIF3I Eukaryotic translation initiation factor 3 subunit I 588 17 1.02 ± 0.06 0.6579
17 HNRNPC Heterogeneous nuclear ribonucleoproteins C1/C2 157 12 e e

19 CAPNS1 Calpain small subunit 1 248 12 1.08 ± 0.04 0.1509
22 TUBB4B Tubulin beta-4B chain 634 25 0.99 ± 0.08 0.9231
23 S100A4 Protein S100-A4 217 8 0.75 ± 0.05 0.0007

a Numbers as indicated in Fig. 1. All the identified spots were decreased in the presence of SlrP.
b According to MS þ MS/MS analysis.
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gel electrophoresis and iTRAQ, reveals that: (i) Differential
expression of two proteins, CKB and S100A4, was confirmed by
both methods. (ii) There were conflicting results, regarding the
proteins HNRNPC, HSP90AB1, HSP90B1 and PRKCSH, identified as
decreased in the presence of SlrP using the two-dimensional gels
but whose expression was not altered according to the iTRAQ
approach. The reasons are unknown, but these proteins were not
included in the analysis below. (iii) No data were obtained with
iTRAQ for 10 additional proteins identified with the first technique.
In summary, both approaches can be seen as complementary, since
a fraction of the total proteome was analyzed with each technique
and the overlapping between them was only partial.
3.3. Comparison between mRNA and protein levels for differentially
expressed proteins

To investigate if the changes in protein expression correlated
with changes in the corresponding mRNA, we carried out a
genome-wide analysis of transcripts from slrP-transfected cells
compared to control cells using Affymetrix Human Gene 1.0 ST
Arrays. The complete results of this analysis will be reported else-
where, but for this study we extracted the data obtained for the
genes whose products are differentially expressed according to the
proteomic techniques. Data shown in Tables 1 and 2 indicate that
there was a good correlation between mRNA and protein changes
for 16 out of 37 genes. SlrP has been shown to be located mainly in
the cytosol of the host cell and partially in the endoplasmic retic-
ulum [20,23]. It is not expected to translocate into the nucleus and
directly control transcription. However, its presence in the host cell
has clearly an impact that directly or indirectly could affect the
activity of some transcriptional factors. We have previously shown
a significant effect on transcription of a different set of genes caused
by the expression of another Salmonella effector, SteA, in HeLa cells
[26]. Interestingly, among the other 21 genes, 19 did not show
significant changes of expression at the mRNA level and 2 were
significantly decreased in the presence of SlrP at the protein level
but increased at the mRNA level. These results suggest that SlrP can
also affect expression of certain genes in a posttranscriptional
manner. At least two direct mechanisms could explain these ef-
fects: (i) SlrP is able to physically interact with some proteins and
modify their activities [20,23]. The interaction with other proteins
could increase or decrease their stability. (ii) SlrP is an E3 ubiquitin
ligase whose only known substrate is human Trx1 [20,22].
Although stability of Trx1 does not appear to be altered, ubiquiti-
nation of other substrates could lead to their proteasome-
dependent degradation.



Table 2
Differentially expressed proteins in HeLa cells expressing SlrP quantified by iTRAQ and comparison with mRNA ratios.

Gene symbol Protein name Protein ratio mRNA ratio P value (mRNA)

ACAT1 Acetyl-CoA acetyltransferase, mitochondrial 0.52 ± 0.16 1.34 ± 0.16 0.0020
ANXA1 Annexin A1 0.68 ± 0.09 0.86 ± 0.05 0.0042
CKB Creatine kinase B-type 0.59 ± 0.12 0.96 ± 0.07 0.4019
CRIP1 Cysteine-rich protein 1 0.69 ± 0.06 0.55 ± 0.06 2.711 � 10�5

HPRT1 Hypoxanthine-guanine phosphoribosyltransferase 0.51 ± 0.12 0.69 ± 0.04 0.0001
KIAA0100 Protein KIAA0100 0.54 ± 0.05 1.13 ± 0.02 0.0119
KYNU Kynunerinase 0.58 ± 0.17 0.28 ± 0.02 9.297 � 10�10

LGALS1 Galectin-1 0.49 ± 0.09 0.65 ± 0.09 4.987 � 10�5

PLAT Tissue-type plasminogen activator 0.40 ± 0.03 0.87 ± 0.12 0.1100
PUS10 Putative tRNA pseudouridine synthase Pus10 0.68 ± 0.01 1.07 ± 0.03 0.1453
S100A4 Protein S100-A4 0.54 ± 0.08 0.76 ± 0.05 0.0007
ANXA6 Annexin A6 1.74 ± 0.32 1.45 ± 0.12 6.641 � 10�5

CADPS2 Calcium-dependent secretion activator 2 2.21 ± 0.27 1.02 ± 0.17 0.8429
CAP1 Adenylyl cyclase-associated protein 1 1.66 ± 0.32 1.02 ± 0.05 0.6440
CMBL Carboxymethylenebutenolidase homolog 1.97 ± 0.49 1.18 ± 0.07 0.0062
FASN Fatty acid synthase 1.37 ± 0.23 1.81 ± 0.08 1.144 � 10�6

FDPS Farnesyl pyrophosphate synthase 1.37 ± 0.19 1.48 ± 0.11 0.0002
MYO16 Unconventional myosin-XVI 2.47 ± 0.35 0.94 ± 0.06 0.2709
NPEPPS Puromycin-sensitive aminopeptidase 1.70 ± 0.20 0.95 ± 0.00 0.3751
PPA1 Inorganic pyrophosphatase 1.36 ± 0.04 1.18 ± 0.09 0.0216
RBBP7 Histone-binding protein RBBP7 1.35 ± 0.07 1.34 ± 0.01 3.146 � 10�5

RBM39 RNA-binding protein 39 2.35 ± 0.43 1.12 ± 0.05 0.0282
RBMX RNA-binding motif protein, X chromosome 1.88 ± 0.20 1.00 ± 0.07 0.9908
RPL18 60S ribosomal protein L18 1.37 ± 0.05 0.98 ± 0.02 0.5586
RPS3A 40S ribosomal protein S3a 1.43 ± 0.09 0.97 ± 0.21 0.5732
SPTBN1 Isoform 2 of spectrin beta chain, non-erythrocytic 1 1.33 ± 0.19 1.29 ± 0.01 0.0003
VDAC2 Voltage-dependent anion-selective channel protein 2 2.02 ± 0.51 1.33 ± 0.16 0.0004
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3.4. Confirmation of the differential expression of CKB and S100A4
by Western blotting

To provide confirmation of differentially expressed proteins, we
carried out Western blot analysis of CKB and S100A4, the two
proteins that were detected by the two-dimensional gel analysis
and the iTRAQ study. Fig. 2 shows a representative immunoblot
image. Quantification indicated that both proteins were signifi-
cantly downregulated in the presence of SlrP. This result is con-
sisting with data obtained in two-dimensional gels and iTRAQ
analysis and provides evidence that both techniques were reliable.
Interestingly, creatine kinases, including brain-type creatine kinase
(CKB), are a family of enzymes involved in energy homeostasis that
reversibly catalyzes the transfer of phosphate between phosphor-
ylated substrates as phosphocreatine and ATP. The dysfunction of
these proteins has been linked with several types of disease and it
Fig. 2. Effects of SlrP on the expression of CKB and S100A4. Protein extracts from HeLa
cells stably transfected with pcDNA3 (control) or with pcDNA3-SlrP-3xFLAG (SlrP)
were analyzed by immunoblot with anti-CKB and anti-S100A4 antibodies. A repre-
sentative gel (central panel) is shown together with quantification of bands from three
gels (means þ SD of CKB or S100A4/total protein ratio, right panel). Ponceau S staining
(left panel) was used to estimate total loaded protein.
has been reported their role as bacteriostatic factors capable of
specifically inhibiting the growth of Gram negative bacteria [31].
Also, it was demonstrated the role of CKB in cell migration and
phagocytosis by actin remodeling [32]. S100A4 is a member of the
S100 calcium-binding protein family that is involved in many as-
pects of cell biology as cell motility, differentiation, cytoskeletal
remodeling and survival [33]. Several members of this family are
dramatically upregulated at the transcription level following
different bacterial and viral infections, suggesting a role in the
immune response [34]. In particular, S100A4 regulates bacterial
clearance during staphylococcal infection [35]. It would be an
intriguing possibility that SlrP, which is secreted by both T3SS,
could modulate the expression of CKB and S100A4 according to the
stage of infection.

3.5. Gene ontology analysis and phenotypic analysis of transfected
cells

Together, the two techniques used in this work provided 37
proteins (excluding those with conflicting results) that were
differentially expressed in HeLa cells expressing SlrP. A gene
ontology enrichment analysis was carried out on these proteins
using the PANTHER overrepresentation test. Significant enrichment
was detected for specific cellular components and molecular
functions (Table 3). Interestingly, the ontology terms with the
highest fold enrichment refer to several types of junctions medi-
ating adhesion in epithelial cells, including focal adhesions and
adherens junctions. Among the 7 proteins responsible for this
enrichment, 3 are downregulated (annexin A1, 14-3-3 protein
gamma, and 14-3-3 protein epsilon) and 4 are upregulated
(annexin A6, adenylyl cyclase-associated protein 1, and ribosomal
proteins S3a and L18) in the presence of SlrP. Adhesion structures
are important to attach a cell to the extracellular matrix and to
neighboring cells. In addition, focal adhesion turnover coordinated
with actin dynamics has a crucial role in cell migration [36]. We
hypothesized that the differential expression of proteins associated
to adhesion complexes that is observed in slrP-transfected cells



Table 3
Gene ontology enrichment analysis of differentially expressed proteins in slrP-transfected cells.

GO category (p < 0.05) (top ten by fold enrichment) Number of proteins Expected Fold enrichment

Cellular component
focal adhesion (GO:0005925) 7 0.68 10.29
cell-substrate adherens junction (GO:0005924) 7 0.69 10.14
cellesubstrate junction (GO:0030055) 7 0.70 10.00
adherens junction (GO:0005912) 7 0.82 8.54
anchoring junction (GO:0070161) 7 0.85 8.24
extracellular exosome (GO:0070062) 26 4.83 5.38
extracellular membrane-bounded organelle (GO:0065010) 26 4.83 5.38
extracellular organelle (GO:0043230) 26 4.85 5.36
extracellular vesicle (GO:1903561) 26 4.85 5.36
membrane-bounded vesicle (GO:0031988) 27 6.13 4.41
Molecular function
RNA binding (GO:0003723) 18 2.77 6.50
poly(A) RNA binding (GO:0044822) 11 2.05 5.37
nucleic acid binding (GO:0003676) 20 7.00 2.86
heterocyclic compound binding (GO:1901363) 26 10.36 2.51
organic cyclic compound binding (GO:0097159) 26 10.49 2.48
binding (GO:0005488) 36 24.81 1.45
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could result in defects in adhesion and/or migration. Indeed, when
these cells were cultured in poly-HEMA coated tissue culture plates
(to prevent adhesion to the substrate), they were loosely dispersed
in the media whereas control cells formed dense aggregates, indi-
cating a defect in cellecell adhesion in cells expressing SlrP
(Fig. 3A). A wound closure assay also showed that migration speed
was altered in these cells (Fig. 3B). Together, these data indicate a
good correlation between the results of the proteomic analysis and
the phenotypic consequences of SlrP expression.

The analysis of the function of individual T3SS effectors is
Fig. 3. Defects in cellecell adhesion and cell migration in HeLa cells expressing SlrP.
(A) HeLa cells were transferred to poly-HEMA-coated plates. After 48 h of culture in
suspension, control cells HeLa pcDNA3 (control) and HeLa pcDNA3-SlrP-3xFLAG (SlrP)
were photographed under an inverted microscope. (B) Representative images of
wound-healing assays for HeLa pcDNA3 (control) and HeLa pcDNA3-SlrP-3xFLAG
(SlrP). Wounds are outlined. Scale bars, 200 mm.
obscured by the fact that many effectors are translocated into the
host cell during an infection, sometimes with redundant or oppo-
site results. The strategy of expressing a particular effector in host
cells circumvents this problem. Here, we used a proteomic
approach to study the effect of the stable expression of the effector
SlrP on HeLa cells. The results obtained with this approach may be
useful to guide future research on the role of this Salmonella
effector. In fact, we were able to show differential expression of 37
genes at the protein level and, interestingly, most of these genes are
not altered at themRNA level. Since SlrP is a ubiquitin ligase [20,22]
that physically interacts with at least two host proteins [20,23], it
would be interesting to study if SlrP is able to posttranscriptionally
modify the expression of those genes through direct interaction
with and/or ubiquitination of some of their products.
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