
Simulation Modelling Practice and Theory 118 (2022) 102519

A
1
(

E
D
J
D

A

K
C
P
P
S
G

1

c
c
s

w
e
n

b
o

(

h
R

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

fficient simulation execution of cellular automata on GPU
aniel Cagigas-Muñiz ∗, Fernando Diaz-del-Rio, Jose Luis Sevillano-Ramos,
ose-Luis Guisado-Lizar
epartment of Computer Architecture and Technology, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

R T I C L E I N F O

eywords:
ellular automata
arallel computing
erformance optimization
tencil computation
raphics Processing Units

A B S T R A C T

Graphics Processing Units (GPUs) can be used as convenient hardware accelerators to speed up
Cellular Automata (CA) simulations, which are employed in many scientific areas. However,
an important set of CA have performance constraints due to GPU memory bandwidth. Few
studies have fully explored how CA implementations can take advantage of modern GPU
architectures, mainly in the case of intensive memory usage. In this paper, we make a thorough
study of techniques (stencil computing framework, look-up tables, and packet coding) to
efficiently implement CA on GPU, taking into account its detailed architecture. Exhaustive
experiments to validate these implementation techniques for a number of significant memory-
bounded CA are performed. The CA analysed include the classical Game of Life, a Forest Fire
model, a Cyclic cellular automaton, and the WireWorld CA. The experimental results show
that implementations using the presented techniques can significantly outperform a baseline
standard GPU implementation. The best performance results of all known implementations of
memory bounded CA were obtained. Moreover, some of the techniques, like look-up tables or
temporal blocking, are indeed relatively easy to implement or to apply when the transition
rules are simple. Finally, detailed descriptions and discussions of the indicated techniques
are included, which may be useful to practitioners interested in developing high performance
simulations in efficient languages based on CA on GPU.

. Introduction

Cellular Automata (CA) are mathematical models that evolve in discrete time steps, composed of elements called ‘‘cells’’ that
hange their state at each time step according to some rules, by taking into account the state of the neighbouring cells. CA are
ommonly used in complex and/or dynamic system modelling and simulation, mainly in the fields of physics, biology, and computer
cience [1–4].

A sequential implementation of a cellular automaton using slow interpreted languages can be enough in certain situations in
hich the output time response is not critical, the CA model evolution rules are simple, the CA data are relatively small, and/or
xperiments do not need to be repeated many times. In these cases, many practitioners just prototype for slow CPU performance
onparallel programming languages like Python, Matlab, or Octave.

However, there are many real-world applications of CA simulation models that demand a high level of computational capability
ecause their CA model is complicated in terms of evolution rules or data usage, for real-time (or time-constrained) applications,
r for parametric studies in which the same experiment must be executed many times under different initial configurations (in

∗ Corresponding author.
E-mail addresses: dcagigas@us.es (D. Cagigas-Muñiz), fdiaz@us.es (F. Diaz-del-Rio), jlsevillano@us.es (J.L. Sevillano-Ramos), jlguisado@us.es

J.-L. Guisado-Lizar).
vailable online 5 March 2022
569-190X/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.simpat.2022.102519
eceived 8 January 2022; Received in revised form 22 February 2022; Accepted 24 February 2022

http://www.elsevier.com/locate/simpat
http://www.elsevier.com/locate/simpat
mailto:dcagigas@us.es
mailto:fdiaz@us.es
mailto:jlsevillano@us.es
mailto:jlguisado@us.es
https://doi.org/10.1016/j.simpat.2022.102519
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2022.102519&domain=pdf
https://doi.org/10.1016/j.simpat.2022.102519
http://creativecommons.org/licenses/by/4.0/

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.

s
t
u
f
t
c

o
o

a
i
s
P
c
c
a

s
t

d
o
H

d
C
i

i
S
a
w

2

h
t

1
(
t
p

a
t
t

which case it is critical to accelerate every individual experiment). Therefore, these applications of CA require the usage of
parallel computing techniques. Examples involve scientific problems as diverse as fluid dynamics [5], cancer growth [6], 3D metal
forming [7], solidification in materials science [8], or urban land use simulations [9], among many others. It is therefore interesting
to analyse some programming fundamentals on how CA implementations on modern computing platforms can be improved when
performance is important.

Computer-based implementations of CA are inherently parallel because each cell can be processed independently at each time
tep. With the arrival in 2007 of programming languages for Graphical Processing Units (GPUs) such as Cuda and later OpenCL,
he design and implementation of CA experienced a new impetus. The internal architecture of GPUs has many more computational
nits (processors) than a CPU. This feature makes GPUs ideal hardware accelerators for implementing CA. There is much room
or performance improvement, especially for memory-bounded CA, such as the GoL. Memory-bounded CA are cellular automata
hat use more time in memory accesses than in computing cell states for the next time step. This means that the GPU arithmetic
omputational units are not being efficiently used.

At each time step of CA, cell computations can be performed in parallel by several processors without the need for communication
r synchronization among them. Several experimental works can be found in the scientific literature about the performance benefits
f using GPUs over CPUs (see Section 2).

There is, however, one problem when coding performance-sensitive algorithms using GPUs. GPU manufactures do not provide
ccess to the machine code. For example, in the case of NVIDIA Cuda programming language, only Parallel Thread Execution (PTX)
s provided. PTX is a low-level parallel thread execution virtual machine and instruction set architecture (ISA) [10]. Although the
yntax of PTX is similar to that of an assembly level programming language, there is not a one to one correspondence between a
TX instruction and a GPU machine code instruction. Moreover, GPU’s instruction set architecture (ISA) and/or instruction encoding
hanges from architecture to architecture. Another important related problem are compilers. In the case of NVIDIA and Cuda, the
ompiler is a ‘black box’ that applies code optimization. Nevertheless, it is not possible to determine whether compiler optimizations
re always appropriate.

Therefore, there is no way of knowing exactly how the high-level code (Cuda or OpenCL) is actually executed on the GPU. Only
ome general guidelines based on the GPU architecture are indicated by manufacturers. This makes experimentation, profiling, and
esting necessary to ensure effective code improvement. CA are not an exception despite its apparent simplicity.

Getting the maximum performance from GPU implementations is not a trivial task. Knowledge on low level hardware architecture
etails is needed to take advantage of modern GPU full capabilities. Even GPU programmers do not always squeeze the full potential
f their hardware. Concurrent and/or parallel programming has obvious advantages, but it is always more complex to implement.
owever, as mentioned before, high performance is desired.

For a better comprehension of the main bottleneck involved in GPU performance, our analysis is clearly extensible to higher
imensional problems. Nonetheless, many code optimization techniques described in this study can be extended to three-dimensional
A more or less directly. Three-dimensional CA are another good example of massive data structures that need an efficient GPU

mplementation for a better performance.
The contributions of this paper can be summarized in three points:

1. An analysis of which GPU architecture aspects influence most in the performance of CA implementations.
2. An analysis of different new algorithms and/or techniques to improve baseline CA implementations performance on GPUs,

breaking the current GPU performance barrier for some class of CA.
3. The implementation and validation (with experimental results) of the new algorithms and/or techniques proposed. As a result,

a new highly efficient implementation technique is proposed for memory bandwidth bounded CA.

This article is organized as follows. Related works are discussed in Section 2. A generic CA baseline implementation on GPU
s described in Section 3. Performance issues related to the implementation of CA on GPU architectures are analysed in Section 4.
ection 5 presents new coding techniques for higher performance, which are based on previous analysis. The proposed techniques
re tested using some CA models in Section 6. The experimental results are discussed in Section 7. Finally, conclusions and future
ork are outlined in Section 8.

. Related works

There have been some studies on the application of GPUs for CA in the scientific literature. Most of them are focused on
ighlighting the benefits of computing CA on GPUs versus CPUs. Examples can be found in [11,12], and [13]. In these studies,
here is little discussion about GPU optimization algorithms and/or techniques applicable to CA.

In addition, they usually focus on only one cellular automaton: the Game of Life (GoL). GoL was created by Conway [14] in
970 and it is the most referenced and well-known cellular automaton. Unfortunately, these references did not provide data on more
complex) CA models. GoL is considered a ’toy model’ cellular automaton that is often far from real dynamic models. An exception
o this practice can be found, for example, in [15] where laser dynamics is modelled by using a cellular automaton employing high
erformance multiprocessors and GPUs.

Several algorithms and issues that influence the CA performance in GPUs were studied in [16] using again GoL cellular automaton
s an example. Issues such as the influence of shared memory on GPUs and the thread block size on Cuda were analysed. In particular,
his work did not find any influence of the block size on the algorithms used; thus these authors set always the block size to 32 × 32
2

hreads. They also tested an algorithm called ‘‘multicell algorithm’’, in which each GPU thread processes two cells. Although it can

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 1. Pseudo code description of a generic cellular automaton program in GPU.

be beneficial in other types of algorithms or models, it did not improve the results of the baseline GoL implementation. This study
provided several interesting results but left significant room for further research to improve the CA performance on modern GPUs.
No solutions to improve the baseline GoL implementation using GPUs were provided.

Previously, there were also some nonspecific studies in [17]. However, some of the results and conclusions provided were totally
opposed to [16]. This is due to the fact that the authors in [17] worked with old NVIDIA graphic cards (Fermi architecture). These
graphics cards were the first generation of full Cuda programmable GPUs that did not have any kind of cache memory in their
internal architecture. As it will be seen in later sections, this issue is absolutely critical to understand the performance of CA on
modern GPUs.

3. Cellular automata model

The typical bi-dimensional CA (Cellular Automata) workflow on a GPU consists of first declaring two grids (arrays) 𝐴 and 𝐵 in
memory. The first grid 𝐴 represents the current state of the CA and the second grid 𝐵 the state after a time or computation step.
Note that using only one grid for the current and next state would produce incorrect values for GPU execution, since a thread could
modify a cell state before the other thread has read this state. The content of 𝐴 (current state) is prefilled with the initial data of
the CA on the host computer (usually a multiprocessor). Then, its content is transferred to the GPU memory. From that moment on,
both grids (arrays) are only accessed in the GPU memory.

In each time iteration or computation step, the grid 𝐵 (next state) is calculated based on the content of matrix 𝐴 (current state).
At the end of the computation step, the roles of 𝐴 and 𝐵 are exchanged to prepare the next time iteration. In programming languages
like C/C++, this implies the use of pointers (𝑝_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑝_𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒). Cuda and OpenCL are based on C/C++ because they are
programming languages that focus on code efficiency. Once the last iteration or computation step has been completed, the final
contents of the grid containing the current state of the CA must be transferred from the GPU (device) memory to the CPU (host)
memory. Fig. 1 shows a pseudo-algorithm that summarizes a typical CA implementation on a GPU.

The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑡𝑒𝑝 function from Fig. 1 implies the execution of at least one kernel on the GPU. A kernel is nothing more than
a function executed within the GPU. One of the critical aspects of obtaining good performance is minimizing transfers between
the GPU and the host computer as they involve memory latency. This is why memory transfers between GPU and CPU are usually
limited to the beginning and the end of the CA simulation. For the same reason, the number of iterations or computation steps
performed should be relatively high to take advantage of the parallel architecture of the GPU. The use of relatively small 𝐴 and 𝐵
grids of data, the continuous transfer of information between the GPU and CPU, and/or a few time steps can result in an important
decrease of performance.

4. Analysis of CA performance

As stated in the Introduction, there is much room for time enhancement in memory-bounded CA. A preliminary analysis was
done by us in [18], where we show that the GoL implementations are far from taking full advantage of current architectures using
the roofline model [19]. This model is an excellent tool for detecting promptly potential bottlenecks and performance issues. Going
3

forward, in this section, the two factors that have a major influence on the CA performance are to be analysed in more depth.

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 2. Comparison of performance of GPU memory types (global, shared and texture memories) in GoL cellular automaton and different grid sizes. A NVIDIA
GTX 1650 TI GPU (Turing architecture) was used.

4.1. GPU memory model management

The objective in this subsection is to determine which GPU memory management is more effective for CA implementation. GPUs
have several types of memory and it is responsibility of the programmer to determine its management. This first analysis will provide
a first approach of how CA should be coded.

To do this, several CUDA implementations of GoL (Game of Life) cellular automaton were tested. There are only two states
in GoL: dead or alive. Alive cells remain alive if there are two or three alive neighbour cells. Dead cells become alive with three
alive neighbour cells. In any other case, cells become dead or remain dead. Moore neighbourhood (up, down, left, right, and four
diagonals) is taken into account. There are some variations of this cellular automaton, including even 3D versions. The GoL is the
base for much more complex CA.

Cuda is the GPU programming language used in every experiment and implementation of this paper. It is the native programming
language of the NVIDIA manufacturer and it is the predominant one currently. The concepts explained here are perfectly valid and
analogous to other GPU languages such as OpenCL. From the programmer’s point of view, cuda allows the use of three main types
of memory: registers (local memory), shared memory, and global memory.

The general strategy for achieving a good acceleration/performance in GPUs is to try to avoid access to global memory as much
as possible. Copying data from global memory to shared memory or using textures are alternatives to avoid many global memory
accesses. Textures are an additional type of memory present in NVIDIA GPUs that are specifically geared towards image processing.
Thus, three implementations of the GoL based on [20] were tested: using global memory, using shared memory, and using textures.
To study the effect of memory, these three memory models have also been tested for different CA (grid) sizes. The summary of the
results obtained are shown in Fig. 2 for a total of 1000 time steps.

The overall conclusion that can be drawn from these first results is that although textures are ideal for processing 2-dimensional
images, they are not so ideal for implementing bi-dimensional CA. As for the implementation of the GoL using global vs. shared
memory at the thread block level, theory indicates that using shared memory can reduce access to global memory if data sharing
among threads is carefully programmed. The global memory data bus acts as a bottleneck in case all threads want to access it.
However, it is interesting to remark that GoL experimental results in Fig. 2 do not confirm this statement. Results using only global
memory are slightly worse than those of the shared memory case. This effect is more noticeable for larger (grid) CA.

A detailed analysis of the CA model (see previous Section 3) and the GPU architecture itself can provide the key to explain this
behaviour. The cellular automaton grid (data matrix) that has the current state of the CA only needs to be read from the global
memory for each time/computation step. In addition, this data structure is not modified during the entire computation step. This
data, like the automatic variables defined in a thread block, are stored in cache memory and in registers within a Multiprocessor
Streaming (SM). Moving data that is read from global memory to shared memory in a block of threads creates an unnecessary
overhead because that information is already cached either in registers or in the 1 or 2 cache memory level.

Write memory access has a similar behaviour. The cell information processed by a block of threads is written only once and in
a different area of the global memory. Therefore, moving the information from global memory to shared memory in each block of
threads, and then again to global memory, does not reduce the data traffic to global memory. It only generates a greater overhead
by having to move data unnecessarily from one type of memory to another. Cache memory is again a key component because it
groups writes in blocks without programmer intervention. Shared memory is useful to gain performance only when threads in a
block have to share data frequently over the same memory area (i.e., read/write several times to the same data in the same time
step), before writing the results to global memory. This is not the case of the GoL and many CA.
4

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 3. Acceleration obtained when changing the GoL cellular automaton cell data type from ‘‘int’’ to ‘‘char’’. Fifteen independent executions (tests) for each
grid size and data type were performed. The mean time in milliseconds was taken. An NVIDIA GTX 1650 TI graphics card was used. Only the main GoL Cuda
kernel was measured using the NVIDIA Profiler. The main Cuda kernel run time is between 74% (256 grid size) and 99% (16384 grid size) of the total program
execution time on the GPU.

As a first conclusion, it can be stated that, having enough internal registers and a good cache memory system (which is being
improved with each new GPU generation), CA implementations tend to read and write each cell only once from the global memory
in each time/computation step. This has also a positive aspect: programming using only global memory is easier, and therefore
Cuda code is cleaner. The negative effect of using shared memory when programming CA in the absence of cache memory was also
briefly commented in [16].

4.2. Cell size

Another factor to study involves reducing cell size. In the experiments of Section 4.1, the data type ‘‘int’’ was used for each cell.
That means 32 bits per cell in memory. This allows to code up to 232 possible states per cellular automaton (grid) cell. In the case
of the GoL, only two states per cell are possible (live or dead). Therefore, an 8-bit data type ‘‘char’’ per cell is enough for the GoL
cellular automaton and many CA. This reduces memory usage by 4 times with a consequent decrease in memory latency. There are
studies of GoL on multiprocessors such as [21] in which cells are encoded with a single bit. Nonetheless, apart from the technical
complexity, this solution is not generalizable to other CA. Because Cuda (and OpenCL) is based on C/C++ programming language,
it is not possible to use data types smaller than 8 bytes (‘‘char’’ type).

The Fig. 3 shows the acceleration factor obtained by changing the cell type from ‘‘int’’ to ‘‘char’’ in the GoL cellular automaton.
It can be clearly seen that:

1. The acceleration is very irregular for small grid sizes: 1% for a 256 × 256 grid size and 41% for a 512 × 512 grid size.
2. Then, the performance improvement tends to be constant for large grids. This is determined by memory bandwidth constraints

and GPU functional units.

The maximum acceleration obtained is low in proportion to the decrease in memory usage. GPUs are optimized to work with
32-bit floating point data, which is the same size as the ‘‘int’’ data. Although the 8-bit ‘‘char’’ data type represents a decrease of
x4 data in memory, the maximum performance obtained is below 20% for large grid sizes (see Fig. 3). GPUs have functional units
designed for float or double data types that involve 32 or 64 bits respectively. The 8 bit char data type is not well suited for the GPU
functional units, and can have negative effects in relatively small CA grids as it can be observed in Fig. 3. Nevertheless, in the case
of large CA, codifying each CA cell with a smaller data size variable reduces the overall data size and therefore the performance
should be better. This gives a hint to readdress memory accesses by using standard and wide variables, as it will be presented in
Section 5.2.

5. Techniques for runtime-efficient coding of CA

Based on the previous works mentioned in Section 2, CA model description of Section 3, and the analysis results of Section 4,
some techniques for promoting CA efficient performance are proposed. Some of these techniques have been used before, but no
study has been carried out to extend them to generic CA on GPUs.
5

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.

e
s
t
t
𝑖
P

s
c
9
l

m
b

5

T
i
t
a
B

(
i

a

t
w

8
a

T
w
S

5

c
l

o

C
b

o
t

d
I
t

e

5.1. Look-up tables

An interesting performance improvement consists of trying to reduce or eliminate selective structures (𝑖𝑓 − 𝑡ℎ𝑒𝑛 − 𝑒𝑙𝑠𝑒). GPUs
xecute the same instructions for all threads (basic computational units) in a warp or block. This style of programming, called
ingle-instruction multiple-thread (SIMT), works well when all threads take the 𝑖𝑓 − 𝑡ℎ𝑒𝑛 path at once. Otherwise, several passes of
he block/warp execution are required. One pass will be needed for those threads that follow the 𝑡ℎ𝑒𝑛 part and another pass for
hose that follow the 𝑒𝑙𝑠𝑒 part. These passes are sequential to each other, thus incrementing the execution time [22]. In general, the
𝑓 − 𝑡ℎ𝑒𝑛 − 𝑒𝑙𝑠𝑒 or 𝑠𝑤𝑖𝑡𝑐ℎ − 𝑐𝑎𝑠𝑒 selective structures appear naturally when coding CA rules and it is convenient to suppress them.
rogrammers usually do not take this issue into account when coding CA.

An alternative is to use what it is going to be defined in this study as ‘‘Look-Up Tables’’ (LUTs) [18]. These tables are data
tructures that have as input the current state of a cell (row coordinates) and the state and/or number of neighbouring cells (column
oordinates). They are coded as bi-dimensional arrays. For instance, in the case of the GoL, this involves using a matrix of 2 rows by
columns. The rows represent the two possible states of a cell (live or dead) and the columns represent the number of neighbouring

ive cells. The content of this matrix indicates the state at which the cell should change in the next time/computation step.
LUTs coding and management is very dependent on the cellular automaton. Nevertheless, in the case of CA with intensive

emory usage, the transition rules between states tend to be relatively simple (i.e., need low computational resources). LUTs can
e simplified in this set of CA and are relative easy to code. This issue will be analysed in detail with practical CA in Section 6.

.2. Packet coding

A plausible solution to the limitation imposed by the GPU bandwidth is to access memory only in 𝑓𝑙𝑜𝑎𝑡 or 𝑑𝑜𝑢𝑏𝑙𝑒 data chunks.
herefore, each thread computes more than one cell. In this way, the computational load of each thread is increased. As mentioned

n Section 2, a somewhat related but different approach was analysed and named ‘‘multicell algorithm’’ in [16], in which each
hread (cell) accesses to its neighbours sequentially (see Fig. 4, middle). However, memory accesses were done without taking into
ccount the GPU memory data bus architecture. As a consequence, these authors obtained slightly worse results even than the GoL
aseline version.

Although the original idea was correct, because the ratio of read accesses per cell is reduced from 9/1 (3 × 3 for a cell) to 12/2
4 × 3 for two contiguous cells), the GPU architecture is still not really used efficiently. When a thread processes two cells of a CA,
t produces two different (non-coalesced) access requests to the memory (see Fig. 4, middle).

In contrast, it is possible to read/write a set of cells packed in just one memory access (see Fig. 4, bottom). Therefore, memory
ccess requests can be reduced by x2, x4, or more.

To develop this algorithm, several cells must be codified in a ‘‘supercell’’ whose size is that of the Functional Unit bus width. In
he case of programming languages like C/C++ (and cuda), the maximum data size available is 64 bits. The ideal scenario, however,
ould be to utilize even higher data sizes.

Fig. 5 shows how to code 8 cells of the same type in a supercell for the case of GoL computation. It can be observed that, although
neighbouring supercells must be read to calculate the new states of a particular supercell, central cells (that is, all except the first

nd the last one) only need to access cells from the upper and lower supercells.
This technique, which is going to be called ‘‘Packet Coding’’ in this paper, has been scarcely used and for very specific cases.

o the authors’ knowledge, the unique deep study in the field of CA is [21] and only multiprocessors were used. In [21] the GoL
as coded with 1 bit per cell for an CPU implementation. The performance results were remarkable; however, as mentioned in
ection 4.2 this solution is not extensible to every CA. Experiments using Packet Coding for different CAs are described in Section 6.

.3. Temporal blocking

A third approach for improving CA performance on GPUs is to take advantage of the studies that have been made in stencil
omputing [23]. Stencil computation has been used in many applications and ranges from simulation to machine vision, machine
earning applications, or partial differential equation (PDE) solving. This has led to a great deal of research.

A stencil code consists of updating the elements of an array (2D or 3D) based on a fixed pattern. These array elements are also
ften called cells. The similarities with CA are obvious and GPUs have also been used to achieve higher performance [24,25].

Part of the solution to the low CA performance is to improve the utilization of the GPU computer units. In stencil computing, the
A grid is usually divided into subplanes of the same size (named tiles in stencil computation) and each subplane or tile is processed
y a thread block. At each time/computation step, all tiles of the grid are fully processed.

Going further, another more complex technique for stencil computation is temporal blocking, which enhances the temporal reuse
f data, and thus reduces the number of data transfers from/to the global GPU memory. It is based on a time-tiled execution, but
he operations from several consecutive time steps are combined to exploit data reuse in memory [26].

However, the cell values that are in the edges (ghost or halo zones) depend on other tiles. In the case of GPUs, this means a
ependency between thread blocks. This implies that in temporal blocking there must be periodic synchronization between threads.
n Fig. 6 a basic scheme of how temporal blocking could be applied to a CA divided into 4 tiles is shown. This technique applied
o 3-dimensional stencils is called 3.5D blocking in [27].

Global memory bandwidth reduction is thus achieved by combining several time/computation steps of the same tile to be
6

xecuted consecutively. Intermediate data reside in registers, shared memory, or cached memory. The problem when using GPUs

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 4. Memory access patterns comparison for different CA codifications when accessing the North neighbours of a warp of cells (likewise for the rest of
neighbours). From up to bottom: in a classical implementation looking for the north cell provokes a coalesced access to a set of consecutive bytes; on the
contrary, the multicell coding introduces non-coalesced accessing (only one out of two elements in the case of a two-cell per thread implementation); finally,
the novel packet coding reproduces again coalescing accesses but for wider element sizes.

Fig. 5. Packet coding example: one supercell codes 8 cells, and 8 supercells are needed to compute a new supercell in a cellular automaton using Moore
neighbourhood.

is that, unlike CPUs, its implementation is more complicated than spatial blocking [28]. For example, for every GPU, it is
necessary to calculate and ensure that a thread block has enough shared and local memory to save data for calculating a group
of time/computation steps. Consequently, examples of stencil computation in GPUs and temporal blocking are rare.

To apply this technique to CA (especially to the most complex ones), automatic code generators should be used. The two
environments that do this in GPUs efficiently are STENCILGEN [29] and AN5D [30]. In addition, the AN5D currently has the best
performance results in stencil computing and GPUs and it is publicly available for use.

AN5D improves the 3.5D blocking algorithm obtaining the best performance in stencil computation for both single and double
precision floating point. Only a 𝑝𝑟𝑎𝑔𝑚𝑎 directive is necessary to indicate which loop must be translated into Cuda code. In AN5D,
the C code that is translated into Cuda code must be composed only of three ‘for’ loops and a variable assignment. It is not
possible to include selective structures (if-else) or previous instructions that have dependencies on the cell values. AN5D must
7

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.

#

Fig. 6. Basic example of overlapped tiling (temporal blocking) in a GPU.

resolve dependencies at compiling time. For all these reasons, look-up tables (see Section 5.1) must be used too. Therefore, the C
sequential code must be codified as shown below, so that AN5D can be compiled to cuda:

. . .
pragma scop

fo r (i n t t = 0; t < TIMESTEPS ; t++)
fo r (i n t i = 1; i < SIZE − 1; i ++)

fo r (i n t j = 1; j < SIZE − 1; j ++) {
gr id [(t +1)%2][i][j] =

lookup_ tab le [gr id [t %2][i][j]]
[(gr id [t %2][i −1][j] +
gr id [t %2][i +1][j] +
8

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.

#

Table 1
Mean execution time and standard deviation (left and right values between parenthesis in each table cell) of 15 independent runs in milliseconds
of the Game of Life (GOL) cellular automaton for different GPU implementations: baseline, baseline using a look-up table to code rules, temporal
blocking using AN5D framework (with default options), packet coding using 32 bits per cell (4 subcells of 8 bits) and packet coding using 64
bits per cell (8 subcells of 8 bits). Best case for each algorithm/technique and each grid size is presented in bold.
Grid size Baseline Cuda

implementation
Look-up table AN5D

(Temporal blocking)
32 bits packet coding
(4 subcells per cell)

64 bits packet coding
(8 subcells per cell)

256 6.2 (0.0) 5.8 (0.0) 25.7 (0.1) 3.7 (0.0) 3.9 (0.0)
512 20.9 (0.4) 20.4 (0.3) 34.9 (0.2) 8.9 (0.0) 10.5 (0.2)

1024 88.5 (9.7) 87.4 (9.7) 82.3 (7.5) 39.6 (0.3) 38.6 (0.8)
2048 325.2 (11.6) 305.0 (0.9) 264.8 (1.8) 128.1 (8.0) 114.9 (9.3)
4096 1299.2 (2.6) 1234.4 (1.2) 1036.0 (8.8) 488.5 (1.5) 436.0 (1.4)
8192 5300.5 (16.6) 5052.2 (16.4) 4228.5 (18.2) 1977.6 (8.6) 1770.2 (10.8)

16384 21303.0 (60.8) 20324.4 (58.6) 17066.8 (71.8) 7960.2 (31.4) 6996.2 (27.2)

gr id [t %2][i][j −1] +
gr id [t %2][i][j +1] +
gr id [t %2][i −1][j −1] +
gr id [t %2][i −1][j +1] +
gr id [t %2][i +1][j −1] +
gr id [t %2][i +1][j +1])] ;

}
pragma endscop

. . .

The variable assignment inside the three loops calculates the new cell state based on neighbour cells. The main data structure
used should be only a 3 dimensional array. First array dimension contains the current and new grids. The grids swap their roles in
each time step. Second and third array dimensions contain the rows and columns.

6. Experimental results

In this section, the algorithms and techniques proposed before are verified experimentally. Four representative CA that have been
proposed in the scientific bibliography are selected. Two CA have Moore neighbourhood and two have Von Neuman neighbourhood.
The number of states ranges from 2 to 15. Rules are diverse and the NVIDIA profiler indicates memory bandwidth overhead when
using the standard baseline implementation version.

In the next subsections, the results obtained for each cellular automaton are described. For all experiments in this paper, a
NVIDIA GTX 1650 TI graphics card was used in a computer with an AMD Ryzen 5 3600 processor. Linux-Mint 20.04 operating
system, NVCC 10.1, and GCC 9.3 compilers were part of the software configuration. Cuda programming language was used to code
CA. Every test of this article was executed 15 times and the average and standard deviation are presented.

Experiments (Cuda implementations) use different CA grid sizes. From 256 × 256 cells to 16384 × 16384 cells. Results are
detailed in tables instead of graphics to appreciate the performance differences in small grid sizes. The baseline Cuda implementation
result is always placed at the first table column. This is the reference implementation when comparing with the other results. Only
the CA main Cuda kernel is measured using the NVIDIA Profiler in each case. Initial procedures like setting up the original grid
states, are not taken into account. The main CA kernel computes the time steps. It represents between 72% (256 × 256 grid) and
99% (16384 × 16384 grid) of the total execution time for the baseline Cuda implementation. For all experiments, 1024 time steps
were used. The source code of all experiments is available at [31].

6.1. Game of life

The Game of Life (GoL) cellular automaton was the first proposed cellular automaton. This simple cellular automaton is ideal
to make a first test on the algorithms and techniques proposed in the sections before. In Table 1 there is a summary of the results
obtained.

Results in Table 1 include GoL Cuda implementation using only LUTs, AN5D framework, packet coding of 32 bits per cell, and
packet coding of 64 bits per cell. The average execution times in the baseline and LUTs versions are very similar. The AN5D version
has better execution time but only for 1024 × 1024 grid size and above. In the case of 16384 × 16384 GoL grid (the biggest grid),
there is a speed up of 25% when comparing with GoL baseline execution time. Packet coding implementations present the best
results: a speed-up above 300% is achieved for the largest CA. However, there is almost a 14% time improvement when using the
64 bit packet coding algorithm (8 subcells per cell) instead of the 32 bit version (4 subcells per cell). Therefore, the next CA will
use this packet coding version.

A Kruskal–Wallis test [32] was performed to determine whether or not there was a statistically significant difference between
the median run times of the different techniques or algorithms used. Each technique or algorithm was applied to 7 different grid
sizes (from 256 to 16384) as shown in Table 1.
9

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 7. Example of Forest Fire cellular automaton evolution for a 256 × 256 grid and 300 time steps. Fire cells are showed in red colour, tree cells in green
colour, empty cells in brown colour and ash cells in grey colour.

The test revealed that the behaviour of all algorithms/techniques used was the same (H = 0.475, p = 0.924). That is, there was
no statistically significant difference in behaviour between two or more of the tested algorithms. Similar results were obtained in
the rest of the CA tested (See Sections 6.2–6.4):

- Forest Fire (H = 0.255, p = 0.968)
- Cyclic Cellular Automaton (H = 1.241, p = 0.871)
- WireWorld (H = 0.475, p = 0.924)

A series of Wilcoxon signed-rank tests [33] were also performed to determine whether there were differences between the baseline
version of GoL and the other algorithms/techniques used (pair-wise comparisons). The tests revealed that there was a statistically
significant difference in the mean execution time between the baseline version and the 32-bit packet coding (z = 0.0, p = 0.015625),
64-bit packet coding (z = 0.0, p = 0.015625) and Look-Up Table (z = 0.0, p = 0.015625) versions. For AN5D, the difference was
not as significant (z = 5.0, p = 0.15625). This is primarily because AN5D behaves worse than the other algorithms/techniques for
small grid sizes.

6.2. Forest fire

The Forest Fire cellular automaton is used in simulating how a fire spreads in a forest. There are many other models based on CA
that study how a fire is propagated (see [34,35] for instance). The implementation selected here is based on Ref. [36]. This model
has been chosen because it complies with temporal blocking and AN5D. The transition rules are: a ‘‘tree cell’’ with at least one ‘‘fire
cell’’ neighbour fire becomes a ‘‘fire cell’’. A ‘‘fire cell’’ becomes ‘‘ash cell’’. An ‘‘ash cell’’ becomes ‘‘empty cell’’ if it does not have
a neighbour ‘‘fire cell’’. An ‘‘empty cell’’ remains empty. Fig. 7 shows an example of a Forest Fire cellular automaton execution.

In this model, LUT and AN5D implementations were considered. Forest Fire uses Von Neumann neighbourhood (4 cells) instead
of Moore neighbourhood (8 cells) used in GoL. This issue is important when coding look-up tables in AN5D.

If an ‘‘empty cell’’ is labelled with 0, a ‘‘tree cell’’ with 1, and an ‘‘ash cell’’ with 2, then a ‘‘fire cell’’ should be labelled with
9 to implement the cellular automaton rules in a look-up table. It must be taken into account that AN5D only allows arithmetic
operations (sums) of neighbour cells when calculating state transitions. Thus, when using Von Neumann neighbourhood, the state
𝑖 + 1 value must be higher than 4 𝑥 state 𝑖 value, if any rule (state transition) of 𝑖 (or lower than 𝑖) depends on detecting a state
𝑖 + 1. Fig. 8 illustrates this issue using two examples of cell transitions in the Forest Fire cellular automaton.

In conclusion, the LUT in Forest Fire cellular automaton has 9 rows and 9 × 4 columns. Rows between 4th and 8th are not used.
In the worst case, a cell can have 4 ‘‘fire cells’’ so 36 columns (9 × 4) in the array are needed in a Cuda implementation.

There is an alternative to this oversized look-up table: use a compacted array. Instead of adding neighbour states/values, a direct
neighbour state check can be performed. Thus, look-up tables can be simplified. In case of Forest Fire this can be done just detecting
a ‘‘fire cell’’.
10

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 8. An example of Forest Fire cellular automaton cell/state transitions. ‘‘Fire cell’’ state must be 9 value in order to easily detect (only using neighbour
sums) whether there is a neighbour ‘‘fire cell’’ or not.

Table 2
Mean execution time and standard deviation (left and right values between parenthesis in each table cell) of 15 independent runs in
milliseconds of the Forest Fire cellular automaton for different GPU implementations: baseline, baseline using a look-up table, baseline
using a compact look-up table (and an additional operation to detect a ‘‘fire cell’’), and temporal blocking using AN5D framework (with
default options). Best case for each algorithm/technique and each grid size is presented in bold. .
Grid size Baseline Cuda

implementation
Look-up table Compact look-up

table
AN5D
(Temporal blocking)

256 5.0 (0.0) 5.0 (0.0) 6.0 (0.0) 18.7 (0.2)
512 17.5 (0.2) 17.5 (0.2) 21.5 (0.3) 20.1 (0.2)

1024 80.5 (5.3) 81.8 (4.0) 90.3 (10.0) 59.1 (0.3)
2048 289.5 (5.7) 281.1 (11.0) 320.1 (0.5) 210.1 (2.7)
4096 1152.0 (10.0) 1145.1 (12.6) 1289.8 (1.8) 677.3 (7.8)
8192 4655.6 (50.9) 4714.0 (36.4) 5275.1 (9.4) 2588.1 (20.0)

16384 18692.4 (253.5) 18023.8 (114.8) 23371.4 (66.2) 10775.4 (558.7)

The Cuda code of the main kernel could be similar to this:

. . .
c e l l = gr id [i][j] ;
i s _ f i r e = gr id [i −1][j]==FIRE | | gr id [i +1][j]==FIRE | |

gr id [i][j −1]==FIRE | | gr id [i][j+1]==FIRE ;
new_ce l l = lookup_ tab le [c e l l][i s _ f i r e] ;
. . .

The compact look-up table using this approach is reduced to 4 rows (one for each cell state) and 2 columns (0 if there is no ‘‘fire
cell’’ or 1 if there is at least a ‘‘fire cell’’). The cost of this memory usage reduction yields an extra computation time for each cell.
Because each cell has to perform 4 comparisons and 3 OR (sum) operations.

In Table 2 it can be seen the results obtained for the Forest Fire implementation. The compact look-up table version has the
worst results. The extra computational time needed for each cell does not compensate the look-up table memory reduction. In this
11

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 9. Example of Cyclic Cellular Automaton evolution for a 256 × 256 grid and 300 time steps. There are 15 different cells/states. Cell colours range from
purple light to green light.

Table 3
Mean execution time and standard deviation (left and right values between parenthesis in each table cell) in milliseconds of 15 independent
runs of the Cyclic Cellular Automaton for different GPU implementations: baseline, baseline using a look-up table, packet coding using 16 bits
per cell (2 subcells per cell), packet coding using 32 bits per cell (4 subcells per cell) and packet coding using 64 bits per cell (8 subcells per
cell). Best case for each algorithm/technique and each grid size is presented in bold.
Grid size Baseline Cuda

implementation
Compact look-up
table

16 bits packet coding
(2 subcells per cell)

32 bits packet coding
(4 subcells per cell)

64 bits packet coding
(8 subcells per cell)

256 11.7 (0.4) 5.5 (0.0) 8.0 (0.0) 3.7 (0.0) 6.4 (0.0)
512 41.4 (0.7) 19.4 (0.3) 26.1 (0.1) 10.1 (0.1) 13.1 (0.3)

1024 136.4 (10.1) 87.1 (8.3) 97.4 (9.9) 42.1 (0.4) 42.3 (0.3)
2048 514.6 (6.8) 303.2 (12.1) 330.2 (1.0) 132.1 (9.3) 127.7 (13.9)
4096 2102.3 (30.2) 1236.2 (11.4) 1328.8 (9.9) 528.1 (8.5) 499.7 (11.8)
8192 8302.9 (67.7) 4887.5 (51.9) 5264.6 (17.8) 1974.1 (8.4) 1858.9 (36.0)

16384 33602.7 (110.2) 21761.4 (80.4) 20818.0 (51.6) 8033.1 (141.2) 7289.8 (127.1)

case, the small memory reduction is not significant. The original look-up table implementation improves again the Cuda baseline
solution. Nevertheless, as in GoL, the improvement is still not significant. On the other hand, the AN5D solution can speed-up the
baseline solution by almost 80% (8192 × 8192 grid size). This is a relevant improvement when comparing to baseline GoL and
AN5D GoL versions where up 25% of speed-up was obtained.

The Wilcoxon signed-rank tests performed in this cellular automaton showed that there was a statistically significant difference
in the mean execution time between the baseline version and the compact look-up table (z = 0.0, p = 0.015625). There was no
statistically significant differences in the mean execution time between the baseline version and the look-up table (z = 0.0, p =
0.015625). It can be observed that the absolute time values for each grid size are just slightly better in case of the look-up table
algorithm/technique when comparing to the baseline version. The AN5D was near to have also a significant difference in the mean
execution time (z = 3.0, p = 0.078125). Again, the abnormal behaviour of AN5D for small grid sizes is the main cause of this result.

6.3. Cyclic cellular automaton

The Cyclic Cellular Automaton was created by David Griffeath in 1991 [37]. Applications of Cyclic CA range from sensor
networks [38] to crystallization process simulations [39].

Transition rules are again simple: an 𝑖 cell state becomes an 𝑖+ 1 cell state if there is a 𝑖+ 1 neighbour cell state. There are one,
two-and three-dimensional versions of Cyclic CA.

Here a 15 state bi-dimensional Cyclic Cellular Automaton was tested. Von Neumann neighbourhood is again considered. In Fig. 9
it can be seen an evolution during 300 time steps. The spiral patterns that form the Cyclic Cellular Automaton after a period of time
can be observed clearly.
12

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.

a
T
i
f

P
C

d
=
b

6

i

t
t
‘

c
o
s

c

v
h
(

Table 4
Mean execution time and standard deviation (left and right values between parenthesis in each table cell) in milliseconds of 15 independent
runs of the WireWorld Automaton for different GPU implementations: baseline compression (2 cells per byte), baseline using a look-up table,
temporal blocking using AN5D framework (with default options) and packet coding using 64 bits per cell (8 subcells per cell). Best case for each
algorithm/technique and each grid size is presented in bold. (*) No time measurement was possible because NVIDIA profiler limitations.
Grid size Baseline Cuda

implementation
Compression
(2 cells per byte)

Look-up table AN5D
(Temporal blocking)

64 bits packet coding
(8 subcells per cell)

256 6.1 (0.0) 4.7 (0.0) 6.0 (0.1) 24.0 (0.3) 4.0 (0.0)
512 20.8 (0.0) 13.7 (0.1) 20.5 (0.2) 26.3 (0.4) 11.1 (0.0)

1024 86.1 (8.0) 51.2 (0.2) 89.3 (9.4) 87.9 (2.6) 40.5 (0.1)
2048 311.9 (7.6) 183.7 (5.3) 319.4 (8.0) 287.5 (8.4) 125.9 (11.8)
4096 1240.4 (3.0) 722.6 (1.9) 1230.8 (22.7) 961.2 (9.8) 460.4 (3.1)
8192 5176.8 (18.4) 3069.8 (27.7) 5067.6 (114.6) (*) 1881.0 (11.7)

16384 21746.7 (145.1) 12428.2 (305.9) 20498.8 (79.3) (*) 7721.0 (36.6)

Experiments applied to this cyclic cellular automaton include using a look-up table and packet coding in three versions: 16, 32,
nd 64 bits. The 64 bit version has again better performance than the 32 bits for large CA. The 16-bit version results are interesting.
hey show that even a low packing coding rate (2 subcells per cell) improves the baseline version. Nevertheless, the performance

s far from the 32 and 64 bit versions. It is again experimentally proved the importance to fit the data memory access to the GPU
unctional units (32 bits for float and 64 bits for double). The results are summarized in Table 3.

The look-up table was compacted in this case. The uncompacted look-up table using the same codification explained in the Forest
Fire would be extremely big (its size grows exponentially due to 15 states) and it would be difficult to code and to initialize. On
the contrary, the compact look-up table size results to have just 16 × 2 bytes and the resulting code is clear and easy to implement.
erformance using an uncompacted look-up table is worse because very big look-up tables interfere in the cache access. Thus, this
yclic Cellular Automaton version uses a code similar to Forest Fire cellular automaton with a compact look-up table like this:

#def ine N 15
. . .
c e l l = gr id [i][j] ;
t r a n s i t i o n = gr id [i −1][j]==(c e l l +1)%N | |

gr id [i +1][j]==(c e l l +1)%N | |
gr id [i][j −1]==(c e l l +1)%N | |
gr id [i][j +1]==(c e l l +1)%N;

new_ce l l = lookup_ tab le [c e l l][t r a n s i t i o n] ;
. . .

In contrast to the GoL and Forest Fire, the implementation with a compact look-up table does show a significant speed-up
improvement (up to 70% for large grid sizes and more than x2 for small grid sizes) when compared to the Cuda baseline version.
Nonetheless, it is the packet coding implementation that boosts the performance above 450% in case of large grids (16384 × 16384).

The Wilcoxon signed-rank tests performed for the cyclic cellular automaton revealed that there was a statistically significant
ifference in the mean execution time between the baseline version and every algorithm/technique used: look-up table (z = 0.0, p
0.015625), packet coding 16 bits (z = 0.0, p = 0.015625), packet coding 32 bits (z = 0.0, p = 0.015625) and packet coding 64

its (z = 0.0, p = 0.015625).

.4. Wireworld

The Wire World cellular automaton was created by Brian Silverman in 1987. It is well suited to simulate electronic circuits and
s Turing-complete. It was even used to simulate a complete computer [40].

This cellular automaton uses Moore neighbourhood. There are four states or cell types: empty, wire, electron head, and electron
ail. Rules are: ‘‘empty cells’’ remain empty. An ‘‘electron head cell’’ turns always into an ‘‘electron tail cell’’. An ‘‘electron tail cell’’
urns always into a ‘‘wire cell’’. A ‘‘wire cell’’ turns into a ‘‘electron head cell’’ if exactly one or two of the neighbouring cells are
‘electron head cell’’. Otherwise remains wire.

For test purposes, a concentric set of intercommunicated wire squares are simulated. At step 0, a set of random ‘‘electron head
ells’’ are placed in ‘‘wire cells’’. In Fig. 10 there are four cellular automaton screenshots for a 1024 step simulation. It can be
bserved that the number of electron cells grow in each time step and they almost cover the whole wire circuit at the end of the
imulation.

In this last experimental case, every proposed technique is tested and compared. There is also a new implementation:
ompression. CA were tested until now using a 𝑐ℎ𝑎𝑟 type (8 bits) per cell.

In Table 4 experiment results performed using the Wire World Cellular Automaton are showed. The compression version scales
ery well: there is almost a 50% of speed up improvement when comparing to the baseline version. Now the look-up table version
as again lower execution time than the baseline version, but is far from the compressed implementation performance. The AN5D
temporal blocking) framework provides better results than the look-up table and baseline versions for 1024 × 1024 and 2048 × 2048
13

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
Fig. 10. An example of a WireWorld cellular automaton evolution for a 256 × 256 grid and 1000 time steps. Empty cells are showed in grey colour, wire cells
are showed in yellow colour, electron tails are showed in red colour, and electron heads are showed in blue colour.

grid sizes. Nevertheless, the results for 8192 × 8192 and 16384 × 16384 sizes could not be obtained due to the limitations of the
NVIDIA profiler.

Finally, the Wilcoxon signed-rank tests were again performed for the Wire World cellular automaton. Results showed that there
was a statistically significant difference in the mean execution time between the baseline version and: the compressed version (z =
0.0, p = 0.015625), and packet coding 64 bits (z = 0.0, p = 0.015625). The AN5D could not be compared due to the lack of the
results for the 4096, 8192, and 16384 grid sizes.

Packet coding technique has the best performance results for each grid size, even when compared with the compression
implementation.

7. Discussion

Evidently, due to the vast types of CA, a finite set of experimental CA tests can never be exhaustive. However, the main aspects
of ‘classical CA’ are captured in this paper and they allow to draw some important conclusions on the run-time efficiency of their
execution over GPUs. To the best of our knowledge, no one has so far been able to improve the baseline implementations on GPUs
of the four CA shown here. This can be extended very probably to many other CA because, firstly, there have not been many efforts
in the current literature to improve the runtime efficiency on GPU and, secondly, some of the necessary codifications are actually
very unconventional. The baseline GPU implementation of a CA can be beaten by several improvements that allow to come closer
to the hardware constraints (especially that of memory bandwidth) imposed by the platform. In this work, we have achieved to
outperform the baseline standard Cuda runtime using three different techniques. Going further, we think that our results can be
generalized to the majority of memory bounded CA, using some of the techniques shown here.

Translating CA rules into a look-up table always improves the baseline solutions, because the common ‘if-then-else’ set of
structures (used to code CA rules) can have an important performance penalty for a big number of states (above 4). Of course,
a study of how to codify CA rules into a look-up table must be thoroughly done, mainly to avoid excessive comparison, logical and
multiple indexing operations.

However, for CA with a small number of states (between two and four), like GoL, Forest Fire, and Wire World, the benefit of
using a look-up table is not large (see Tables 1–3). Even a negative performance impact can be seen in these cases if a compact
look-up table is used to reduce the size of the table arrays at the cost of a higher computation time, as shown in Forest Fire results
in Table 2). On the contrary, CA with a bigger number of states, like the cyclic cellular automaton, can achieve up to a 50% of
speed-up (see Table 3) even when look-up tables are compacted. The complexity of implementing a look-up table depends on the
cellular automaton, but it is essential when using the AN5D framework (temporal blocking, see Section 5.3).

Temporal blocking has never been used before to implement CA solutions in GPUs. The reason is probably the implementation
complexity and/or the lack of meta-compilers to generate Cuda and/or OpenCl temporal blocking code. First, the experimental
results obtained in this study prove that temporal blocking always improves CA baseline solutions. As expected, this performance
improvement is only noticeable in large CA grids: above 1024 × 1024 in the cases of GoL and Wire World, and above 512 × 512 in the
14

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
case of Forest Fire. Temporal blocking loses its potentiality when CA grids can be cached in L1 or L2 cache memory. Second, AN5D
is the only publicly available framework to implement temporal blocking in stencil computation. Unfortunately, this framework is
not flexible enough to implement any cellular automaton. However, the implementation simplicity of AN5D (only adding 𝑝𝑟𝑎𝑔𝑚𝑎𝑠
to a sequential C code) makes it an interesting option. Further research should be addressed to create additional temporal blocking
frameworks for CA.

Packet coding is by far the best performance coding solution for memory bandwidth bounded CA. Baseline implementation
results are always improved for every cellular automaton tested and for any grid size. Performance improvements can achieve up to
5x acceleration. This solution takes advantage of the fact that GPU data buses are designed to access large data chunks in parallel.
In Section 6 it has been experimentally proved that it is much better to issue one 64 bit data bus access than eight 8 bit data bus
accesses. In the later case, the memory access coalescing of 8 hardware threads (cells) is not done properly and the threads compete
for the data bus, while there is only one data access in the former case. Data bus management is therefore critical. Even CA with
half grid size in memory (compressed CA) can get worse performance results if the data are not managed in an efficient way (see
Comparison of Wire World compression and packet coding results in Table 4). Through our study, it can be clearly concluded that a
CA implemented in GPU with: 𝑎) simple transition rules, 𝑏) a relative big number of different states (above 4), and 𝑐) Von Neuman
neighbourhood, can obtain essential performance improvements using packet coding techniques.

In addition, another technique can speed up even more the execution due to the evident memory reduction that it would
introduce: compressing the cell state into the minimum number of bits. Compression is for some CA easy to apply if it does not
complicate the rule coding. Reviewing ’classical bi-dimensional CA’ described in the scientific bibliography, it can be concluded
that most of them need a maximum of 16 states or below. These CA include all examples used in this paper plus Brian’s Brain,
Codd’s cellular automaton, Langton’s Loop, CoDi, and Langton’s ant, among others. A good exception to these CA is the original
Von Neumann original cellular automaton (29 states) and some variations like Nobili’s Cellular Automaton (32 states). Therefore,
using a 4 bit coding scheme for every cell can be enough for a big CA set. That implies a 50% of memory usage reduction and
less memory-related contingencies. This implementation case can be an even better reference than the baseline Cuda version when
comparing the goodness of other techniques and/or algorithms proposed in this study (see Wire World results in Table 4).

It must be remarked that these techniques may not be necessarily beneficial when applied to CA with complex rules (i.e., high
computational load per hardware thread). This is clear for the packet coding technique because a single thread must perform the
computational work of several cells. In this case, a baseline solution where each hardware thread computes a single cell may be
more efficient. Meanwhile, other techniques like using look-up tables or temporal blocking could still obtain better results.

Finally, despite the diversity of the CA tested here, their diverse implementation techniques, and the variability of their initial
conditions, it has been demonstrated in Section 6 that there are no statistical differences between the median run times of the
different techniques or algorithms. This is a consequence of the high degree of parallelization of the simulation models over a GPU,
which gives them a strong scaling, i.e., given one of this CA model having a data size X and a runtime Y, then increasing the data
size to 4*X implies an approximate runtime of 4*Y. The results of the Kruskal–Wallis test reflect this fact. On the contrary, when
making a pairwise comparison through the Wilcoxon signed-rank test between the baseline implementation and each of the other
algorithm results, it is proved that, in general, there are statistical differences (improvements). These statistical differences are a
consequence of the improvements of the algorithms/techniques used.

8. Conclusions and future work

This paper presents the first (to the authors’ knowledge) thorough study of the application and effectiveness of certain
optimizations and techniques (stencil computing framework, look-up tables, and packet coding) to improve the performance of
memory bandwidth-limited CA on GPU.

It was shown that it is possible to approach the limit imposed by GPU memory bandwidth on some CA implementations using
these techniques. In addition, some of them, such as look-up tables or temporal blocking, are not technically difficult to implement
when the transition rules are simple.

The performance improvements obtained can be quite significant, which is especially true for large CA. In this sense, the
performance of three-dimensional CA implementations on GPU can take important advantage of these improvements and future
research is needed.

Additionally, future work should address the effect of these optimizations on energy consumption and instantaneous power.
As discussed in [41], memory accesses and computing units are the two main energy consumption components in GPU devices.
In this paper, we have considered different CA which are mostly memory-bounded applications, and, accordingly, the presented
optimization techniques focus mainly on reducing memory accesses. By means of these optimizations, it is expected that the
instantaneous power would decrease as fewer memory accesses would be made. Likewise, the energy consumption would decrease
due to both the lower power and the execution time reduction. Further studies should confirm these hypotheses.

Finally, further studies are also needed to advance in the state of the art of frameworks that generate automatic GPU
implementations of CA using temporal blocking, and in the combination of techniques described and tested in this study to achieve
even higher performance ratings.

Acknowledgements

This study was funded by the research project of Ministerio de Economía, Industria 𝑦 Competitividad, Gobierno de España
(MINECO), Spain and the Agencia Estatal de Investigación (AEI) of Spain, cofinanced by FEDER funds (EU): Par-HoT (Parallel Data
Processing based on Homotopy Connectivity: Applications to Stereoscopic Vision and Biomedical Data, PID2019-110455GB-I00) and
15

CIUCAP-HSF:US-1381077.

Simulation Modelling Practice and Theory 118 (2022) 102519D. Cagigas-Muñiz et al.
References

[1] S.F. Judice, Lattice gas cellular automata for fluid simulation, in: Encyclopedia of Computer Graphics and Games, Springer International Publishing, Cham,
2018, pp. 1–8, http://dx.doi.org/10.1007/978-3-319-08234-9_184-1.

[2] B. Arca, T. Ghisu, G.A. Trunfio, GPU-accelerated multi-objective optimization of fuel treatments for mitigating wildfire hazard, J. Comput. Sci. 11 (2015)
258–268, http://dx.doi.org/10.1016/j.jocs.2015.08.009.

[3] R. Lubas, J. Was, J. Porzycki, Cellular automata as the basis of effective and realistic agent-based models of crowd behavior, J. Supercomput. 72 (6)
(2016) 2170–2196, http://dx.doi.org/10.1007/s11227-016-1718-7.

[4] J. Kroc, F. Jiménez-Morales, J.L. Guisado, M.C. Lemos, J. Tkáč, Building efficient computational cellular automata models of complex systems: background,
applications, results, software, and pathologies, Adv. Complex Syst. 22 (05) (2019) 1950013.

[5] K.R. Tubbs, F.T.-C. Tsai, GPU accelerated lattice Boltzmann model for shallow water flow and mass transport, Internat. J. Numer. Methods Engrg. 86 (3)
(2011) 316–334, http://dx.doi.org/10.1002/nme.3066, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3066.

[6] A.G. Salguero, A.J. Tomeu-Hardasmal, M.I. Capel, Dynamic load balancing strategy for parallel tumor growth simulations, J. Integr. Bioinform. 16 (1)
(2019) 20180066, http://dx.doi.org/10.1515/jib-2018-0066.

[7] M. Sitko, K. Banas, L. Madej, Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial
calculations, Materials 14 (2021) (2021) http://dx.doi.org/10.3390/ma14154082.

[8] B. Jelinek, M. Eshraghi, S. Felicelli, J.F. Peters, Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth,
Comput. Phys. Comm. 185 (3) (2014) 939–947, http://dx.doi.org/10.1016/j.cpc.2013.09.013.

[9] C. Xia, H. Wang, A. Zhang, W. Zhang, A high-performance cellular automata model for urban simulation based on vectorization and parallel computing
technology, Int. J. Geogr. Inf. Sci. 32 (2) (2018) 399–424, http://dx.doi.org/10.1080/13658816.2017.1390118.

[10] A. Kerr, G. Diamos, S. Yalamanchili, A characterization and analysis of PTX kernels, in: 2009 IEEE International Symposium on Workload Characterization,
IISWC, 2009, pp. 3–12, http://dx.doi.org/10.1109/IISWC.2009.5306801.

[11] M.J. Gibson, E.C. Keedwell, D.A. Savić, An investigation of the efficient implementation of cellular automata on multi-core CPU and GPU hardware, J.
Parallel Distrib. Comput. 77 (2015) 11–25, http://dx.doi.org/10.1016/j.jpdc.2014.10.011.

[12] S. Rybacki, J. Himmelspach, A. Uhrmacher, CPU and GPU based simulation of cellular automata - a performance comparison, in: Proceedings of the 1st
SIMUL, 2009, pp. 62–67.

[13] E. Millán, P. Martínez, G. Gil Costa, M. Piccoli, A. Printista, C. Bederian, C. García Garino, E. Bringa, in: A. De Giusti (Ed.), Parallel implementation of a
cellular automata in a hybrid CPU/GPU environment, XVIII Congreso Argentino de Ciencias de la Computación, 2013, pp. 184–193.

[14] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, second ed., A K Peters/CRC Press, New York, USA, 2001.
[15] C. Daniel, F. Diaz-del Rio, M. López-Torres, F. Jiménez-Morales, J.L. Guisado, Developing efficient discrete simulations on multicore and GPU architectures,

Electronics 9 (2020) 189, http://dx.doi.org/10.3390/electronics9010189.
[16] E. Nicolas, N. Wolovick, F. Piccoli, C. Garcia Garino, E. Bringa, Performance analysis and comparison of cellular automata GPU implementations, Cluster

Comput. 20 (2017) (2017) http://dx.doi.org/10.1007/s10586-017-0850-3.
[17] W.-m.W. Hwu, GPU Computing Gems Jade Edition, first ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.
[18] F. Diaz-del Rio, D. Cagigas-Muñiz, J.-L. Guisado-Lizar, J.-L. Sevillano-Ramos, Efficient parallel implementation of cellular automata and stencil computations

in current processors, in: P. Nicopolitidis, S. Mistra, L. Yang, B. Zeigler, Z. Ning (Eds.), Advances in Computing, Informatics, Networking and Cybersecurity
- a Book Honoring Prof. Mohammad S. Obaidat’s Significant Scientific Contributions, Springer-Nature, 2022, pp. 1–29.

[19] G. Ofenbeck, R. Steinmann, V. Caparros, D.G. Spampinato, M. Püschel, Applying the roofline model, in: 2014 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS, 2014, pp. 76–85, http://dx.doi.org/10.1109/ISPASS.2014.6844463.

[20] A. Simpson, Oak ridge leadership computing facility, URL https://github.com/olcf/game_of_life_tutorials/tree/master/CUDA.
[21] G. Oxman, S. Weiss, Y. Be’ery, Computational methods for Conway’s game of life cellular automaton, J. Comput. Sci. 5 (2013) (2013) http://dx.doi.org/

10.1016/j.jocs.2013.07.005.
[22] D.B. Kirk, W.-m.W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann Publishers, Burlington, MA, 2010.
[23] P.S. Rawat, M. Vaidya, A. Sukumaran-Rajam, A. Rountev, L. Pouchet, P. Sadayappan, On optimizing complex stencils on GPUs, in: 2019 IEEE International

Parallel and Distributed Processing Symposium, IPDPS, 2019, pp. 641–652.
[24] A. Schäfer, D. Fey, High performance stencil code algorithms for GPGPUs, Procedia Comput. Sci. 4 (2011) 2027–2036, http://dx.doi.org/10.1016/j.procs.

2011.04.221.
[25] J. Holewinski, L.-N. Pouchet, P. Sadayappan, High-performance code generation for stencil computations on GPU architectures, in: Proceedings of the 26th

ACM International Conference on Supercomputing, New York, NY, USA, 2012, pp. 311–320, http://dx.doi.org/10.1145/2304576.2304619.
[26] P. Rawat, Optimization of Stencil Computations on GPUs (Electronic Thesis Or Dissertation), Ohio State University, 2018.
[27] A.D. Nguyen, N. Satish, J. Chhugani, C. Kim, P. Dubey, 3.5-D blocking optimization for stencil computations on modern CPUs and GPUs, in: SC, IEEE,

2010, pp. 1–13.
[28] K. Hou, H. Wang, W.-c. Feng, Gpu-UniCache: Automatic code generation of spatial blocking for stencils on GPUs, in: Proceedings of the Computing Frontiers

Conference, in: CF’17, Association for Computing Machinery, New York, NY, USA, 2017, pp. 107–116, http://dx.doi.org/10.1145/3075564.3075583.
[29] P.S. Rawat, M. Vaidya, A. Sukumaran-Rajam, M. Ravishankar, V. Grover, A. Rountev, L.-N. Pouchet, P. Sadayappan, Domain-specific optimization and

generation of high-performance GPU code for stencil computations, Proc. IEEE 106 (11) (2018) 1902–1920.
[30] K. Matsumura, H. Zohouri, M. Wahib, T. Endo, S. Matsuoka, AN5D: automated stencil framework for high-degree temporal blocking on GPUs, in:

International Symposium on Code Generation and Optimization, 2020, pp. 199–211, http://dx.doi.org/10.1145/3368826.3377904.
[31] D.C.-M. niz, Cellular automata software repository, URL https://github.com/dcagigas/GPU-Cellular-Automata.
[32] E. Ostertagova, O. Ostertag, J. Kováč, Methodology and application of the Kruskal-Wallis test, Appl. Mech. Mater. 611 (2014) 115–120.
[33] D. Rey, M. Neuhäuser, Wilcoxon-signed-rank test, international encyclopedia of statistical science, in: International Encyclopedia of Statistical Science,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 1658–1659, http://dx.doi.org/10.1007/978-3-642-04898-2_616.
[34] J.G. Freire, C.C. DaCamara, Using cellular automata to simulate wildfire propagation and to assist in fire management, Nat. Hazards Earth Syst. Sci. 19

(1) (2019) 169–179, http://dx.doi.org/10.5194/nhess-19-169-2019, URL https://nhess.copernicus.org/articles/19/169/2019/.
[35] Y. Zhao, D. Geng, Simulation of forest fire occurrence and spread based on cellular automata model, in: ICAIIS 2021: 2021 2nd International Conference on

Artificial Intelligence and Information Systems, Chongqing, China, May 28 - 30, 2021, ACM, 2021, pp. 304:1–304:6, http://dx.doi.org/10.1145/3469213.
3471332.

[36] L. Hugo, P. Hugo, P. Thomas, AutoCelle in C++, URL https://github.com/hugofloter/CelularAutomaton.
[37] D. Griffeath, Self-organizing two-dimensional cellular automata: 10 still frames, in: Designing Beauty: The Art of Cellular Automata, Springer International

Publishing, Cham, 2016, pp. 1–12, http://dx.doi.org/10.1007/978-3-319-27270-2_1.
[38] K. Kwak, Y. Baryshnikov, E. Coffman, Cyclic cellular automata: A tool for self-organizing sleep scheduling in sensor networks, in: Proceedings - 2008

International Conference on Information Processing in Sensor Networks, IPSN 2008, 2008, pp. 535–536, http://dx.doi.org/10.1109/IPSN.2008.69.
[39] R. González-García, G. Castanon, H.E. Hernández Figueroa, 2D photonic crystal complete band gap search using a cyclic cellular automaton refination,

Photon. Nanostruct.: Fundam. Appl. 12 (2014) (2014) http://dx.doi.org/10.1016/j.photonics.2014.09.003.
[40] V. Gladkikh, A. Nigay, Wireworld++: A cellular automaton for simulation of nonplanar digital electronic circuits, Complex Systems 27 (2018) (2018).
[41] C. Luo, R. Suda, A performance and energy consumption analytical model for GPU, in: 2011 IEEE Ninth International Conference on Dependable, Autonomic

and Secure Computing, 2011, pp. 658–665, http://dx.doi.org/10.1109/DASC.2011.117.
16

http://dx.doi.org/10.1007/978-3-319-08234-9_184-1
http://dx.doi.org/10.1016/j.jocs.2015.08.009
http://dx.doi.org/10.1007/s11227-016-1718-7
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb4
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb4
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb4
http://dx.doi.org/10.1002/nme.3066
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3066
http://dx.doi.org/10.1515/jib-2018-0066
http://dx.doi.org/10.3390/ma14154082
http://dx.doi.org/10.1016/j.cpc.2013.09.013
http://dx.doi.org/10.1080/13658816.2017.1390118
http://dx.doi.org/10.1109/IISWC.2009.5306801
http://dx.doi.org/10.1016/j.jpdc.2014.10.011
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb12
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb12
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb12
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb13
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb13
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb13
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb14
http://dx.doi.org/10.3390/electronics9010189
http://dx.doi.org/10.1007/s10586-017-0850-3
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb17
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb18
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb18
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb18
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb18
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb18
http://dx.doi.org/10.1109/ISPASS.2014.6844463
https://github.com/olcf/game_of_life_tutorials/tree/master/CUDA
http://dx.doi.org/10.1016/j.jocs.2013.07.005
http://dx.doi.org/10.1016/j.jocs.2013.07.005
http://dx.doi.org/10.1016/j.jocs.2013.07.005
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb22
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb23
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb23
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb23
http://dx.doi.org/10.1016/j.procs.2011.04.221
http://dx.doi.org/10.1016/j.procs.2011.04.221
http://dx.doi.org/10.1016/j.procs.2011.04.221
http://dx.doi.org/10.1145/2304576.2304619
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb26
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb27
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb27
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb27
http://dx.doi.org/10.1145/3075564.3075583
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb29
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb29
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb29
http://dx.doi.org/10.1145/3368826.3377904
https://github.com/dcagigas/GPU-Cellular-Automata
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb32
http://dx.doi.org/10.1007/978-3-642-04898-2_616
http://dx.doi.org/10.5194/nhess-19-169-2019
https://nhess.copernicus.org/articles/19/169/2019/
http://dx.doi.org/10.1145/3469213.3471332
http://dx.doi.org/10.1145/3469213.3471332
http://dx.doi.org/10.1145/3469213.3471332
https://github.com/hugofloter/CelularAutomaton
http://dx.doi.org/10.1007/978-3-319-27270-2_1
http://dx.doi.org/10.1109/IPSN.2008.69
http://dx.doi.org/10.1016/j.photonics.2014.09.003
http://refhub.elsevier.com/S1569-190X(22)00025-9/sb40
http://dx.doi.org/10.1109/DASC.2011.117

	Efficient simulation execution of cellular automata on GPU
	Introduction
	Related works
	Cellular automata model
	Analysis of CA performance
	GPU memory model management
	Cell size

	Techniques for runtime-efficient coding of CA
	Look-up tables
	Packet coding
	Temporal blocking

	Experimental results
	Game of life
	Forest fire
	Cyclic cellular automaton
	Wireworld

	Discussion
	Conclusions and future work
	Acknowledgements
	References

