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a b s t r a c t 

In this paper, we model an optimal regression tree through a continuous optimization problem, where a 

compromise between prediction accuracy and both types of sparsity, namely local and global, is sought. 

Our approach can accommodate important desirable properties for the regression task, such as cost- 

sensitivity and fairness. Thanks to the smoothness of the predictions, we can derive local explanations 

on the continuous predictor variables. The computational experience reported shows the outperformance 

of our approach in terms of prediction accuracy against standard benchmark regression methods such as 

CART, OLS and LASSO. Moreover, the scalability of our approach with respect to the size of the training 

sample is illustrated. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

Regression Analysis is one of the most used tasks in Statistics 

nd Machine Learning ( Hastie, Tibshirani, & Friedman, 2009 ). The 

lassic linear regression is known to be outperformed by many 

roposals that apply non-linear techniques, such as tree-based 

ethods, which are the focus of this paper. Tree-based methods 

 Chikalov, Hussain, & Moshkov, 2018; Hu, Rudin, & Seltzer, 2019; 

ang, Liu, Tsoka, & Papageorgiou, 2017 ) are appealing due to their 

earning performance and, since they are rule-based, seen as in- 

erpretable ( Athey, 2018; Baesens, Setiono, Mues, & Vanthienen, 

003; Carrizosa, Martín-Barragán, & Romero Morales, 2011; Freitas, 

014; Goodman & Flaxman, 2017; Jung, Concannon, Shroff, Goel, 

 Goldstein, 2017; Martens, Baesens, Van Gestel, & Vanthienen, 

007; Martín-Barragán, Lillo, & Romo, 2014; Ridgeway, 2013; Us- 

un & Rudin, 2016 ). 

Building optimal decision trees is an NP-complete task ( Hyafil 

 Rivest, 1976 ). For this reason, greedy heuristic procedures such 

s CART ( Breiman, Friedman, Stone, & Olshen, 1984 ) have been 

roposed, yielding suboptimal trees instead. Even though some at- 

empts ( Bennett & Blue, 1996 ) were made in the past, the latest

dvances in both computer performance and Mathematical Op- 

imization have led to a growing research on building such op- 

imal decision trees ( Bertsimas, Dunn, & Paschalidis, 2017; Bet- 
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er, Glover, & Samorani, 2010; Blanquero, Carrizosa, Molero-Río, & 

omero Morales, 2020; Blanquero, Carrizosa, Molero-Río, & Romero 

orales, 2021a; Dunn, 2018; Firat, Crognier, Gabor, Hurkens, & 

hang, 2019; Günlük, Kalagnanam, Li, Menickelly, & Scheinberg, 

021; Narodytska, Ignatiev, Pereira, Marques-Silva, & RAS, 2018; 

erwer & Zhang, 2017; 2019 ). The reader is referred to ( Carrizosa, 

olero-Río, & Romero Morales, 2021 ) for a review on this topic. 

The modeling of a decision tree via Mathematical Optimization 

ields, in general, an improvement in prediction accuracy with re- 

pect to traditional approaches, but, equally important, it allows 

he user to easily deal with desirable properties in Machine Learn- 

ng that globally involve all the decision rules along the tree. Such 

s the case of global sparsity ( Tibshirani, Wainwright, & Hastie, 

015 ). While heuristic procedures, such as CART, or more sophisti- 

ated tree-based approaches, such as Random Forest (RF) ( Biau & 

cornet, 2016; Breiman, 2001; Fernández-Delgado, Cernadas, Barro, 

 Amorim, 2014; Genuer, Poggi, Tuleau-Malot, & Villa-Vialaneix, 

017 ), easily control local sparsity, that is, the number of predic- 

or variables to be used at each splitting rule, they find it hard to 

ontrol global sparsity, that is, the number of predictor variables 

o be used across the tree ( Deng & Runger, 2012; 2013; Ruggieri, 

019 ). This is not the case for approaches based on mathemat- 

cal optimization which are flexible enough to model this objec- 

ive directly ( Bertsimas et al., 2017; Blanquero et al., 2020; Dunn, 

018; Firat et al., 2019; Verwer & Zhang, 2017 ), either with a LASSO 

erm, or by adding binary decision variables and additional con- 

traints. In this paper, we tackle this issue and propose the Sparse 

ptimal Randomized Regression Tree (S-ORRT). An S-ORRT seeks a 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ood tradeoff between both prediction accuracy and both types of 

parsity, obtained by minimizing the mean squared error over the 

raining sample, as customary in Regression Analysis, plus two reg- 

larization terms. Other global desirable properties that one may 

are for include the modeling of cost-sensitivity ( Günlük et al., 

021 ) or fairness ( Aghaei, Azizi, & Vayanos, 2019 ) constraints, with 

he aim to protect critical groups or to avoid the discrimination of 

roups that share sensitive features, respectively. 

Optimal regression trees ( Bertsimas et al., 2017; Dunn, 2018; 

erwer & Zhang, 2017 ) have been recently formulated using 

ixed-integer models. These models include an integer decision 

ariable for each individual, as well as one for each predictor vari- 

ble. The resulting combinatorial framework hinders the tractabil- 

ty of the problem when the dimensionality of the data grows, 

ielding a significant computational effort even for small data sets. 

ocal-search strategies have been proposed to alleviate the com- 

utational burden of these procedures ( Dunn, 2018 ), however they 

annot control global desirable properties. Our approach considers 

 continuous optimization model instead, where there are no de- 

ision variables directly relating to the individuals, making it scal- 

ble with respect to the training sample. This is achieved through 

i) the inclusion of a continuous cumulative density function F at 

ach branch node that smoothens the transition from the left child 

ode to the right one, and (ii) the use of the � 1 and � ∞ 

norms to

ontrol local and global sparsity, respectively. 

Thanks to the smoothness of our approach, the impact that con- 

inuous predictor variables have on the individual prediction, that 

s, local explanations ( Lundberg et al., 2020; Lundberg & Lee, 2017; 

olnar, Casalicchio, & Bischl, 2020; Ribeiro, Singh, & Guestrin, 

016 ), can be easily derived. For nonlinear models one can make 

se of generic post-hoc approaches to build local explanations, 

uch as the so-called Local Interpretable Model-agnostic Explana- 

ions (LIME) ( Ribeiro et al., 2016 ). Instead, and as advocated by 

udin (2019) , one can work with models that derive local expla- 

ations directly ( Gevrey, Dimopoulos, & Lek, 2003 ), as we do. 

The remainder of the paper is organized as follows. In Section 2 , 

e introduce the S-ORRT and its mathematical formulation, as well 

s the modeling of desirable properties. Some theoretical proper- 

ies of S-ORRT are discussed in Section 3 . Technical proofs can be 

ound in the Appendix. In Section 4 , our computational experience 

s reported. We illustrate that S-ORRT outperforms the benchmark 

egression methods CART, OLS and LASSO in terms of prediction 

ccuracy. Moreover, we show our ability to easily trade in predic- 

ion accuracy for a gain in local and global sparsity, as well as our 

avorable scalability with respect to the size of the training sam- 

le. Finally, conclusions and possible lines of future research are 

rovided in Section 5 . 

. Sparse optimal randomized regression trees 

.1. Introduction 

Let I be a given set of individuals. Each individual i ∈ I has as- 

ociated a pair ( x i , y i ) , where x i represents the p-dimensional vec- 

or of predictor variables of individual i , and y i ∈ R indicates the

alue of the response variable. 

A Sparse Optimal Randomized Regression Tree (S-ORRT) is an 

ptimal binary regression tree of a given depth D , obtained by con- 

rolling simultaneously prediction accuracy and local and global 

parsity. We briefly sketch here this randomized framework. For 

urther details on the construction of optimal randomized trees, 

he reader is referred to ( Blanquero et al., 2020; Blanquero et al., 

021a ). Figure 1 shows the structure of an S-ORRT of depth D = 2 .

nlike classic decision trees, oblique cuts, on which more than one 

redictor variable is involved, are implemented. S-ORRTs are mod- 

led by means of a Non-Linear Continuous Optimization (NLCO) 
1046 
ormulation. The usual deterministic yes/no rule at each branch 

ode is replaced by a smoother rule: a probabilistic decision rule at 

ach branch node, induced by a cumulative density function (CDF) 

 , is obtained. Therefore, the movements in S-ORRTs can be seen as 

andomized: at a given branch node of an S-ORRT, a random vari- 

ble will be generated to indicate by which branch an individual 

as to continue. Since binary trees are built, the Bernoulli distri- 

ution is appropriate, whose probability of success will be deter- 

ined by the value of this CDF, evaluated over the vector of pre- 

ictor variables. More precisely, at a given branch node t of the 

ree, an individual with predictor variables x i will go either to the 

eft or to the right child nodes with probabilities F 
(

1 
p a 

T 
·t x i − μt 

)
nd 1 − F 

(
1 
p a 

T 
·t x i − μt 

)
, respectively, where a ·t and μt are decision 

ariables of the optimization problem that needs to be solved to 

uild the S-ORRT. In Fig. 1 , p i 1 , p i 2 , p i 3 and their complement to

ne denote such probabilities for the three branch nodes. With 

his, we have the probability of each individual in the sample 

alling into every leaf node. In Fig. 1 , P i 4 , P i 5 , P i 6 and P i 7 denote

uch probabilities. To end, we need to define how S-ORRT makes 

redictions. First, S-ORRT associates linear predictions to each leaf 

ode. Then, the estimated outcome value for each individual is de- 

ned as the summation of these linear predictions, weighted by 

he probability of belonging to the corresponding leaf node. This is 

enoted by ϕ i 4 , ϕ i 5 , ϕ i 6 and ϕ i 7 in Fig. 1 . 

The following notation is required: 

Parameters 

D depth of the binary tree, 

p number of predictor variables, 

{ ( x i , y i ) } i ∈I training sample, where x i ∈ R p and y i ∈ R , with 

cardinality | I | , 
F ( ·) univariate continuously differentiable CDF, used to 

define the probabilities for an individual to go to the 

left or the right child node in the tree, 

λL , λG local and global sparsity regularization parameters. 

Nodes 

τB set of branch nodes, 

τL set of leaf nodes, 

N L ( t ) set of ancestor nodes of leaf node t whose left branch 

takes part in the path from the root node to leaf 

node t , t ∈ τL , 

N R ( t ) set of ancestor nodes of leaf node t whose right 

branch takes part in the path from the root node to 

leaf node t , t ∈ τL . 

Decision 

variables 

a jt ∈ R coefficient of predictor variable j in the oblique cut at 

branch node t ∈ τB , or in the linear prediction at leaf 

node t ∈ τL . The expressions a B and a L will denote the 

p × | τB | - and p × | τL | -matrices that involve these 

coefficients, respectively, a B = 

(
a jt 

)
j=1 , ... ,p, t∈ τB 

and 

a L = 

(
a jt 

)
j=1 , ... ,p, t∈ τL 

. Let a denote the 

p × ( | τB | + | τL | ) -matrix 

a = 

(
a jt 

)
j=1 , ... ,p, t∈ τB ∪ τL 

= ( a B , a L ) . Both notations will be 

used interchangeably when needed. The expressions 

a j· and a ·t will denote the jth row and the tth 

column of a , respectively, 

μt ∈ R location parameter at branch node t ∈ τB , or intercept 

of the linear prediction at leaf node t ∈ τL . The 

expressions μB and μL will denote the | τB | - and 

| τL | -vectors that involve these coefficients, 

respectively, μB = ( μt ) t∈ τB 
and μL = ( μt ) t∈ τL 

. Let μ
denote the ( | τB | + | τL | ) -vector μ = ( μB , μL ) . Both 

notations will be used interchangeably when needed. 

Probabilities 

p it ( a ·t , μt ) probability of individual i going down the left branch 

at branch node t . Its expression is 

p it ( a ·t , μt ) = F 
(

1 
p 

a � ·t x i − μt 

)
, i ∈ I, t ∈ τB , 

P it ( a B , μB ) probability of individual i falling into leaf node t . Its 

expression is P it ( a B , μB ) = ∏ 

t l ∈ N L (t) 

p it l 

(
a ·t l , μt l 

) ∏ 

t r ∈ N R (t) 

( 1 − p it r ( a ·t r , μt r ) ) , i ∈ I, t ∈ τL . 

( continued on next page ) 
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Predictions 

ϕ it ( a ·t , μt ) linear prediction of individual i at leaf node t . Its 

expression is ϕ it ( a ·t , μt ) = a � ·t x i − μt , i ∈ I, t ∈ τL , 

ϕ i ( a , μ) final prediction of individual i . Its expression is 

ϕ i ( a , μ) = 

∑ 

t∈ τL 

P it ( a B , μB ) ϕ it ( a ·t , μt ) , i ∈ I . In other 

words, for an individual i , its prediction is a weighted 

average of the predictions ϕ it along the different leaf 

nodes, where the weights in such average depend on 

the individual i . 

.2. The formulation 

With these parameters and decision variables, the S-ORRT reads 

s the following unconstrained NLCO problem: 

in 

a , μ

{ 

MSE ( a , μ; I) + λL 

p ∑ 

j=1 

∥∥a j·
∥∥

1 
+ λG 

p ∑ 

j=1 

∥∥a j·
∥∥

∞ 

} 

, 

(1) 

here 

SE ( a , μ; I ) = 

1 

|I| 
∑ 

i ∈I 
( ϕ i ( a , μ) − y i ) 

2 
. 

The first term, prediction accuracy, is equal to the mean 

quared error over the training sample between the actual re- 

ponse values and the predictions returned by S-ORRT. The sec- 

nd term controls local sparsity, since it penalizes the � 1 -norm of 

he coefficients of the predictor variables used in the cuts along 

he tree. The third term addresses global sparsity, which is mod- 

led by the inclusion of a penalization term that controls whether 

 given predictor variable is ever used across the whole tree. Recall 

hat each predictor variable appears at both branch (in the oblique 

uts) and leaf (in the linear predictions) nodes. Then, the � ∞ 

-norm 

s used as a group penalty function, by forcing all the coefficients 

inked to the same predictor variable to be shrunk simultaneously 

long all branch and leaf nodes. 
Fig. 1. Sparse Optimal Randomized R

1047 
Since there are no decision variables directly relating to the 

umber of individuals N, Problem (1) speaks favorably toward the 

calability of S-ORRT with respect to the size of the training sam- 

le. Hence, although the evaluation of the first term in the ob- 

ective function becomes more time demanding with larger N, the 

umber of decision variables of the problem to be solved remains 

he same. This makes our approach scalable with respect to N, as 

llustrated in Section 4.4 . 

Once the tree model is built, the prediction of future data is 

one as follows. Let ( a 

∗, μ∗) be the optimal solution to Problem 

1) . The expected outcome of individual i ∈ I is ϕ i ( a 

∗, μ∗) . For an

ncoming individual with predictor vector x , the expected outcome 

eturned by the randomized tree is equal to 

 → �(x ) := ϕ x ( a 

∗, μ∗) , (2) 

here ϕ x is defined similarly to ϕ i with x replacing x i . Note that

(·) is smooth in the continuous predictor variables, since the CDF 

 is assumed to be a smooth function. This means that even small 

hanges in these variables will produce changes in �(·) . This is 

ot the case for deterministic tree models such as CART and RF, 

here there are no changes at all in the expected outcome when 

here are small changes in the continuous predictor variables. This 

nherent property of our approach allows us to perform local ex- 

lainability, as will be seen in Section 2.4 . 

.3. A smooth reformulation 

Problem (1) is non-smooth due to the � 1 and � ∞ 

norms ap- 

earing in the objective function. Recall that F is assumed to be 

ontinuously differentiable, therefore MSE inherits smoothness. By 

ewriting both regularization terms using new decision variables, 

e can formulate S-ORRT as a smooth problem, thus solvable with 

tandard continuous optimization solvers, as done in our computa- 

ional section. 

Regarding the first regularization term of Problem (1) , deci- 

ion variables a are split into their positive and negative coun- 
egression Tree of depth D = 2 . 
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erparts, a 

+ = 

(
a + 

jt 

)
j=1 , ... ,p, t∈ τB ∪ τL 

and a 

− = 

(
a −

jt 

)
j=1 , ... ,p, t∈ τB ∪ τL 

, re- 

pectively, such that a jt = a + 
jt 

− a −
jt 

, 
∣∣a jt ∣∣ = a + 

jt 
+ a −

jt 
and a + 

jt 
, a −

jt 
≥ 0 ,

hus having 

a j·
∥∥

1 
= 

∑ 

t∈ τB ∪ τL 

∣∣a jt ∣∣ = 

∑ 

t∈ τB ∪ τL 

(
a + 

jt 
+ a −

jt 

)
, j = 1 , . . . , p. 

ew decision variables β = 

(
β j 

)
j=1 , ... ,p 

are used to model the sec- 

nd regularization term of Problem (1) : 

a j·
∥∥

∞ 

= max 
t∈ τB ∪ τL 

∣∣a jt ∣∣ = β j , j = 1 , . . . , p, 

here β j ≥ 0 . We also need to impose β j ≥
∣∣a jt ∣∣ = a + 

jt 
+ a −

jt 
, j =

 , . . . , p, t ∈ τB ∪ τL . Hence, we have that Problem (1) is equivalent

o the following smooth reformulation: 

min 

 

+ , a −, μ, β
MSE 

(
a 

+ − a 

−, μ; I 
)

+ λL 

p ∑ 

j=1 

∑ 

t∈ τB ∪ τL 

(
a + 

jt 
+ a −

jt 

)

+ λG 

p ∑ 

j=1 

β j (3) 

.t. β j ≥ a + 
jt 

+ a −
jt 
, j = 1 , . . . , p, t ∈ τB ∪ τL , (4) 

 

+ 
jt 
, a −

jt 
, β j ≥ 0 , j = 1 , . . . , p, t ∈ τB ∪ τL . (5) 

.4. Desirable properties 

As we show in this section, our approach can easily accommo- 

ate important desirable properties in the regression task, such as 

ost-sensitivity and fairness, as well as local explainability. 

Cost-sensitivity 

As a regression method, S-ORRT seeks a rule yielding a good 

verall prediction accuracy, although, at times, there are groups of 

ndividuals in which predicion errors are more critical. It is then 

ore adequate not only to focus on the overall prediction accuracy, 

ut also ensuring a certain level of performance in those groups. S- 

RRT is flexible enough to allow incorporating constraints on ex- 

ected performance ( Blanquero, Carrizosa, Ramírez-Cobo, & Sillero- 

enamiel, 2021b ) over critical groups. Let J 1 , . . . , J r be different 

amples, possibly subsamples of I . Given a threshold value ρ j for 

he desired performance on sample J j , one can simply add the 

ollowing constraints to Problem (1) : 

SE ( a , μ;J j ) ≤ ρ j , j = 1 , . . . , r. 

Fairness 

The increase of automatization in decision-making have evinced 

he bias present on historical data, leading to models that may dis- 

riminate groups sharing sensitive features such as gender or race. 

n this line, we seek for a model that avoids such discrimination 

nd is fair to a sentive group. Let S ⊂ I be a group of individu-

ls to be protected against discrimination by Problem (1) . There 

re different ways to handle fairness. For instance, we may impose 

hat the prediction errors for individuals in S does not differ much 

rom the prediction errors in the whole training sample I . This can 

e modeled through the following constraint 

 

MSE ( a , μ;S) − MSE ( a , μ; I) | ≤ C, 

or C ≥ 0 sufficiently small. Alternatively, we may impose that the 

verage prediction for individuals in S does not differ much from 

he average in the whole training sample I , i.e., 

 ̄

ϕ ( a , μ; S ) − ϕ̄ ( a , μ; I ) | ≤ C, (6) 

here ϕ̄ ( a , μ;J ) = 

1 
| J | 

∑ 

i ∈J 
ϕ i ( a , μ) and C ≥ 0 sufficiently small. 

airness as in Eq. (6) is illustrated for the Boston Housing data 
1048 
et ( Harrison & Rubinfeld, 1978 ). See Table 2 for a description of 

he response and predictor variables. Suppose that our sensitive 

roup S is composed by individuals above the third quartile of 

redictor variable B , that is, those census tracts where there is 

 high proportion of black population. The S-ORRT without fair- 

ess constraints, and λL = λG = 0 , yields a mean squared error of 

.6462, with an average prediction on housing values over I equal 

o 22.5333. A lower average value is obtained over S , 21.3263, 

roducing an absolute difference of C 0 = 1 . 2070 . See the first row

n Table 1 . The next rows represent the results when fairness 

onstraints over S are added to the model for several values of 

he threshold C = τ · C 0 , with τ varying in { 0 . 75 , 0 . 5 , 0 . 25 , 0 } . As 

hown, one can obtain an S-ORRT which is fair to our sensitive 

roup S , since ϕ̄ ( a , μ; I ) = ϕ̄ ( a , μ;S ) , at the expense of slightly 

arming prediction accuracy. 

Local explainability 

The goal of local explainability is to identify the predictor vari- 

bles that have the largest impact on the individual predictions, 

ound in Eq. (2) . As opposed to post-hoc approaches, we can di- 

ectly derive local explanations on the continuous predictor vari- 

bles thanks to the smoothness of �. For simplicity, we consider a 

roblem where all predictor variables are continuous. For an indi- 

idual with predictor variables x 0 , we analyze how sensitive � is 

o an infinitesimal change � ∈ R 

p , i.e., how large is the difference 

( x 0 + �) − �( x 0 ) . By linearizing � close to x 0 , we have 

( x 0 + �) ≈ �( x 0 ) + 

p ∑ 

j=1 

∂�

∂x j 
( x 0 ) · 
 j . 

hus, the vector of partial derivatives 

∂�

∂x j 
( x 0 ) 

)
j=1 , ... ,p 

(7) 

ives full information on the sensitivity of the outcomes � around 

 

0 . A positive value of coordinate j of the vector of partial deriva- 

ives means a direct relationship between predictor variable j and 

rediction of the response variable of individual x 0 ; and an inverse 

elationship, otherwise. As opposed to linear regression, where 

here is one single coefficient per predictor variable that indicates 

ts impact in prediction for any individual equally, here we have 

ifferent im pacts of each predictor variable tailored to each partic- 

lar individual. 

Local explainability is illustrated below for the Boston 
ousing data set in Table 2 . 

An S-ORRT with λL = 0 and λG = 

2 2 

13 was built on this data set, 

btaining a mean squared error and an R -squared equal to 15.5654 

nd 0.8156, respectively. Figure 2 depicts the local explanations for 

ll individuals in the dataset by means of parallel coordinates. Each 

redictor variable is represented by a vertical parallel axis. Each in- 

ividual is represented by a series of lines connected across all the 

xes. The position each individual takes on each axis reflects the 

mpact the corresponding predictor variable has on its prediction, 

hat is, each of the coordinates of vector (7) . The color that rep-

esents each individual in the parallel coordinates goes from light 

ink to purple depending on the reliability on prediction, mea- 

ured as the ratio between the individual squared error and the 

ean squared error. Thus, purple refers to the best reliable pre- 

ictions according to the model. All predictor variables were nor- 

alized before training the model to the 0–1 interval, in such a 

ay that a fair comparative analysis between them could be per- 

ormed. A larger absolute value on the axis represents a larger im- 

act caused by the corresponding predictor variable on the pre- 

iction. Since CRIM gauges the threat to well-being that house- 

olds perceive, it has a negative effect on housing values. A similar 

attern is observed for NOX , DIS , TAX , PTRATIO , as well as for

STAT , which means that an area with a high amount of lower 
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Table 2 

Information about the Boston Housing data set, which consists of a collection of 506 observations about 

housing values for census tracts of the Boston metropolitan area. 

Variable Name Description 

Predictor CRIM crime rate by town 

ZN proportion of residential land zoned for lots greater than 25,000 squared feet 

INDUS proportion of nonretail business acres per town 

CHAS 1 if tract bounds river; 0 otherwise 

NOX nitrogen oxide concentration in parts per hundred million 

RM average number of rooms in owner units 

AGE proportion of owner units built prior to 1940 

DIS weighted distances to five employment centers in the Boston region 

RAD index of accessibility to radial highways 

TAX full value property tax rate per ten thousands of dollars 

PTRATIO pupil-teacher ratio by town school district 

B black proportion of population 

LSTAT proportion of population that is lower status 

Response MEDV median value of owner-occupied homes in thousands of dollars 

Fig. 2. Local explainability for Boston Housing data set derived from the S-ORRT with λL = 0 and λG = 

2 2 

13 
and a mean squared error and an R -squared of 15.5654 and 

0.8156, respectively. 

Table 1 

Results of S-ORRT without and with fairness constraints on S in 

the Boston Housing data set, where C 0 = 1 . 2070 . 

τ C = τ · C 0 MSE ( a , μ; I ) ϕ̄ ( a , μ; I ) ϕ̄ ( a , μ;S ) 
- - 9.6462 22.5333 21.3263 

0.75 0.9053 9.7586 22.5327 21.6275 

0.5 0.6035 10.0282 22.5334 21.9298 

0.25 0.3018 10.5051 22.5330 22.1312 

0 0 11.2401 22.5332 22.5332 
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tatus population would have less valuable households. Other pre- 

ictor variables have a positive effect on housing values. For in- 

tance, RM , which represents spaciousness and it can be observed 

hat is directly related to a higher housing value. 

. Theoretical properties 

In this section, some theoretical properties enjoyed by S-ORRT, 

s formulated in Problem (1) , are analyzed. In particular, we pay 

ttention to the most sparse tree, obtained when the optimal so- 

ution of S-ORRT includes a 

∗ = 0 , and thus none predictor variable 

s used in the predictions. This is attained when the sparsity regu- 

arization parameters, λL and λG , are taken large enough, and the 

rst term related to the prediction accuracy of the regressor be- 

omes negligible. In the following, we study the optimal prediction 

eturned by S-ORRT with a 

∗ = 0 , and derive upper bounds for λL 
1049 
nd λG in the sense that above them the most sparse tree (with 

 

∗ = 0 ) is a stationary point of the S-ORRT, that is, there exists 

 a 

∗ = 0 , μ∗) such that the necessary optimality condition with re- 

pect to a is satisfied. In Section 4 , we illustrate when these upper 

ounds are already reached, by showing that above certain values 

f λL and λG , the highest levels of local and global sparsity, respec- 

ively, are achieved. See in Fig. 3 that for 
(
λL , λG 

)
= 

(
2 2 

120 , 
2 2 

40 

)
, the 

ost sparse S-ORRT is already obtained, while not producing the 

est performance in terms of prediction accuracy. 

First, observe that, for any a and μB fixed, Problem (1) can be 

asily reformulated as a linear regression problem. Indeed, we have 

hat the final prediction of each individual is 

 i ( a , μ) = 

∑ 

t∈ τL 

P it ( a B , μB ) 
(
a 

� 
·t x i − μt 

)
, i ∈ I, 

nd thus, defining 

i ( a , μB ) = 

∑ 

t∈ τL 

P it ( a B , μB ) 
(
a 

� 
·t x i − y i 

)
, i ∈ I, 

he MSE term in Problem (1) can be rewritten as 

1 

| I | 
∑ 

i ∈I 

( 

ηi ( a , μB ) −
∑ 

t∈ τL 

P it ( a B , μB ) μt 

) 2 

, 

r, in matrix form, 

1 

| I | ‖ 

η( a , μB ) − P ( a B , μB ) μL ‖ 

2 
, 
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Fig. 3. Heatmaps representation, for Ailerons data set, of the average R -squared ob- 

tained, R 2 , the average percentage of predictor variables not used per node, δL , and 

the average percentage of predictor variables not used per tree, δG , respectively, as a 

function of the grid of the sparsity regularization parameters, λL and λG , considered 

in the S-ORRT construction. 
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Table 3 

Information about the real-world data sets considered. 

Data set Abbreviation N p

Boston-housing BH 506 13 

Red-wine RW 1599 11 

White-wine WW 4898 11 

Parkinson-motor PM 5874 16 

Parkinson-total PT 5874 16 

Ailerons A 7153 40 

Cpu-act CA 8192 21 

Cart-artificial CAr 40,768 10 

Friedman-artificial FA 40,768 10 
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here 

( a , μB ) = ( ηi ( a , μB ) ) i ∈I 
nd 

 ( a B , μB ) = 

[
P it ( a B , μB ) 

]
i ∈I, t∈ τL 

. 

Then, minimizing MSE for a , μB fixed amounts to finding the 

rdinary Least Squares solution with design matrix P ( a B , μB ) and 

esponse vector η( a , μB ) . With this, the following is shown: 

roposition 1. For 
(
a 

∗, μ∗
B 

)
fixed, μ∗

L 
minimizes MSE 

(
a 

∗, 
(
μ∗

B 
, μL 

))
f, and only if, 

 

� ( a 

∗
B , μ

∗
B ) η( a 

∗, μ∗
B ) = P � ( a 

∗
B , μ

∗
B ) P ( a 

∗
B , μ

∗
B ) μ

∗
L . 

n particular, for the most sparse solution a 

∗ = 0 , we have the follow- 

ng corollary. 
1050 
orollary 1. For any μ∗
B 
, the vector μ∗

L 
= 

(
−ȳ , · · · , −ȳ 

)� 
, with 

¯ = 

1 
| I | 

∑ 

i ∈I 
y i , minimizes MSE 

(
a 

∗ = 0 , 
(
μ∗

B 
, μL 

)
; I 

)
, and then the pre- 

iction is ϕ i 

(
a 

∗ = 0 , 
(
μ∗

B , μ
∗
L 

))
= ȳ for all i ∈ I . 

roof. See Appendix. �
As stated, when λL and λG are taken large enough in Problem 

1) , the most sparse possible tree (with a 

∗ = 0 ) is obtained though 

ossibly not yielding the best prediction accuracy, since none of 

he predictor variables is used to fit the model. As observed in 

ig. 3 , it turns out that the solution a 

∗ = 0 is not only the limit

ase when λL and λG tend to infinity, but it is actually obtained 

lready for finite values of them. This is shown in the following. 

roposition 2. Let a 

∗ = 0 , μ∗
B 

∈ R 

| τB | , and μ∗
L 

= 

−ȳ , · · · , −ȳ 
)� 

. Let σ ∈ [ 0 , 1 ] , 

λl = ( 1 − σ ) max 
j=1 , ... ,p 

∥∥∇ a j· MSE ( 0 , ( μ∗
B , μ

∗
L ) ; I ) 

∥∥
∞ 

and 

g = σ max 
j=1 , ... ,p 

∥∥∇ a j· MSE ( 0 , ( μ∗
B , μ

∗
L ) ; I ) 

∥∥
1 
. 

hen, for any pair 
(
λL , λG 

)
such that λL ≥ λl and λG ≥ λg , 

a 

∗, 
(
μ∗

B 
, μ∗

L 

))
is a stationary point of Problem (1) . 

roof. See Appendix. �

. Computational experiments 

The aim of this section is to illustrate the performance of our 

parse optimal randomized regression trees (S-ORRT) using both 

eal-world and synthetic data sets. Section 4.1 gives details on the 

rocedure followed to test our approach in the real-world data 

ets. In Section 4.2 we discuss the prediction accuracy of S-ORRT, 

gainst several benchmark regression methods. In Section 4.3 we 

llustrate our ability to trade in some of the prediction accu- 

acy of S-ORRT for a gain in local and global sparsity. Finally, in 

ection 4.4 we illustrate the scalability of S-ORRT in terms of the 

umber of individuals in the training sample, using a synthetic 

ata set. 

.1. Setup 

A collection of well-known real-world data sets from the UCI 

achine Learning Repository ( Lichman, 2013 ) has been chosen. 

able 3 lists their names, the abbreviations used throughout this 

ection to refer to them, together with their number of observa- 

ions and predictor variables. 

Each data set has been randomly split into two subsets: the 

raining subset (75%) and the test subset (25%). The corresponding 

ree model is built on the training subset and, then, three perfor- 

ance criteria, namely prediction accuracy, local and global spar- 

ity, are assessed. The prediction accuracy is evaluated by the out- 
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Table 4 

Comparison between S-ORRT with λL = λG = 0 , CART, OLS, LASSO, ORT-H LS and RF in terms of out-of-sample R -squared, R 2 , on real- 

world data sets in Table 3 . 

Data set Out-of-sample average R 2 

CART OLS LASSO ORT-H RF S-ORRT S-ORRT S-ORRT 

LS D = 1 D = 2 D = 3 

BH 0.7416(5) 0.7391(7) 0.7401(6) 0.8040(2) 0.8759 (1) 0.5987(8) 0.7931(3) 0.7785(4) 

RW 0.3055(7) 0.3619(3) 0.3605(5) 0.3040(8) 0.4874 (1) 0.3482(6) 0.3730(2) 0.3613(4) 

WW 0.2539(8) 0.2714(6) 0.2699(7) 0.3490(2) 0.5196 (1) 0.3121(5) 0.3291(4) 0.3337(3) 

PM 0.1020(6) 0.0878(8) 0.0900(7) 0.2810(2) 0.3426 (1) 0.1878(5) 0.2121(4) 0.2400(3) 

PT 0.1294(6) 0.0849(8) 0.0863(7) 0.3160(2) 0.3545 (1) 0.1724(5) 0.1965(4) 0.2445(3) 

A 0.6466(8) 0.8167(7) 0.8173(6) 0.8360 (1) 0.8211(3) 0.8207(5) 0.8288(2) 0.8211(3) 

CA 0.9324(5) 0.7272(8) 0.7273(7) 0.9840 (1) 0.9829(2) 0.8282(6) 0.9535(4) 0.9540(3) 

CAr 0.8771(6) 0.7045(7) 0.7045(7) 0.9480 (1) 0.9425(5) 0.9480 (1) 0.9480 (1) 0.9480 (1) 

FA 0.6058(8) 0.7222(7) 0.7223(6) 0.9560 (1) 0.9245(4) 0.8493(5) 0.9501(3) 0.9505(2) 

Average 0.5105(6.5) 0.5017(6.7) 0.5020(6.4) 0.6420(2.2) 0.6946 (2.1) 0.5628(5.1) 0.6205(3.0) 0.6257(2.8) 
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f-sample R -squared ( R 2 ) in the test subset: 

 

2 = 1 − MSE test 

V test 
, 

here MSE test is the mean squared error obtained by the regres- 

ion method in the test subset and V test is the variance of the ac- 

ual response vector in the test subset too. The higher the R 2 , the

etter the model in terms of prediction accuracy. 

The control of local and global sparsity is one of the key fea- 

ures of S-ORRT, as has been pointed out previously. Local sparsity, 
L , is measured as the average percentage of predictor variables 

ot used per node: 

L = 

1 

| τB | + | τL | 
∑ 

t∈ τB ∪ τL 

∣∣{a jt = 0 , j = 1 , . . . , p 
}∣∣

p 
× 100 . 

lobal sparsity, δG , is measured as the percentage of predictor vari- 

bles not used at any of the nodes, i.e., across the whole tree: 

G = 

∣∣{a j· = 0 , j = 1 , . . . , p 
}∣∣

p 
× 100 . 

he higher δL and δG , the better the model in terms of local and 

lobal sparsity, respectively. 

The training/testing procedure has been repeated ten times. The 

esults shown in Table 4 and Fig. 3 represent the average of such 

en runs for the above-mentioned performance criteria. 

The logistic CDF has been chosen for our experiments: 

 ( ·) = 

1 

1 + exp ( −( ·) γ ) 
, 

ith a large value of γ , namely, γ = 512 . We will illustrate that 

his small level of randomization is enough for obtaining good re- 

ults. 

The S-ORRT smooth formulation (3) –(5) has been implemented 

sing the scipy.optimize package ( Jones, Oliphant, Peterson 

t al., 2001 ) in Python 3.7 ( Python Core Team, 2015 ). As a solver,

e have used the SLSQP method ( Kraft, 1988 ) that allows one to

se gradient information. The predictor variables have been previ- 

usly normalized to the [ 0 , 1 ] interval, and the decision variables 

 B and μB have been restricted to the [ −1 , 1 ] interval. Our experi- 

ents have been conducted on a PC, with an Intel®Core TM i7-9700 

PU 3.00 GHz processor (8 CPUs) and 64 GB RAM. The operating 

ystem is 64 bits. 

.2. Comparison of prediction performance 

In this section we focus on illustrating the prediction accuracy 

f all the methods tested on the real-world data sets. S-ORRT at 

epths D = 1 , 2 and 3 with λL = λG = 0 is compared against three

ypes of benchmark regression methods. The first type corresponds 
1051 
o standard regression methods, such as CART, the classic approach 

o build decision trees, with no restrictions on depth, and OLS. 

he second type is the leader regression method in terms of spar- 

ity, LASSO. Finally, in the third type we have two sophisticated 

ree-based regression methods competitive in terms of prediction 

ccuracy, such as ORT-H LS in Dunn (2018) , a Mathematical Pro- 

ramming based approach that employs a local-search heuristic for 

uilding oblique trees with linear predictions at maximum depth 

 = 10 ; and Random Forest (RF), an ensemble of CARTs using a 

oostrap aggregating scheme. Table 4 presents the average out-of- 

ample prediction accuracy R 2 , while in parenthesis we show how 

he method ranks in terms of its prediction accuracy. For a given 

ata set, a rank of “1” indicates that the method is the best in 

erms of out-of-sample R 2 while a rank of “8” indicates that the 

ethod performed the worst. The average R 2 and rank of each 

ethod across all data sets are found at the bottom of the table. 

For S-ORRT, we have followed a multistart approach, where 

he process is repeated 10 0 0 times starting from different ran- 

om initial solutions. For a given initial solution, the computing 

ime taken by the S-ORRT typically ranges from 0.01 s (in BH for 

 = 1 ) to 2.08 s (in A and FA for D = 3 ). The default parameter

etting in rpart ( Therneau, Atkinson, & Ripley, 2015 ), glmnet 
 Friedman, Hastie, & Tibshirani, 2010 ) and randomForest ( Liaw 

 Wiener, 2002 ) R packages have been used for running CART, OLS 

nd LASSO, and RF, respectively. For ORT-H LS, the results are taken 

rom ( Dunn, 2018 ), since open-source implementations were not 

vailable. 

We start discussing the results for our S-ORRT with depth D = 

 . S-ORRT outperforms CART, OLS and LASSO, yielding increases in 

he R 2 up to 34 percentage points (p.p.) with respect to CART, and 

p to 24 p.p. with respect to OLS and LASSO, both with comparable 

erformance. Regarding ORT-H LS, S-ORRT presents an average pre- 

iction accuracy 2 p.p. lower, however S-ORRT manages to be com- 

arable in CAr and outperform in RW by 6 p.p. Finally, although 

F reports the best overall performance across all the methods, S- 

RRT is comparable to RF in A and CAr, while S-ORRT has the best 

rediction accuracy in FA. 

With depth D = 2 , the conclusions for S-ORRT are similar to 

hose obtained using depth D = 3 . With depth D = 1 , S-ORRT still

anages to be powerful in some data sets, despite the low com- 

lexity of the model. S-ORRT outperforms CART, OLS and LASSO 

n six of the data sets considered, all except for BH, RW and CA. 

RT-H LS generally outperforms S-ORRT at depth D = 1 , with the 

xception of CAr, where S-ORRT is comparable, and RW, where S- 

RRT is superior in 4 p.p. With respect to RF, S-ORRT is outper- 

ormed in general, but has a comparable prediction accuracy in A 

nd CAr. 

In summary, these numerical results illustrate that, in terms 

f prediction accuracy, S-ORRT with D = 2 , 3 outperforms the 
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Fig. 4. Scatterplot representation, for Ailerons data set, of the average R -squared 

obtained, R 2 , and the average percentage of predictor variables not used per tree, 

δG . Blue points refer to the solution of every pair of the sparsity regularization pa- 

rameters 
(
λL , λG 

)
considered in the S-ORRT construction; the green diamond, to 

CART solution; and the orange cross, to RF solution. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 5. Scalability of S-ORRT in logarithmic scale, where the computing time is 

measured in seconds as a function of N varying in 
{

10 5 , 10 6 , 10 7 
}

. 

T

p(
C

c

i(
d

4

s

s

i

m

v

d

u

N

a

2

t

Y

5  

r  

i

f

m  

m

v  

T

(

b

s

w

t

t

5

s

i

t

tandard benchmark regression methods (CART and OLS) and 

he benchmark regression method in sparsity (LASSO). Regarding 

ore sophisticated tree-based approaches, ORT-H LS and RF show 

lightly better prediction accuracies, although S-ORRT is competi- 

ive in some data sets. Unlike CART, ORT-H LS and RF, our approach 

as a direct control on global desirable properties such as sparsity, 

ost-sensitivity and fairness. 

.3. Prediction accuracy and sparsity tradeoff

The aim of this section is to illustrate that, in contrast to so- 

histicated tree-based regression methods that rely on greedy or 

ocal-search approaches, such as RF and ORT-H LS, our S-ORRT is 

ble to trade in some of its prediction accuracy for a gain in lo- 

al and global sparsity. For the sake of conciseness, we illustrate 

his in the Ailerons data set. We have solved Problem (3) –(5) with 

epth D = 1 for the sparsity parameters λL and λG in a grid. We 

ave taken the grid { 0 } ∪ { 2 r , −12 ≤ r ≤ 5 , r ∈ Z } , normalized b y 

he number of predictor variables, and in the case of λL by the 

umber of nodes too. We start solving the optimization problem 

ith 

(
λL , λG 

)
= ( 0 , 0 ) . We continue with λL = 0 but for larger val- 

es of λG . Once all 
(
0 , λG 

)
are executed, we start the process all 

ver again with the next value of λL in the grid. The solutions 

ound to Problem (3) –(5) for fixed 

(
λL , λG 

)
, are given as initial so- 

utions to the next problem to be solved in the grid. 

Figure 3 illustrates these results by means of three heatmaps: 

ne for the prediction accuracy, R 2 , another one for the local spar- 

ity, δL , and the final one for the global sparsity, δG . The color bar

f each heatmap goes from light green to dark blue, the latter in- 

icating the best (maximum) R 2 , δL or δG achieved, respectively. 

y definition, the sparsest tree is obtained for large of values of 
L , λG . We can observe that the best rates of prediction accuracy 

re not only achieved for 
(
λL , λG 

)
= ( 0 , 0 ) . Clearly, the R 2 remains 

lmost constant for pair of values 
(
λL , λG 

)
that verify λL ≤ λ̄L and 

G ≤ λ̄G where 
(
λ̄L , ̄λG 

)
= 

(
2 −2 

120 , 
2 −4 

40 

)
. In this range, where we have 

he best prediction accuracy, we can dramatically enhance both the 

ocal and the global sparsity. Indeed, the local sparsity improves 

rom 1% to 84% and the global sparsity from 0% to 52% . For larger

alues of λL and λG , our S-ORRT keeps improving sparsity but, in 

his case, at the cost of diminishing R 2 . 

Figure 4 reflects, against CART and RF, our ability to trade 

ff prediction accuracy and global sparsity in Ailerons data set. 
1052 
he value of both performance measures are drawn through blue 

oints for every pair of the sparsity regularization parameters 

λL , λG 
)

considered in the S-ORRT construction. The values for 

ART and RF are depicted with a green diamond and an orange 

ross, respectively. It can be seen that S-ORRT outperforms CART 

n both prediction accuracy and global sparsity for several pairs of 

λL , λG 
)
. With respect to RF, S-ORRT is comparable in terms of pre- 

iction accuracy, while improving global sparsity in 50%. 

.4. Scalability depending on the number of individuals: a simulation 

tudy 

In this section we illustrate that S-ORRT scales up well with the 

ize of the training sample N. To this aim, we measure the comput- 

ng time taken by S-ORRT to reach a solution with 30% improve- 

ent on the mean squared error of CART. 

We have designed a synthetic data set with p = 25 predictor 

ariables and N taking values in 

{
10 5 , 10 6 , 10 7 

}
. The first two pre- 

ictor variables, X 1 and X 2 , define two balanced groups of individ- 

als. They are generating following bivariate normal distributions, 

 ( ηk , �k ) , k = 1 , 2 . 

η1 = ( 0 . 50 , 0 . 75 ) � and �1 = 

(
0 . 005 0 

0 0 . 00375 

)
for Group 1, 

nd η2 = ( 0 . 25 , 0 . 50 ) � and �2 = �1 for Group 2. The remaining 

3 predictor variables were generated following a uniform dis- 

ribution, U ( 0 , 1 ) . The response variable for Group 1 is equal to 

 = X 3 + 2 X 4 + 5 + ε while for Group 2 is equal to Y = −X 5 − 2 X 6 −
 + ε, where ε ∼ N ( 0 , 0 . 5 ) . Thus, X 7 , . . . , X 25 have no impact in the

esponse variable. An S-ORRT tree of depth D = 1 with λL = λG = 0

s built. We feed Problem (3) –(5) with an initial solution, obtained 

rom a heuristic procedure based on the RF variable importance 

easure. That is, in a first step we solve Problem (3) –(5) with a

ultistart approach in which the predictor variables with low RF 

ariable importance, namely X j , j = 3 , . . . , 25 , do not play a role.

his heuristic solution is given as the initial one to solve Problem 

3) - (5) with the whole set of predictor variables. The procedure has 

een repeated 10 times and average results are presented. Figure 5 

hows, as a function of N, the total computing time spent for the 

hole procedure. Both axes are on logarithmic scale. We can see 

hat for this simulation study, the computing times have a linear 

rend with respect to the number of individuals. 

. Conclusions and future research 

In recent years, several papers have focused on building deci- 

ion trees in which the greedy suboptimal construction approach 

s replaced by solving an optimization problem, usually in in- 

eger variables. In this paper, we have adapted the continuous 
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ptimization-based approach to build classification trees previously 

roposed by the authors to consider regression trees. Local expla- 

ations on the continuous predictor space can be derived thanks 

o the smoothness of the predictions. Unlike CART and RF, we can 

irectly model desirable properties such as sparsity, cost-sensitivity 

nd fairness. The computational experience reported shows that 

ur method outperforms CART, as well as OLS and LASSO, in terms 

f prediction accuracy. Finally, we show that our approach scales 

p well when the size of the training sample grows. 

Several extensions to our approach are attractive. First, the lin- 

ar prediction made at each leaf node can easily be extended to 

 non-linear one. This would be obtained by simply replacing the 

inear functions ϕ it with other functions, such as those in a Gen- 

ralized Additive Model. Second, it is known that standard Regres- 

ion Analysis seeks an estimate of the conditional mean of the re- 

ponse variable, given the predictor vector, which is found by min- 

mizing the mean squared error, as proposed in this paper. Nev- 

rtheless, it would be interesting to infer other characteristics of 

he distribution of the response variable, such as the conditional 

uantiles, with the final goal to obtain prediction intervals. An ap- 

ropriate setting of our approach that considers quantile regression 

 Meinshausen, 2006 ) requires a nontrivial design. Third, a bagging 

cheme of our approach, where the collection of trees is solved si- 

ultaneously in order to have a global control on sparsity, is also 

n interesting open question. A parallelization framework would be 

uitable to make the training of a collection of trees tractable. 
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roof of Corollary 1. Observe that with a 

∗ = 0 , by construction, 

 it 

(
0 , μ∗

B 

)
is independent of i . Hence, P 

(
0 , μ∗

B 

)
is a matrix with all 

ts rows identical to a vector u 
(
μ∗

B 

)
, with 

∑ 

t∈ τL 

u t 
(
μ∗

B 

)
= 1 . 

Moreover, η
(
0 , μ∗

B 

)
= −( y i ) i ∈I , and thus, for a 

∗ = 0 and μ∗
B , the 

ector μ∗
L = 

(
−ȳ , · · · , −ȳ 

)� 
, satisfies the system of linear 

quations in Proposition 1 . �

roof of Proposition 2. First, let us consider the necessary opti- 

ality conditions for a 

∗. For λL ≥ λl and λG ≥ λg , we have, by con- 

truction, that 

λL ≥( 1 − σ ) 
∥∥∇ a j· MSE ( 0 , ( μ∗

B , μ
∗
L ) ; I ) 

∥∥
∞ 

, ∀ j = 1 , . . . , p, 

G ≥ σ
∥∥∇ a j· MSE ( 0 , ( μ∗

B , μ
∗
L ) ; I ) 

∥∥
1 
, ∀ j = 1 , . . . , p. 

Hence, 

− ( 1 − σ ) ∇ a j· MSE ( a 

∗, ( μ∗
B , μ

∗
L ) ; I ) ∈ λL ∂ a j·

(∥∥a j·
∥∥

1 

)∣∣
a j·= 0 

, 

∀ j = 1 , . . . , p, 

− σ ∇ a j· MSE ( a 

∗, ( μ∗
B , μ

∗
L ) ; I ) ∈ λG ∂ a j·

(∥∥a j·
∥∥

∞ 

)∣∣
a j·= 0 

, 

∀ j = 1 , . . . , p, 

nd thus, 

−∇ a j· MSE ( a 

∗, ( μ∗
B , μ

∗
L ) ; I ) ∈ λL ∂ a j·

(∥∥a j·
∥∥

1 

)∣∣
a j·= 0 

+ λG ∂ a j·
(∥∥a j·

∥∥
∞ 

)∣∣
a j·= 0 

, ∀ j = 1 , . . . , p, 

aving that, 

−∇ a MSE ( a 

∗, ( μ∗
B , μ

∗
L ) ; I ) ∈ λL ∂ a 

( 

p ∑ 

j=1 

∥∥a j·
∥∥

1 

) 

∣∣∣∣∣
∗
a = a 

1053 
+ λG ∂ a 

( 

p ∑ 

j=1 

∥∥a j·
∥∥

∞ 

) 

∣∣∣∣∣
a = a ∗

, 

.e.: 

0 ∈ ∂ a 
( 

MSE ( a ∗, ( μ∗
B , μ

∗
L ) ; I ) + λL 

p ∑ 

j=1 

∥∥a j·
∥∥

1 
+ λG 

p ∑ 

j=1 

∥∥a j·
∥∥

∞ 

) 

∣∣∣∣∣
a = a ∗

. 

For a 

∗ = 0 , Corollary 1 shows that the chosen μ∗
L 

minimizes 

SE, and is thus optimal for Problem (1) . In consequence, μ∗
L 

sat- 

sfies the necessary optimality conditions. 

Finally, let us analyze the optimality conditions for μB = μ∗
B 
. 

bserve that 

 μB 
MSE ( a , ( μB , μL ) ) = 

1 

| I | 
∑ 

i ∈I 
2 ( ϕ i ( a , μ) − y i ) ∇ μB 

ϕ i ( a , μ) . 

ince a 

∗ = 0 , ∇ μB 
ϕ i ( a 

∗, μ∗) does not depend on i ∈ I , say 

 μB 
ϕ i ( a 

∗, μ∗) = v for all i ∈ I . Hence, 

 μB 
MSE ( a 

∗, ( μ∗
B , μ

∗
L ) ) = 

1 

| I | 
∑ 

i ∈I 
2 ( ϕ i ( a 

∗, μ∗) − y i ) v . 

y Corollary 1 , ϕ i ( a 

∗, μ∗) = ȳ , and thus 
∑ 

i ∈I 
( ϕ i ( a 

∗, μ∗) − y i ) = 0 , 

mplying 

 μB 
MSE ( a 

∗, ( μ∗
B , μ

∗
L ) ) = 0 , 

nd the desired result follows. �
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