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A B S T R A C T

Recent studies stressed the fact that covariance matrices computed from empirical financial time series appear
to contain a high amount of noise. This makes the classical Markowitz Mean–Variance Optimization model
unable to correctly evaluate the performance associated to selected portfolios. Since the Markowitz model
is still one of the most used practitioner-oriented tool, several filtering methods have been proposed in the
literature to overcome the problem. Among them, the two most promising ones refer to the Random Matrix
Theory and to the Power Mapping strategy. The basic idea of these methods is to transform the estimated
correlation matrix before applying the Mean–Variance Optimization model. However, experimental analysis
shows that these two strategies are not always effective when applied to real financial datasets.

In this paper we propose a new filtering method based on Quadratic Programming. We develop a
Mixed Integer Quadratic Programming model, which is able to filter those observations that may affect the
performance of the selected portfolio. We discuss the properties of this new model and test it on some
real financial datasets. We compare the out-of-sample performance of our portfolios with the one of the
portfolios provided by the two above mentioned alternative filtering methods giving evidence that our method
outperforms them. Although our model can be solved efficiently with standard optimization solvers, the
computational burden increases for large datasets. To solve also these problems, we propose a heuristic
procedure, which, on the basis of our empirical results, shows to be both efficient and effective.
1. Introduction and motivation

The Mean–Variance Optimization (MVO) approach, introduced by
Markowitz in 1952 (Markowitz, 1952), has dominated the asset alloca-
tion process for more than 50 years. The Markowitz model minimizes
the variance of the returns of a portfolio under the requirement of
getting at least a fixed expected return level. In spite of its success,
MVO received many criticisms, in particular, related to the fact that
when returns are not Normally distributed the corresponding sampled
correlation matrix is biased. Empirical studies have established that the
distribution of speculative assets’ returns tends to have fatter tails than
the Gaussian distribution (see, e.g., Fama, 1965; Jansen and de Vries,
1991; Mandelbrot, 1963). Fat tails are typical of high kurtosis distri-
butions in which extreme events, characterized by a small probability
in theory, empirically occur more frequently than what the Normal
distribution predicts. Including observations of the extreme events in
the surveyed data produces noise in the estimation process that may
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affect the correlation matrix evaluation. After the recent financial crisis
of 2008, many investors moved their attention to how to deal with the
risk associated to these extreme events.

In a paper by Stoyanov et al. (see Stoyanov et al., 2011 and the
references therein), the authors discuss and compare some popular
methods for fat tails modeling based on full distribution modeling and
extreme value theory. They conclude that the best approach should
be to extend the Gaussian model incorporating methods for handling
fat tails, and then testing their performance on real financial datasets.
In any case, there is no evidence on which is the best among all the
families of fat tailed models, as there may be different families of fat
tailed distributions which are statistically equivalent.

An alternative analysis on the effects of noise in the estimated
correlation matrix in the MVO model is provided by Schafer et al.
(2010). The basic idea is that the bulk of eigenvalues of the covariance
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matrix that are small (or even zero) may produce portfolios of stocks
that have nonzero returns but extremely low or even vanishing risk;
such portfolios are related to estimation errors in real data. For this
reason, in Schafer et al. (2010) the authors propose two filtering
techniques in order to eliminate the problem of small eigenvalues
in the sampled covariance matrix. According to the first technique,
which relies on Random Matrix Theory (RMT) (Laloux et al., 2000),
after the diagonalization of the correlation matrix, only the ℎ highest
eigenvalues are preserved, while the others are set to zero. Then, a
new filtered covariance matrix is obtained by using the filtered spec-
trum and the original eigenvectors. The second method, called Power
Mapping, transforms each element of the correlation matrix by raising
its absolute value to some power 𝑞, while preserving the sign. The
transformed matrix is used in the application of the MVO model. The
authors observe that particular attention must be paid to the value of 𝑞
that is modeled as a function of the ratio 𝑛

𝑇 , where 𝑛 is the number of
ssets and 𝑇 the number of observation time periods. The first method
as also considered in a series of previous papers (Pafka and Kondor,
002, 2003, 2004) where the authors apply a filter to the covariance
atrix based on the RMT approach and introduce a measure defined

s the ratio between the risk associated to an empirical portfolio
nd the risk associated with the true optimal portfolio. In the above
entioned papers, the model minimizes the return’s variance without

he constraint on the fixed expected return level. The true portfolio is
ormed for two special cases, namely when the true covariance matrix
s equal to the unit matrix, and when it is randomly generated. Hence,
n this study, the performance of noise filtering techniques is tested in
extremely controlled setting.

From a risk management viewpoint, natural quantities to estimate
re the realized (or out-of-sample) return and risk of a portfolio. Actu-
lly, the novelty in Schafer et al. (2010) is that the authors compare
he two proposed filtering techniques applied to the MVO model with
nd without short-sellings, both in a Monte-Carlo simulation framework
nd, for the first time, on a real dataset. However, as the authors
rite, in their simulation framework good realized return and risk are
bserved, while in the real setting and without short-selling the im-
rovement provided by the two filtering methods is not so evident w.r.t.
he non-filtered MVO model (see Schafer et al., 2010 pages 116–117
ection 5.2.2). Moreover, they observe experimentally that the power
ethod approach is quite sensitive to the value of 𝑞, and thus to the

atio 𝑛
𝑇 , and they find that a good value for 𝑞 should be approximatively

equal to
√

𝑛
𝑇 . The poor behavior of the RMT approach, in particular for

the no short-selling case, is also confirmed in El Karoui (2013) where
the author observes that, when short-selling is not allowed, the problem
of biased sampled covariance matrices is mitigated, and naive estimates
of the risk are already very close to the realized risk.

In the classical MVO framework it is crucial to have good esti-
mates of the expected returns and covariances for all securities in the
considered market. In this regard, a number of alternative approaches
emerged in the literature in order to suppress noise in the data. These
procedures include single- and multi-factor models, (for a review, see,
e.g., Elton and Gruber (1995) and Elton et al. (2006)) and Bayesian
estimators (see Jorion, 1986; Ledoit and Wolf, 2003). Alternatively,
some authors propose to construct a portfolio by solving the classical
Markowitz model in which the original correlation matrix is replaced
by a correlation based clustering matrix with the aim of providing
portfolios that are quite robust with respect to noise deriving from the
finiteness of the sample size (see, among others, Onnela et al. (2004),
Puerto et al. (2020), Tola et al. (2008), Watts and Strogatz (1998) and
the references therein). Some of these methods were compared to the
RMT approach (see, e.g., Tola et al., 2008), but with the conclusion that
the alternative filtering procedures provide different portfolio results
each characterized by its specific strengths and weaknesses. Hence, it is
difficult to compare the different methods and definitively state which
is the best one.
2

Finally, different mathematical models based on the minimization
of downside risk measures have also been proposed in order to mitigate
the effects of extreme events. These measures are, in fact, functions of
skewness and kurtosis of the returns distributions. CVaR (Rockafellar
and Uryasev, 2002) provides an example of this approach where the
downside risk is taken into account by controlling the probability of
the losses that might be encountered in the tail of the distribution.

Important contributions in the literature on portfolio selection and
asset management support the belief that, in a MVO framework, uncer-
tainty from estimation errors in expected returns tends to have more
influence than the one in the covariance matrix (Best and Grauer,
1991a,b; Kolm et al., 2014). As a matter of fact, these papers affirm that
the relative importance of the two errors depends on the investor’s risk
aversion, and, as the risk tolerance decreases, the impact of errors in
expected returns relative to errors in the covariance matrix becomes
small. In general, both errors should be controlled in order to get
good estimates of the portfolio parameters. In Kolm et al. (2014) the
authors present some of the most common techniques for mitigating
estimation errors. Among others, they suggest introducing constraints
on portfolio weights, diversification measures, incorporating higher
moments in a mathematical model or developing robust optimization
approaches. The reader is referred to Kolm et al. (2014) for a more
detailed description of these techniques.

To summarize, at the moment, although numerous alternatives to
the MVO model have appeared in the literature in order to cope
with estimate errors when managing historical data, no definitive clear
leader emerged up to now. In conclusion, despite of all the flaws
affecting the MVO model, at this time it is still the most used tool for
portfolio selection.

In this paper we put ourselves from the practitioner point of view
with the aim of applying the MVO model to obtain from real financial
datasets a portfolio with good out-of-sample values for expected return
and variance. We propose a new filtering technique that can be seen
also as a refinement of the classical MVO model. The approach relies on
the idea that estimation errors may arise for the presence of extremely
rare observations (outliers) in the historical assets’ return series. There-
fore, removing such observations from the dataset helps in filtering only
reliable information and provides a way of obtaining portfolios with
good out-of-sample performance. This is an already known approach
which typically establishes a percentage of observations to remove on
the tails of the return distribution, and then computes truncated means.
The covariance matrix is computed on the same filtered distribution.
After this filtering, the classical MVO model can be applied to select
the portfolio. The difficult step in this approach is to detect outliers,
and decide how many — and which — observations must be removed
from the observed series. We also point out that there are many assets
in the financial market for which returns are observed simultaneously,
and removing a time observation means removing that observation for
all the considered assets. Therefore, the problem cannot be faced asset
by asset, but there is the need of finding a systemic rule, taking into
consideration that deleting a time observation corresponding to a rare
value for a given asset, implies the removal of the corresponding time
observations for all the other assets. Then, the convenience of removing
or not observations at a time 𝑡 should be carefully evaluated, and the
way in which this is actually performed is a relevant methodologi-
cal issue. We claim that the problem can be actually managed in a
systematic approach via combinatorial optimization and mathematical
programming.

In this paper, we propose a new filtering methodology based on a
revision of the classical MVO Markowitz model in which the optimal
filtering decision, related to how many and which observations have to
be removed from the dataset, is incorporated in the optimization model
which minimizes the variance of a portfolio guaranteeing a minimum
level of expected return. The power of the model is that it is able
to manage in a single step two decisions, filtering observations and

selecting the optimal portfolio. Additional (integer) variables, mapping
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which time observations must be removed and which not, are included
in the model. The optimization procedure outputs simultaneously the
best choice for the vector of filtering variables and for the vector of
portfolio weights. We point out that in this approach establishing the
number of removed observations is part of the decision, so that also it
must be considered as a decision variable.

It is important to highlight that, acting on the possible removal of
time observations, implies that both errors in expected return and in
covariances estimates are managed together in the same process. In
this way, no preference is given a priori about which among these two
errors is more important; the task of controlling both of them is then
left to the model and to the optimization procedure, the only guiding
criterion being to minimize the final portfolio variance. Finally, we
observe that our filtering strategy, based on the MVO model, can be
seen as an alternative way of dealing with the fat tails issue to the CVaR
approach. In the following sections we show that, in general, the two
approaches are not comparable, but, under some assumptions, both
fall into a more general framework consisting in optimizing filtered
statistical moments.

Since our proposal falls into the broad class of filtering methods,
we compare it in terms of performance with some of the most common
filtering techniques found in the literature. In particular, we consider
the two filtered procedures presented in Schafer et al. (2010) which
share with our method the idea of maintaining the MVO approach, but
with a manipulation of the data feeding the model. Both approaches
have the common objective to select portfolios with good future (out-
of-sample) performance, so that how much robust and effective they
are can be established empirically by verifying which produces the best
solutions for real financial datasets. It must be pointed out that there is
a clear characteristic aspect which distinguishes our approach from the
compared ones: filtering and portfolio optimization are conducted in
synergy by solving one single model. This is a typical strength of com-
binatorial optimization, and this is, in fact, the innovative contribution
of our approach to filtering MVO for portfolio selection.

The results are encouraging since with our model we obtain better
performance results than those of the two competing filtering methods.
This in spite of the computational effort required by our model which
is a Mixed Integer Quadratic Programming (MIQP) problem. We show
that standard solvers are able to find solutions in reasonable times at
least for small and medium size financial datasets. For larger size we
can still apply our approach by proposing a heuristic procedure that,
from a computational viewpoint, has proven to be very efficient in
practice.

The paper is organized as follows. Section 2 describes the two
filtered MVO models presented in the literature based on the Random
Matrix Theory and the Power Mapping techniques. In Section 3 we
introduce our Scenario Filtering approach and formulate our general
filtered MVO model as a nonlinear programming problem. We also
discuss some complexity issues of this problem and analyze the relation
between CVaR and our filtered variance approach in Section 3.1. In
Section 3.2 we show how to reformulate it as a MIQP problem easy
to solve with standard optimization software at least for small and
medium size financial datasets. In this section we also derive a set
of valid inequalities for the quadratic problem. A heuristic approach
for solving large size instances is proposed in Section 3.3. Section 4
presents an extensive experimental analysis where we compare the
out-of-sample performance of all the approaches on five real-world
financial datasets. Finally, some conclusions and further research are
outlined.

2. The MVO filtering models: Notation and definitions

The Mean–Variance Markowitz problem (Markowitz, 1952) is a
classic portfolio optimization problem in finance, where, given an
amount of money, the aim is to select a portfolio of 𝑛 assets through two
riteria: the expected return and the risk due to the variability of the
3

returns. In the standard framework, the risk is measured by the variance
of the portfolio returns. In the ideal case, the covariance and the mean
of the returns are known, and the problem is: finding the proportion
𝑥𝑗 of capital invested in each asset 𝑗, 𝑗 = 1,… , 𝑛, in a stock market in
order to minimize the variance of the portfolio for a required level of
expected return 𝜇0. Let 𝜇𝑗 be the expected return of asset 𝑗, and 𝜎𝑖𝑗 be
the covariance of returns of asset 𝑖 and asset 𝑗. The Markowitz model
is formulated as the following convex quadratic program:

min
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝜎𝑖𝑗 (Markowitz)

s.t.
𝑛
∑

𝑗=1
𝜇𝑗𝑥𝑗 ≥ 𝜇0

𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑥𝑗 ≥ 0 𝑗 = 1,… , 𝑛.

The above model refers to the case where short-selling is not allowed in
the optimization, i.e. the fractions 𝑥𝑗 must be nonnegative. As observed
in Schafer et al. (2010), imposing this constraint has the direct and
rather limiting consequence that positive correlations between assets’
returns cannot be used to reduce the portfolio risk. As we will see
later, this may limit the potential for lowering the risk through the
application of noise reduction methods based on spectral filtering.
When short-selling is allowed, the fractions 𝑥𝑗 are not restricted to
be nonnegative. In any case, we observe that short-selling models are
considered rather unrealistic in the specialized literature, as pointed out
in Kondor et al. (2007), for legal and liquidity reasons.

In a real financial market, we have 𝑇 + 1 different observations
(scenarios) for the prices of 𝑛 given assets. Let 𝑃𝑗𝑡 be the price of asset 𝑗,
𝑗 = 1,… , 𝑛, at time 𝑡, 𝑡 = 0, 1,… , 𝑇 . For a financial risk manager it is of
crucial interest to have good estimates for the returns and correlations
between stocks. Following (Schafer et al., 2010), we compute the 𝑇
rates of return of asset 𝑗, 𝑟𝑗𝑡, as

𝑟𝑗𝑡 =
𝑃𝑗𝑡 − 𝑃𝑗𝑡−1

𝑃𝑗𝑡−1
, 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 .

We assume that, for each asset 𝑗, the observed return 𝑟𝑗𝑡 has
associated a probability 𝑝𝑡, 𝑡 = 1,… , 𝑇 , with ∑𝑇

𝑡=1 𝑝𝑡 = 1. Under the
hypothesis of no further information, we assume 𝑝𝑡 = 1

𝑇 , 𝑡 = 1… , 𝑇 .
The average rate of return of asset 𝑗 is 𝜇𝑗 =

∑𝑇
𝑡=1 𝑝𝑡𝑟𝑗𝑡, 𝑗 = 1,… , 𝑛. We

estimate the covariance 𝜎𝑖𝑗 between the rate of returns of assets 𝑖 and
𝑗 by computing

𝜎𝑖𝑗 =
1
𝑇

𝑇
∑

𝑡=1
(𝑟𝑖𝑡 − 𝜇𝑖)(𝑟𝑗𝑡 − 𝜇𝑗 ), 𝑖, 𝑗 = 1,… , 𝑛.

The correlation matrix 𝐶 is given by 𝐶𝑖𝑗 =
𝜎𝑖𝑗
𝜎𝑖𝜎𝑗

, 𝑖, 𝑗 = 1,… , 𝑛, where
he volatility of asset 𝑗 is measured by 𝜎𝑗 = +√𝜎𝑗𝑗 , 𝑗 = 1,… , 𝑛. The

rate of return at time 𝑡 of a portfolio 𝑥 = (𝑥1,… , 𝑥𝑛) is

𝑦𝑡(𝑥) =
𝑛
∑

𝑗=1
𝑟𝑗𝑡𝑥𝑗 , 𝑡 = 1,… , 𝑇 ,

the expected portfolio rate of return is

𝜇(𝑥) =
𝑇
∑

𝑡=1
𝑝𝑡𝑦𝑡(𝑥) =

𝑛
∑

𝑗=1
𝜇𝑗𝑥𝑗 ,

and the portfolio risk can be measured by

𝑉 (𝑥) =
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝜎𝑖𝑗 =

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝜎𝑖𝜎𝑗𝐶𝑖𝑗 .

It is important to note that the correlation matrix depends on the

time horizon 𝑇 and, for a finite 𝑇 , the correlations obtained from
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historical data are affected by a considerable amount of noise, which
leads to a substantial error in the estimation of the portfolio risk (Fama,
1965; Jansen and de Vries, 1991; Mandelbrot, 1963; Schafer et al.,
2010).

The Random Matrix Theory introduced by Laloux et al. (2000) is
helpful to identify the noise in correlation matrices, and also shows a
way to reduce this noise. Actually, the idea is that, after diagonalization
of the correlation matrix 𝐶 = 𝑈−1𝛬𝑈 , only the ℎ highest eigenvalues
n the diagonal of 𝛬 must be considered, while the remaining ones are
et to zero. Let 𝛬𝑓 be the filtered eigenvalues diagonal matrix and 𝑈
e the original eigenvector matrix. Then, the new filtered correlation
atrix 𝐶𝑓 is computed

𝑓 = 𝑈−1𝛬𝑓𝑈.

The normalization of the elements on the diagonal of 𝐶𝑓 to 1 is
estored by setting 𝐶𝑓

𝑗𝑗 = 1 for all 𝑗 = 1,… , 𝑛. This method is capable
f removing the noise for uncorrelated assets completely (see Schafer
t al., 2010 for a complete description of the method). Finally, the MVO
odel filtered according to the RMT becomes:

min
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝜎𝑖𝜎𝑗𝐶

𝑓
𝑖𝑗 (RMT)

s.t.
𝑛
∑

𝑗=1
𝜇𝑗𝑥𝑗 ≥ 𝜇0

𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑥𝑗 ≥ 0 𝑗 = 1,… , 𝑛.

The weakness of the RMT method is that it cuts off all the infor-
mation contained in the discarded eigenvalues. An alternative method
developed in order to reduce noise was introduced in Guhr and Kälber
(2003). It is the so-called Power Mapping technique. It takes each
element of the correlation matrix and raises its absolute value to some
power 𝑞, while preserving the sign. With this method one obtains a new
correlation matrix whose elements are:

𝐶 (𝑞)
𝑖𝑗 = sign(𝐶𝑖𝑗 )|𝐶𝑖𝑗 |

𝑞 .

The idea behind this method is that the effect of the noise, which
typically arises in the small correlations, can be broken in this way,
with an effect which is stronger as the value of 𝑞 increases. Thus, the
problem is to choose the right value for 𝑞 also taking into account that
a byproduct effect of 𝑞 is produced on all correlations. The MVO model
filtered according to the Power Mapping is then formulated as follows:

min
𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑥𝑖𝑥𝑗𝜎𝑖𝜎𝑗𝐶

(𝑞)
𝑖𝑗 (Power Mapping)

s.t.
𝑛
∑

𝑗=1
𝜇𝑗𝑥𝑗 ≥ 𝜇0

𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑥𝑗 ≥ 0 𝑗 = 1,… , 𝑛.

The drawback of the two above methods is that, generally, to reduce
noise, they, in fact, eliminate too much information contained in the
observed time series of the assets prices, and this inevitably affects the
4

estimation of the portfolio return and risk.
3. The scenario filtering approach

In this paper we propose an alternative refinement of the MVO
model that incorporates some additional constraints that allows the
model to eliminate observations (outliers) in order to obtain a good
estimation of return and risk. The idea is that, in particular in the
long run, few extreme events in the distribution of assets prices could
extremely affect the volatility and performance of a portfolio in the
future. With our method we maintain the bulk of the data while
dropping only those extreme observations caused by a distribution with
fat tails or more simply by measurement errors.

More precisely, we want to model the problem of filtering (elim-
inating) a fixed number 𝐾 of the 𝑇 observed scenarios for the assets
rate of returns, 𝐾 < 𝑇 , while simultaneously solving the MVO problem.
We refer to this problem as Problem (P). The selection of the filtered
scenarios can be modeled with binary variables:

𝑧𝑡 =

{

1 if scenario 𝑡 is filtered
0 otherwise

𝑡 = 1,… , 𝑇 .

Under the equiprobability assumption, for a filtering realization 𝑧 =
(𝑧1,… , 𝑧𝑇 ) of 𝐾 < 𝑇 scenarios, the return distribution of a portfolio
𝑥 = (𝑥1,… , 𝑥𝑛) is 𝑦𝑡(𝑥) with probability 𝑞𝑡(𝑧𝑡) = 1

𝑇−𝐾 (1 − 𝑧𝑡). Then,
for each 𝑡 = 1,… , 𝑇 we denote by 𝑞𝑡 = 1

𝑇−𝐾 and, recalling that
𝑡(𝑥) =

∑𝑛
𝑗=1 𝑟𝑗𝑡𝑥𝑗 , the filtered expected return of the portfolio is

�̃�(𝑥, 𝑧) =
𝑇
∑

𝑡=1
𝑞𝑡(𝑧𝑡)𝑦𝑡(𝑥) =

𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑞𝑡𝑟𝑗𝑡𝑥𝑗 (1 − 𝑧𝑡), (1)

nd the corresponding filtered variance is

̃ (𝑥, 𝑧) =
𝑇
∑

𝑡=1
𝑞𝑡(𝑧𝑡)(𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧))2 =

𝑇
∑

𝑡=1
𝑞𝑡(𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧))2(1 − 𝑧𝑡). (2)

Problem (P) can be stated as:

min 𝑉 (𝑥, 𝑧) (P)
s.t.

�̃�(𝑥, 𝑧) ≥ 𝜇0
𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑇
∑

𝑡=1
𝑧𝑡 = 𝐾

𝑥𝑗 ≥ 0 𝑗 = 1,… , 𝑛

𝑧𝑡 ∈ {0, 1} 𝑡 = 1,… , 𝑇 .

Problem (P) is a Quadratically Constrained Mixed Integer Nonlinear
rogramming problem that falls into the class of considerably difficult
P-hard problems (Floudas and Visweswaran, 1995). We also show

hat testing feasibility of problem (P) is NP-hard in two cases: (i) when
e require that the portfolio expected return be exactly equal to 𝜇0

see e.g. Cesarone et al., 2013; Schafer et al., 2010); (ii) when we add
hreshold constraints on investment 𝓁𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 , 𝑗 = 1,… , 𝑛, which
mpose limitations to the assets shares in the portfolio (see Mansini
t al., 2007). Indeed, we note that in this second case we only need
o assume upper bounds 𝑢𝑗 > 0, 𝑗 = 1,… , 𝑛.

We prove these complexity results via polynomial reduction to the
artition problem that can be stated as follows: Given a finite set 𝐴 =
𝑎1,… , 𝑎𝑛} with 𝑎𝑖 ∈ Z+ for all 𝑖 ∈ 𝐼 = {1,… , 𝑛}, the Partition problem

asks for the existence of an index subset 𝐼 ′ ⊆ 𝐼 such that
∑

𝑖∈𝐼 ′
𝑎𝑖 =

∑

𝑖∈𝐼⧵𝐼 ′
𝑎𝑖.

The Partition problem is NP-complete and remains NP-complete
even if we require |𝐼 ′| = 𝑛 (see Garey and Johnson, 1979).
2
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Proposition 1. Testing feasibility of Problem (P) is NP-hard when
�̃�(𝑥, 𝑧) = 𝜇0 is required.

roof. In Problem (P), set 𝑇 = 𝑛, 𝐾 = 𝑛
2 , 𝜇0 =

1
𝑛
∑𝑛

𝑖=1 𝑎𝑖, and the assets
ate of returns 𝑟𝑗𝑡 = 𝑎𝑡 for all 𝑗, 𝑡 ∈ 𝐼 = {1,… , 𝑛}. Then, the rate of
eturn at time 𝑡 ∈ 𝐼 of any feasible portfolio 𝑥 is

𝑡(𝑥) =
𝑛
∑

𝑗=1
𝑎𝑡𝑥𝑗 = 𝑎𝑡,

nd the corresponding filtered expected return becomes

�̃�(𝑥, 𝑧) = 2
𝑛

𝑇
∑

𝑡=1
𝑎𝑡(1 − 𝑧𝑡).

In Problem (P) we assume that, given a feasible solution, if 𝑧𝑡 = 1
then 𝑡 ∈ 𝐼 ′ ⊂ 𝐼 , otherwise 𝑡 ∈ 𝐼 ⧵ 𝐼 ′. Furthermore, we also observe that

hen in the Partition problem |𝐼 ′| = 𝑛
2 is required, it implies that

∑

∈𝐼 ′
𝑎𝑖 =

∑

𝑖∈𝐼⧵𝐼 ′
𝑎𝑖 =

∑

𝑖∈𝐼 𝑎𝑖
2

.

Hence, the answer to the Partition problem is ‘‘yes’’ if and only if
roblem (P) is feasible. □

roposition 2. Testing feasibility of Problem (P) is NP-hard when 𝑥𝑗 ≤ 𝑢𝑗 ,
with 𝑢𝑗 > 0, 𝑗 = 1,… , 𝑛, is required.

Proof. We refer to a modified Partition problem, that is, we assume
𝐴 ⊆ Q+ and ∑𝑛

𝑖=1 𝑎𝑖 = 2. This assumption implies that if 𝑎𝑖 > 1 for
ome 𝑖 ∈ 𝐼 , then the answer to the problem is trivially ‘‘no’’. Thus, we
ssume 𝑎𝑖 ≤ 1 for all 𝑖 ∈ 𝐼 . We observe that this modified problem
s equivalent to the (standard) Partition problem if we multiply the
umbers in the set 𝐴 by a proper factor. Hence, the modified Partition
roblem is NP-complete, as well.

In Problem (P), set 𝑇 = 𝑛, 𝐾 = 𝑛
2 , 𝜇0 =

𝑛
2 , 𝑢𝑗 = 𝑎𝑗 for all 𝑗 = 1,… , 𝑛,

and the assets rate of returns 𝑟𝑗𝑡 =
1
𝑎𝑗

if 𝑡 ≠ 𝑗, and 𝑟𝑗𝑡 = −(𝐾 −1) 1
𝑎𝑗

−𝐾𝜀
f 𝑡 = 𝑗, for all 𝑗, 𝑡 ∈ 𝐼 = {1,… , 𝑛} and any 𝜀 > 0. Then, the filtered

average rate of return of asset 𝑗 ∈ 𝐼 is

�̃�𝑗 (𝑧) =
1
𝐾

𝑇
∑

𝑡=1
𝑟𝑗𝑡(1 − 𝑧𝑡).

Note that �̃�𝑗 (𝑧) = 1
𝑎𝑗

if 𝑧𝑗 = 1, and �̃�𝑗 (𝑧) = −𝜀 if 𝑧𝑗 = 0. Thus, it

follows that �̃�𝑗 (𝑧) =
1
𝑎𝑗
𝑧𝑗 − 𝜀(1 − 𝑧𝑗 ) for all 𝑗 ∈ 𝐼 . Hence, the filtered

xpected return of the portfolio can be expressed as

�̃�(𝑥, 𝑧) =
𝑛
∑

𝑗=1
�̃�𝑗 (𝑧)𝑥𝑗 =

𝑛
∑

𝑗=1

1
𝑎𝑗

𝑧𝑗𝑥𝑗 − 𝜀
𝑛
∑

𝑗=1
(1 − 𝑧𝑗 )𝑥𝑗 .

Finally, the feasible region of Problem (P) becomes
𝑛
∑

𝑗=1

1
𝑎𝑗

𝑧𝑗𝑥𝑗 − 𝜀
𝑛
∑

𝑗=1
(1 − 𝑧𝑗 )𝑥𝑗 ≥ 𝐾

𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑛
∑

𝑗=1
𝑧𝑗 = 𝐾

≤ 𝑥𝑗 ≤ 𝑎𝑗 𝑗 = 1,… , 𝑛

𝑗 ∈ {0, 1} 𝑗 = 1,… , 𝑛.

herefore, with the same reasoning of the previous proposition, the
nswer to the (modified) Partition problem is ‘‘yes’’ if and only if
roblem (P) is feasible. □

In the light of the above propositions, it is important to provide
fficient solution methods to solve Problem (P). In the following, we
ropose both an exact method and a heuristic procedure.
5

a

.1. Relation between filtered variance and CVaR

We recall that for each natural number 𝑠, the 𝑠th order raw moment
f a discrete random variable, in particular the rate of return of a
ortfolio 𝑥, is

raw
𝑠 (𝑥) =

𝑇
∑

𝑡=1
𝑝𝑡
(

𝑦𝑡(𝑥)
)𝑠 .

n the other hand, the 𝑠th order central moment is

cent
𝑠 (𝑥) =

𝑇
∑

𝑡=1
𝑝𝑡
(

𝑦𝑡(𝑥) − 𝜇(𝑥)
)𝑠 .

In Mansini et al. (2015) it is shown that when equally probable
cenarios (i.e., 𝑝𝑡 =

1
𝑇 ) are considered and a threshold 𝛽 = 𝑚

𝑇 is taken,
with 𝑚 the number of worst realizations, the corresponding Conditional

alue-at-Risk of a portfolio 𝑥 is

CVaR 𝑚
𝑇
(𝑥) = 1

𝑚

𝑚
∑

𝓁=1
𝑦𝑡𝓁 (𝑥),

where 𝑦𝑡1 (𝑥),… , 𝑦𝑡𝑚 (𝑥) are the 𝑚 worst realizations for the portfolio
ates of return. In this case we observe that the CVaR measure can
e interpreted as the minimum first moment of the rate of return of
portfolio 𝑥 when filtering 𝑇 − 𝑚 scenarios, that is:

�̃�raw,min
1,𝑇−𝑚 (𝑥) = min

𝑧1 ,…,𝑧𝑇 ∈{0,1}∶
∑𝑇
𝑡=1 𝑧𝑡=𝑇−𝑚

{

1
𝑚

𝑇
∑

𝑡=1
𝑦𝑡(𝑥)(1 − 𝑧𝑡)

}

.

In light of the above interpretation, we can define higher order
inimum filtered moments. Let us consider the second central moment
f the rate of return of a portfolio 𝑥 filtering 𝑇 −𝑚 scenarios, we obtain:

�̃�cent,min
2,𝑇−𝑚 (𝑥) = min

𝑧1 ,…,𝑧𝑇 ∈{0,1}∶
∑𝑇
𝑡=1 𝑧𝑡=𝑇−𝑚

⎧

⎪

⎨

⎪

⎩

1
𝑚

𝑇
∑

𝑡=1

(

𝑦𝑡(𝑥)(1 − 𝑧𝑡) −
1
𝑚

𝑇
∑

𝑡=1
𝑦𝑡(𝑥)(1 − 𝑧𝑡)

)2⎫
⎪

⎬

⎪

⎭

. (3)

o find the portfolio that minimizes the filtered second central moment
3) for 𝑚 = 𝑇 − 𝐾 is equivalent to find the portfolio that minimizes
he filtered variance 𝑉 (𝑥, 𝑧) (i.e. Problem (P) without considering
he minimum expected return constraint). Hence, we remark that al-
hough we propose a variation of the mean–variance portfolio model
f Markowitz, we also have developed a portfolio selection model that
an be seen as an alternative to CVaR but operating in the same, more
eneral, framework of optimizing filtered statistical moments.

In any case, we stress the fact that despite the above relation
etween CVaR and our filtered model, each measure has a different
urpose. Actually, CVaR is used to identify the worst scenarios of a
ortfolio with the aim of maximizing them, while in the minimization
f the filtering variance the idea is to eliminate those scenarios that
ncrease the variance treating them as outliers. Thus, in general these
wo measures are not fully comparable.

.2. The mixed integer quadratic programming model

In this section we present a reformulation of Problem (P) as a MIQP
roblem that, even if it still belongs to the class of difficult NP-hard
roblems, it can be efficiently solved by using some commercial or free
ptimization solvers for general MIQP models.

We consider the filtered variance of the portfolio return (2):

̃ (𝑥, 𝑧) =
𝑇
∑

𝑡=1
𝑞𝑡|𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧)|2(1 − 𝑧𝑡).

Since in Problem (P) we minimize the filtered variance we can
pply the McCormick linearization (McCormick, 1976) to the products
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of squared absolute values and (1 − 𝑧𝑡) terms. Therefore, the filtered
variance can be equivalently written as
𝑇
∑

𝑡=1
𝑞𝑡𝑑

2
𝑡 (4)

whenever the following set of constraints is satisfied

𝑑𝑡 ≥ |𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧)| − 𝑧𝑡𝑀𝑡 𝑡 = 1,… , 𝑇

for nonnegative variables 𝑑𝑡 ≥ 0 and big enough constants 𝑀𝑡 > 0, 𝑡 =
1,… , 𝑇 . In addition, since |𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧)| = max{𝑦𝑡(𝑥)−�̃�(𝑥, 𝑧),−(𝑦𝑡(𝑥)−
�̃�(𝑥, 𝑧))}, the above set of constraints can be replaced by the following
one:

𝑑𝑡 ≥ 𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧) − 𝑧𝑡𝑀+
𝑡 𝑡 = 1,… , 𝑇

𝑑𝑡 ≥ −(𝑦𝑡(𝑥) − �̃�(𝑥, 𝑧)) − 𝑧𝑡𝑀−
𝑡 𝑡 = 1,… , 𝑇

(5)

where the constants 𝑀+
𝑡 ,𝑀

−
𝑡 > 0 are big enough for each 𝑡 = 1,… , 𝑇 .

We can also linearize the quadratic terms 𝑥𝑗 (1−𝑧𝑡) in �̃�(𝑥, 𝑧) by adding
a new set of variables �̃�𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 , such that
�̃�𝑗𝑡 = 𝑥𝑗 (1 − 𝑧𝑡) by imposing the following constraints:

�̃�𝑗𝑡 ≤ (1 − 𝑧𝑡) 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇
�̃�𝑗𝑡 ≤ 𝑥𝑗 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇
�̃�𝑗𝑡 ≥ 𝑥𝑗 − 𝑧𝑡 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 .

(6)

Constraints (6) refer to a standard way of linearizing the product of
a binary variable and a continuous nonnegative one. They can be
included, together with (5), in a reformulation of Problem (P) in which
the objective function (4) is minimized.

It is easy to see that, when integrated in our model, constraints (6)
are implied by the following ones:

𝑛
∑

𝑗=1
�̃�𝑗𝑡 = 1 − 𝑧𝑡 𝑡 = 1,… , 𝑇

�̃�𝑗𝑡 ≤ 𝑥𝑗 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 .
(7)

The above constraints lead to an equivalent formulation that in our
experiments showed to require a smaller computational effort in the
solution process. Thus, in our model we replace (6) by (7).

From the above discussion, we propose the following MIQP model:

min
𝑇
∑

𝑡=1
𝑞𝑡𝑑

2
𝑡 (Scenario Filtering)

s.t.

𝑑𝑡′ ≥
𝑛
∑

𝑗=1
𝑟𝑗𝑡′𝑥𝑗 −

𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑞𝑡𝑟𝑗𝑡�̃�𝑗𝑡 − 𝑧𝑡′𝑀

+
𝑡′ 𝑡′ = 1,… , 𝑇

𝑑𝑡′ ≥ −
𝑛
∑

𝑗=1
𝑟𝑗𝑡′𝑥𝑗 +

𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑞𝑡𝑟𝑗𝑡�̃�𝑗𝑡 − 𝑧𝑡′𝑀

−
𝑡′ 𝑡′ = 1,… , 𝑇

𝑛
∑

𝑗=1
�̃�𝑗𝑡 = 1 − 𝑧𝑡 𝑡 = 1,… , 𝑇

�̃�𝑗𝑡 ≤ 𝑥𝑗 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇
𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑞𝑡𝑟𝑗𝑡�̃�𝑗𝑡 ≥ 𝜇0

𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑇
∑

𝑡=1
𝑧𝑡 = 𝐾

𝑥𝑗 ≥ 0 𝑗 = 1,… , 𝑛

𝑧𝑡 ∈ {0, 1} 𝑡 = 1,… , 𝑇

𝑑𝑡 ≥ 0 𝑡 = 1,… , 𝑇

�̃�𝑗𝑡 ≥ 0 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 .

The above model is a MIQP model that uses big-𝑀 constants. It is
6

well-known that big-𝑀 constants often produce large gaps between the
continuous relaxation of the model and the MIP objective values, which
can induce a poor performance of the model from the computational
time point of view. Thus, it is important to provide tight values for these
constants. In our case, for a given 𝑡′ = 1,… , 𝑇 , we can set the values as
follows:

𝑀+
𝑡′ = max

𝑥1 ,…,𝑥𝑛≥0
𝑧1 ,…,𝑧𝑇 ∈{0,1}

{ 𝑛
∑

𝑗=1
𝑥𝑗

(

𝑟𝑗𝑡′ −
𝑇
∑

𝑡=1
𝑞𝑡𝑟𝑗𝑡(1 − 𝑧𝑡)

)

∶
𝑛
∑

𝑗=1
𝑥𝑗 = 1,

𝑇
∑

𝑡=1
𝑧𝑡 = 𝐾, 𝑧𝑡′ = 1

}

and

𝑀−
𝑡′ = max

𝑥1 ,…,𝑥𝑛≥0
𝑧1 ,…,𝑧𝑇 ∈{0,1}

{ 𝑛
∑

𝑗=1
𝑥𝑗

(

−𝑟𝑗𝑡′ +
𝑇
∑

𝑡=1
𝑞𝑡𝑟𝑗𝑡(1 − 𝑧𝑡)

)

∶
𝑛
∑

𝑗=1
𝑥𝑗 = 1,

𝑇
∑

𝑡=1
𝑧𝑡 = 𝐾, 𝑧𝑡′ = 1

}

.

It is not difficult to see that the solution of the above maximization
problems can be easily computed as

𝑀+
𝑡′ = max

𝑗=1,…,𝑛

{

𝑟𝑗𝑡′ + 𝐵+
𝑗𝑡′

}

and 𝑀−
𝑡′ = min

𝑗=1,…,𝑛

{

−𝑟𝑗𝑡′ + 𝐵−
𝑗𝑡′

}

where 𝐵+
𝑗𝑡′ is the sum of the 𝐾 − 1 greater numbers of the set

{−𝑞1𝑟𝑗1,… ,−𝑞𝑇 𝑟𝑗𝑇 } ⧵ {−𝑞𝑡′ 𝑟𝑗𝑡′} and 𝐵−
𝑗𝑡′ is the sum of the 𝐾 − 1 greater

numbers of the set {𝑞1𝑟𝑗1,… , 𝑞𝑇 𝑟𝑗𝑇 } ⧵ {𝑞𝑡′ 𝑟𝑗𝑡′}, for each 𝑗 = 1,… , 𝑛.
We observe that, although alternative MIQP models without big-𝑀
constants can be obtained by using different reformulations of Prob-
lem (P), the advantage of our MIQP model reformulation is that
its objective function is convex. Due to this property, the continuous
relaxation of the problems arising from a Branch and Bound strategy
are convex quadratic programs, for which solvers provide more reliable
solutions than the ones obtained for nonconvex problems. Reliability of
solutions is crucial when one takes into account the numerical issues
that occur when optimizing a MIQP model (see Bienstock, 1996), and
also when one consider the possible effect of these numerical issues
on the portfolios (out-of-sample) performance. In this way, as observed
in our computational experiments, our MIQP model guarantees the
reliability of the solutions found without worsening the computational
times too much. This is due to the tightness of the big-𝑀 constants.
Moreover, we observed that when additional variables are used to
reformulate our MIQP model avoiding the use of big-𝑀 constants, the
computational time saved does not compensate for the additional time
obtained by augmenting the problem’s dimension.

Our MIQP model admits a set of valid inequalities related with some
others presented in the literature for similar problems. In particular, we
note the similarity of Problem (P) with the problem studied in Bienstock
(1996). In the historical data approach assumed in the present work,
the set of considered stocks and the set of available observations
determine the input for the MVO problem. Roughly speaking, the
problem in Bienstock (1996) corresponds to solving the MVO problem
by selecting a cardinality constrained subset of the stocks. In our case,
we are interested in solving the MVO problem but we want to select a
subset of time-observations. Therefore, in the former problem there is
a cardinality constraint over the number of assets included in the port-
folio, while in our model the cardinality constraint is on the number of
considered observations. Of course, the constraints are similar but not
the same. As in Bienstock (1996) we derive a set of valid inequalities for
our problem that are inspired by the cover inequalities for the knapsack
problem (Nemhauser and Wolsey, 1988; Wolsey, 1998).

We have derived our MIQP model by reformulating Problem (P).
In that process, we have introduced variables �̃�𝑗𝑡 = 𝑥𝑗 (1 − 𝑧𝑡), 𝑗 =
1,… , 𝑛, 𝑡 = 1,… , 𝑇 , originally not defined in Problem (P). We show
now that indeed Problem (P) can be conceptually stated using only �̃�𝑗𝑡

variables. We start by noting that the filtered expected return (1) can
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be expressed using �̃�𝑗𝑡 variables as

�̃�(�̃�) =
𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑞𝑡𝑟𝑗𝑡�̃�𝑗𝑡.

In the same way, and taking into account that 𝑉 (𝑥, 𝑧) =
∑𝑇

𝑡=1 𝑞𝑡(𝑧𝑡)
(𝑦𝑡(𝑥))2−(�̃�(𝑥, 𝑧))2, we can write the corresponding filtered variance (2)
as

𝑉 (�̃�) =
𝑇
∑

𝑡=1
𝑞𝑡(

𝑛
∑

𝑗=1
𝑟𝑗𝑡�̃�𝑗𝑡)2 − (�̃�(�̃�))2.

We also need to rewrite the minimum expected return requirement
constraint
𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑞𝑡𝑟𝑗𝑡�̃�𝑗𝑡 ≥ 𝜇0

in the equivalent form with positive coefficients and positive right-hand
side
𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑎𝑗𝑡�̃�𝑗𝑡 ≥ 𝛽,

where 𝑎𝑗𝑡 = 𝑞𝑡(𝑟𝑗𝑡 + 𝛼) > 0, 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 , 𝛽 = 𝜇0 + 𝛼 > 0, and
𝛼 ≥ 0 is taken big enough. The equivalence between the constraints
above follows from the fact that ∑𝑇

𝑡=1
∑𝑛

𝑗=1 𝑞𝑡𝛼�̃�𝑗𝑡 = 𝛼 1
𝑇−𝐾

∑𝑇
𝑡=1(1 −

𝑡)
∑𝑛

𝑗=1 𝑥𝑗 = 𝛼 in the setting of Problem (P). Finally, Problem (P) can
be re-stated as

min 𝑉 (�̃�) (𝑃�̃�)
s.t.

𝑇
∑

𝑡=1

𝑛
∑

𝑗=1
𝑎𝑗𝑡�̃�𝑗𝑡 ≥ 𝛽

|

|

|

{

𝑡 ∈ {1,… , 𝑇 } ∶ �̃�𝑗𝑡 > 0 for some 𝑗 = 1,… , 𝑛
}

|

|

|

= 𝑇 −𝐾
𝑛
∑

𝑗=1
�̃�𝑗𝑡 = 1 𝑡 = 1,… , 𝑇 ∶ �̃�𝑗𝑡 > 0 for some 𝑗 = 1,… , 𝑛

�̃�𝑗𝑡 = �̃�𝑗𝑡′ 𝑗 = 1,… , 𝑛, 𝑡, 𝑡′ = 1,… , 𝑇 ∶ 𝑥𝑗𝑡, 𝑥𝑗𝑡′ > 0

0 ≤ �̃�𝑗𝑡 ≤ 1 𝑗 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 .

sing the same terminology as in Bienstock (1996), we say that a set
⊆ {1,… , 𝑇 } is critical if:

or every 𝑅 ⊆ 𝑆 with |𝑅| = 𝑇 −𝐾,
∑

𝑡∈𝑅

𝑛
∑

𝑗=1
𝑎𝑗𝑡 < 𝛽.

hen, the following results hold.

roposition 3. If 𝑆 is a critical set, then the set of inequalities

𝑡∈𝑆
�̃�𝑗𝑡 ≤ 𝑇 −𝐾 − 1 𝑗 = 1,… , 𝑛

re valid for Problem (𝑃�̃�).

roof. Note that the definition of critical set 𝑆 implies that in Problem
𝑃�̃�) at most 𝑇 − 𝐾 − 1 indices 𝑡 ∈ 𝑆 can have associated nonzero 𝑥𝑗𝑡
ariables, otherwise the minimum expected return requirement con-
traint is not satisfied. Since Problem (𝑃�̃�) also forces the consistency
f the ‘actives’ scenarios in the sets {�̃�𝑗1,… , �̃�𝑗𝑇 }, 𝑗 = 1,… , 𝑛, the result
ollows. □

orollary 4. The set of inequalities given in Proposition 3 are also valid
or our MIQP model.

We remark that each critical set in Bienstock (1996), or cover set
n Wolsey (1998) (also called dependent set in Nemhauser and Wolsey
1988)), has a naturally associated valid inequality for the problem
onsidered in each reference. Given the particularity of our Problem
𝑃 ), each critical set provides 𝑛 valid inequalities for this problem.
7

�̃�

As we will see in the experimental results in Section 4, our MIQP
odel is efficiently solvable for small and medium size financial
atasets. For larger size instances, computational times are consider-
bly longer. For this reason, in the following section we propose a
euristic approach for solving Problem (P).

.3. The heuristic algorithm

In this subsection we present our heuristic procedure. We note
hat solving Problem (P) implies to decide which 𝐾 scenarios have
o be filtered from the 𝑇 observed ones. This corresponds to make

decision among
(𝑇
𝐾

)

possible ones. Thus, it is reasonable to think
hat the computational effort to solve Problem (P) grows with the
ardinality of the decision set, from 𝐾 = 1 up to 𝐾 = 𝑇

2 . Indeed,
this was confirmed by our computational experiments. Based on this
consideration, we design a heuristic algorithm that exploits a nested
solutions strategy. Let Problem (P𝑘) be our Problem (P) when 𝑘 ≤ 𝐾
scenarios have to be filtered, and let 𝑧(𝑘) = (𝑧1(𝑘),… , 𝑧𝑡(𝑘),… , 𝑧𝑇 (𝑘))
e the filtering decision variables of Problem (P𝑘), 𝑘 = 1,… , 𝐾. Then,
t each step we solve Problem (P𝑘+1) but keeping the best scenarios
iltering 𝑧∗(𝑘) found by the heuristic for the previous Problem (P𝑘),
= 1,… , 𝐾 − 1. The computational effort to perform each step equals

he effort for solving Problem (P) when only one scenario has to be
iltered. We show the basic pseudocode below.

Algorithm 1 Heuristic
1: begin
2: solve Problem (P1)
3: let 𝑧∗(1) be the scenarios filtering obtained
4: for 𝑘 = 2,… , 𝐾 do
5: solve Problem (P𝑘) fixing 𝑧𝑡(𝑘) = 1 if 𝑧∗𝑡 (𝑘 − 1) = 1,

𝑡 = 1,… , 𝑇
6: let 𝑧∗(𝑘) be the scenarios filtering obtained
7: return 𝑥∗ the best portfolio found
8: end

It is clear that, in Algorithm 1 the solution found at the first step
(line 2) is optimal for 𝑘 = 1. On the contrary, from step 2 on, we obtain
uboptimal solutions for 𝑘 ≥ 2. In spite of this, in our experiments the
euristic showed to be effective in finding good quality solutions. To
mplement Algorithm 1 we can solve our MIQP model for 𝐾 = 1 in line
, and our MIQP model for 𝐾 = 𝑘 in line 5 but fixing appropriately
he 𝑧𝑡 variables. We call Version 1 this implementation of Algorithm 1.
n alternative implementation, which we call Version 2, is described
elow.

Let  = {1,… , 𝑇 }. Suppose that we want to solve the MVO problem
ut considering only a given subset of the observations 𝑅 ⊆  . From the
esults in Section 3.2, it is straightforward to see that such a problem
an be formulated as follows:

min
∑

𝑡∈𝑅
�̂�𝑡(𝑅)𝑑2𝑡 (𝑅-MVO)

s.t.

𝑑𝑡′ ≥
𝑛
∑

𝑗=1
𝑟𝑗𝑡′𝑥𝑗 −

∑

𝑡∈𝑅

𝑛
∑

𝑗=1
�̂�𝑡(𝑅)𝑟𝑗𝑡𝑥𝑗 𝑡′ ∈ 𝑅

𝑑𝑡′ ≥ −
𝑛
∑

𝑗=1
𝑟𝑗𝑡′𝑥𝑗 +

∑

𝑡∈𝑅

𝑛
∑

𝑗=1
�̂�𝑡(𝑅)𝑟𝑗𝑡𝑥𝑗 𝑡′ ∈ 𝑅

∑

𝑡∈𝑅

𝑛
∑

𝑗=1
�̂�𝑡(𝑅)𝑟𝑗𝑡𝑥𝑗 ≥ 𝜇0

𝑛
∑

𝑗=1
𝑥𝑗 = 1

𝑥𝑗 ≥ 0 𝑗 = 1,… , 𝑛
𝑑𝑡 ≥ 0 𝑡 ∈ 𝑅
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where �̂�𝑡(𝑅) =
1
|𝑅| , 𝑡 ∈ 𝑅. Problem 𝑅-MVO is a simple convex quadratic

program and therefore it can be solved quite efficiently. Now, note that
line 2 in Algorithm 1 can be performed by solving Problem 𝑅-MVO for
each set 𝑅 =  ⧵{𝑡}, 𝑡 ∈  , and returning the best solution found. In the
ase of line 5, it can be performed by solving Problem 𝑅-MVO for each
et 𝑅 = ( ⧵ {𝑡 ∈  ∶ 𝑧∗𝑡 (𝑘 − 1) = 1}) ⧵ {𝑡′}, 𝑡′ ∈ {𝑡 ∈  ∶ 𝑧∗𝑡 (𝑘 − 1) = 0},
nd returning the best solution found. This procedure is our Version 2
f the implementation of Algorithm 1. The reader may notice that this
rocedure can be replicated using the original MVO model, which is
lso a convex quadratic program, using the corresponding covariance
atrix in function of the considered observations. However, this alter-
ative way of performing the procedure requires the computation of the
ovariance matrix for each MVO model, which charges an unnecessary
dditional computational effort.

Which among the two versions of Algorithm 1 is more efficient
epends on the number of observations 𝑇 and the size 𝑛 of the set of
ssets. In the conditions of our computational experiments, for a fixed
, Version 1 of the Algorithms performs better than Version 2 for small

ize datasets, while Version 2 performs quite better than Version 1 for
edium/large size datasets.

. Experimental results

In this section we present an empirical analysis on real stocks mar-
et data with the aim of evaluating the out-of-sample performance of
he portfolios selected by the MVO model when our Scenario Filtering
pproach is applied. In addition, we compare the performances of our
iltered portfolios to those obtained by the MVO model filtered by the
MT and the Power Mapping techniques, and also to the portfolios
elected by the classical Markowitz model.

We test all the above portfolio selection strategies on some real
atasets belonging to the major stock markets across the world. We
onsider the following datasets1 that were also used in Bruni et al.
2017), Puerto et al. (2020):

1. DJIA (Dow Jones Industrial Average, USA), containing 28 as-
sets and 1353 weekly price observations (period: 07/05/1990–
04/04/2016);

2. EUROSTOXX50 (Europe’s leading blue-chip index, EU), contain-
ing 49 assets and 729 weekly price observations (period:
22/04/2002-04/04/2016);

3. FTSE100 (Financial Times Stock Exchange, UK), containing 83
assets and 625 weekly price observations (period: 19/04/2004-
04/04/2016);

4. SP500 (Standard & Poor’s, USA), containing 442 assets and 573
weekly price observations (period: 18/04/2005-04/04/2016).

To evaluate the performance of the models in practice, we di-
ide the observations in two sets, where the first one is regarded
s the past (in-sample window), and so it is considered known, and
he rest is regarded as the future (out-of-sample window), supposed
nknown at the time of portfolio selection. The in-sample window is
sed for selecting the portfolio, while the out-of-sample one is used
or testing the performance of the selected portfolio. In particular, in
ur experiments we use a rolling time window scheme allowing for

the possibility of rebalancing the portfolio composition during the
holding period, at fixed intervals. We observe that a rolling window
method is able to better capture intertemporal effects than single-period
portfolio choice policies. A deeper discussion about the usefulness of
multi-period optimization can be found in Kolm et al. (2014) and the
references therein.

Following Jegadeesh and Titman (2001), Mansini et al. (2007),
Puerto et al. (2020), for each dataset we adopt a period of 52 weeks

1 The datasets are available upon request.
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(one year) as in-sample window and we consider 12 weeks (three
months) as out-of-sample, with rebalancing allowed every 12 weeks.

For each dataset, in all the portfolio selection models considered
we set 𝜇0 equal to the average of the market portfolio return in the
in-sample period. When considering the RMT filtering method we
choose the 5 largest eigenvalues (ℎ = 5), since, as reported in Schafer
et al. (2010), this choice yielded the best results in their experimental
framework. For the Power Mapping method we set 𝑞 = 1.25 since this
value in Schafer et al. (2010) provided the best results in the case
without short-selling. In the case of our Scenario Filtering approach
we decided to remove up to 5 scenarios of each in-sample period, in
order to not increase the computational burden of our method and,
at the same time, to not distort the dataset too much. Since each in-
sample period contains 52 observations, the above decision corresponds
to remove up to the 10% (approximately) of the observations, which
seems reasonable if one takes into account the frequency of occurrence
of extreme events in the fat tail distributions that characterize returns
distributions in financial markets. From the portfolio value perfor-
mance viewpoint, we show that, in fact, this choice of 𝐾 is enough
to outperform the other competing filtering models.

In the following tables we consider some classic out-of-sample
performance measures described below:

1. Average return ( AvReturn): it is defined as the average 𝐸[𝜇out (𝑥)]
of the out-of-sample returns of a portfolio 𝑥. The larger is
the value of the index, the better is the corresponding portfolio
performance.

2. Out-of-sample Variance (V-Out): it is the variance 𝜎2(𝜇out (𝑥)) of the
returns of the out-of-sample portfolios. The smaller is the value of
the index, the better is the corresponding portfolio performance.

3. Sharpe Ratio ( Sharpe) (Sharpe, 1966, 1996): consider the differ-
ence between the average of the returns of the out-of-sample port-
folios, 𝜇out (𝑥), and a constant risk-free rate of return 𝑟𝑓 (i.e., the
expected extra return). The Sharpe index is given by the ratio
between the expected extra return and the standard deviation of
the returns of the out-of-sample portfolios:

𝐸[𝜇out (𝑥)] − 𝑟𝑓
𝜎(𝜇out (𝑥))

.

In the bi-criteria optimization approach of the classical MVO
model, the larger is the value of the index, the better is the
portfolio performance. In our analysis we set 𝑟𝑓 = 0.

4. Sortino Ratio ( Sortino) (Sortino and Satchell, 2001): it is defined
as the ratio between the average of expected extra return and a
measure of the portfolio downside risk, namely:

𝐸[𝜇out (𝑥)] − 𝑟𝑓
𝜎(min{(𝜇out (𝑥) − 𝑟𝑓 ), 0})

.

The larger is the value of the index, the better is the portfolio
performance.

We note that, when a rolling time window scheme is adopted, the
out-of-sample portfolio 𝑥 is rebalanced in each successive in-sample
period. Therefore, the above indices evaluate the global performance
of a portfolio selection method by averaging over all the out-of-sample
portfolios.

In addition, we include in the tables the following information:

5. Mean number of assets (MeanAssets): it is the mean of the numbers
of assets selected in portfolio 𝑥 in each in-sample period. We
consider that an asset 𝑗 is selected in portfolio 𝑥 if 𝑥𝑗 ≥ 0.01,
𝑗 = 1,… , 𝑛.

6. Mean time (MeanTime): it is the mean of the CPU times for solving
the considered model in each in-sample period. In the case of the
heuristic procedure, it is the mean of the running times. In each
in-sample period we set a time limit of 7200 s for solving the
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Table 1
Out-of-sample risk (⋅10−4) with a 12 weeks rebalancing when the expected return of
he portfolio is set to 𝜇0.

DJIA EUROSTOXX FTSE100 SP500

Markowitz 4.518 6.465 4.629 4.188

RMT 4.583 6.389 4.631 4.215

Power Mapping 4.375 6.398 4.398 4.052

Scenario Filtering

𝐾 = 1 4.416 5.424 4.280 3.976
𝐾 = 2 4.307 5.627 4.491 4.233
𝐾 = 3 4.408 5.648 4.311 4.462
𝐾 = 4 4.328 5.909 4.342 4.521
𝐾 = 5 4.352 5.803 4.397 4.554

model. This time limit is reached by our MIQP model only in some
instances of the SP500 dataset. In these cases in which the solver
may not have been able to find an optimal solution within the
time limit, we also provide a measure of the gap obtained.

7. Mean gap (MeanGap): it is the mean of the relative gaps, in
percentage, in each in-sample period. As commented above, it
only applies to our MIQP model in some instances of the SP500
dataset.

8. Mean Relative Error (MRE): it is the mean of the relative errors, in
percentage, in each in-sample period. It only applies to our heuris-
tic procedure as a measure of the relative difference between the
optimal solution obtained by solving our MIQP model and the
best heuristic solution found. Small MRE values indicate that the
solutions provided by the heuristic are close to the corresponding
optimal ones. For the SP500 dataset, MRE uses the best (possibly
optimal) solutions found by our MIQP model within the time
limit.

The models have been implemented in MATLAB R2018a and they
make calls to XPRESS solver version 8.5 for solving the MIP problems.
All experiments were run in a computer DellT5500 with a processor
Intel(R) Xeon(R) with a CPU X5690 at 3.75 GHz and 48 GB of RAM
memory.

We start by showing the potential of our approach for lowering the
out-of-sample risk (i.e., V-Out). We will only use for this demonstration
our MIQP model, as it corresponds to the exact implementation of
our Scenario Filtering approach and given that it is enough for our
illustrative purpose. Although similar results are obtained for our
heuristic algorithm, a more detailed analysis of this method will be
provided in the sequel. We show in Table 1 the portfolio out-of-sample
risk regardless of the effect of the portfolio return. This allows to better
evaluate only the realized risk of optimized portfolios. To do this, in all
models we require that the portfolio expected return be exactly equal
to 𝜇0 (see, e.g., Kondor et al., 2007). Table 1 shows the portfolio out-
of-sample risk values for all the portfolio selection models and datasets
considered. Best values are reported in bold.

From the above table there seems to be a slight preference for our
model. In fact, on all datasets, there always exists a value of 𝐾 by
which we are able to produce portfolios with lower out-of-sample risk
than the others. We observe that our MIQP model always provides
the best realized risk values (in bold). We also remark that for three
of the four datasets this result was obtained with 𝐾 = 1. The choice
𝐾 = 1 corresponds removing about only the 2% of the observations in
each in-sample period. This shows the impact of extreme observations
in the data.

On the other hand, the classical Markowitz model, from which
all the approaches presented in this paper originate, is a bi-criteria
optimization model, and, therefore, the comparison must be performed
on the basis of both values of realized risk and return. To this aim,
Tables 2–5 report the complete out-of-sample analysis based on all the
performance measures introduced at the beginning of this section. In
9
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all the models the portfolio expected return constraint is modeled as
an inequality, so that, it is possible to jointly assess the effect of return
and risk in the selected portfolios. For the sake of completeness, in the
following tables and for each dataset we also include the values of the
performance measures of the market portfolio, labeled as ‘‘Market’’.

In Tables 2–5 best values are in bold. We also underline the best
values of the performance measures when the comparison is restricted
only to the filtering methods.

We observe that our MIQP model always provides portfolios having
(on average) the best out-of-sample performance in terms of return. On
the other hand, except for the FTSE100 dataset, the realized risk of
our portfolios is worse than the realized risk provided by the portfolios
found by the two alternative filtering models. However, in a bi-criteria
framework and from an investor viewpoint, the indices which evaluate
the compromise between the return of a portfolio and the risk that the
investor is affording are the most significant. In our experiments, the
Sharpe and the Sortino ratios of our portfolios outperform those of the
Power Mapping and RMT models (see underlined values) for all the
datasets. Here one has to remember that in our approach 𝐾 is treated
as a decision variable, and the model is solved for each of the different
values 𝐾 = 1, 2, 3, 4, 5 with the precise aim of finding the best value for
𝐾. Therefore, in Tables 2–5 the final result of our method should be
read as the best among those reported in the five rows of the ‘‘Scenario
Filtering’’ block.

It can be observed in the Tables that the Market portfolio perfor-
mance is generally worse than all the other portfolios. In particular, this
confirms that filtering portfolios — with any method — is an effective
tool to improve the portfolio realized return and risk.

About the ‘‘MeanAssets’’ column, in Tables 2–5 we also note that
the average number of selected stocks provided by our approach is the
same as the one provided by the classical Markowitz model, while the
RMT and Power Mapping models tend to select slightly more assets
than our model, especially for large datasets. Limiting the number
of selected stocks is often a requirement that come from real-world
practice where the administration of a portfolio made up of a large
number of assets, possibly with very small holdings for some of them,
is clearly not desirable because of transactions costs, minimum lot sizes,
complexity of management, or due to specific policies of the asset
management companies.

As observed, and as evident from the above tables, our MIQP model
is hard to solve up to proven optimality especially for large financial
datasets. In general, computational times grow w.r.t. to the number of
assets and the parameter 𝐾. From a practitioner viewpoint, there is the
need of computing portfolios having a good out-of-sample performance
without too much waste of time. Hence, in the following Tables 6–
9 we report the same experimental analysis by applying the heuristic
procedures introduced in Section 3.3. Regarding the two versions of
the heuristic described in Section 3.3, the CPU times reported in the
tables have been obtained by implementing the Version 1 for DJIA and
EUROSTOXX50 datasets, and the Version 2 for FTSE100 and SP500.
Version 2 is therefore more suitable for large datasets in our setting.

We can see in Tables 6–9 that the performance results of our
heuristic are in line with the ones obtained for the exact model. As
expected, the computational times have been dramatically reduced
while the relative error is on average no larger than the 1%. This
shows the effectiveness of the heuristic procedure. We also note that
in Table 9 for 𝐾 = 5 the heuristic was able to find solutions with a
etter value than the values provided by the exact model (see the
egative MRE), pointing out that the larger the value of parameter
, the harder is to find an optimal solution with the exact approach.

ndeed, the computational times needed to solve the exact model grow
xponentially with 𝐾, while this growth is linear in the case of the
euristic. The CPU time needed to run the heuristic seems reasonable
less than one minute on average), and indeed it is lower than the

ne required by the Power Mapping filtering technique in the case of
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Table 2
Out-of-sample performances for DJIA (𝑛 = 28) with a 12 weeks rebalancing.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.)

Market 1.657 5.460 7.090 0.117 28 –

Markowitz 1.908 4.036 9.500 0.157 9.9 0.031

RMT 1.842 4.039 9.164 0.152 9.7 0.038

Power Mapping 1.930 3.893 9.780 0.163 11.9 0.035

Scenario Filtering

𝐾 = 1 1.915 4.136 9.418 0.158 9.8 1.969
𝐾 = 2 1.907 4.096 9.420 0.157 9.7 2.806
𝐾 = 3 1.888 4.099 9.325 0.156 9.8 7.033
𝐾 = 4 1.924 4.166 9.428 0.158 9.8 22.402
𝐾 = 5 2.032 4.245 9.864 0.167 9.8 63.690
Table 3
Out-of-sample performances for EUROSTOXX (𝑛 = 49) with a 12 weeks rebalancing.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.)

Market 0.799 8.732 2.703 0.043 49 –

Markowitz 1.778 4.902 8.029 0.124 8.9 0.036

RMT 1.666 4.899 7.527 0.115 9.1 0.041

Power Mapping 1.705 4.785 7.793 0.120 11.1 0.038

Scenario Filtering

𝐾 = 1 1.724 5.250 7.526 0.116 9.6 3.253
𝐾 = 2 1.810 5.388 7.798 0.121 9.7 4.502
𝐾 = 3 1.790 5.500 7.633 0.117 9.9 7.951
𝐾 = 4 1.840 5.546 7.812 0.120 9.6 21.540
𝐾 = 5 1.887 5.606 7.971 0.123 9.9 61.881
Table 4
Out-of-sample performances for FTSE100 (𝑛 = 83) with a 12 weeks rebalancing.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.)

Market 0.762 6.656 2.954 0.047 83 –

Markowitz 1.852 4.339 8.892 0.144 12.7 0.042

RMT 1.577 4.333 7.578 0.121 14.4 0.046

Power Mapping 1.749 4.091 8.646 0.139 16.4 0.047

Scenario Filtering

𝐾 = 1 2.406 4.015 12.001 0.197 12.7 8.365
𝐾 = 2 2.152 3.944 10.840 0.175 13.2 13.877
𝐾 = 3 1.905 4.176 9.324 0.149 13.3 31.997
𝐾 = 4 1.873 4.134 9.212 0.149 13.1 120.866
𝐾 = 5 1.837 4.096 9.075 0.146 13.4 367.511
Table 5
Out-of-sample performances for SP500 (𝑛 = 442) with a 12 weeks rebalancing.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.) MeanGap (%)

Market 1.292 7.544 4.704 0.076 442 – –

Markowitz 1.560 3.603 8.220 0.127 16.4 0.230 –

RMT 1.619 3.347 8.847 0.140 21.2 0.263 –

Power Mapping 1.506 3.398 8.170 0.129 21.8 69.195 –

Scenario Filtering

𝐾 = 1 1.273 3.706 6.613 0.103 17.6 131.609 0
𝐾 = 2 1.161 3.766 5.981 0.093 17.4 319.337 0
𝐾 = 3 1.320 3.924 6.662 0.105 17.2 1055.618 0
𝐾 = 4 1.455 4.165 7.132 0.112 17.9 4106.864 15.488
𝐾 = 5 2.016 4.302 9.720 0.156 18.1 6174.948 58.857
Table 9. We conjecture that this increase in the computational time of
the Power Mapping method is due to the fact that the correlation matrix
after the transformation may be indefinite. To conclude this analysis of
our heuristic, we note that the performance measures of the heuristic in
Tables 6–9 sometimes improved the corresponding results of the exact
method in Tables 2–5. The possible capacity of the heuristic of avoiding
overfitting effects explains this fact.
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Finally, to emphasize the out-of-sample performance of our ap-
proach, in the following figures we show the weekly out-of-sample
portfolio values. For each dataset, 𝐾 is the number of filtered obser-
vations corresponding to the values in bold in column ‘‘AvReturn’’ in
Tables 2–5. The red and dark blue lines report the weekly values of
the portfolios obtained with our MIQP model (‘‘Scenario Filtering’’)
and our heuristic algorithm, respectively. Note that in Fig. 1(c) the red
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Table 6
Out-of-sample performances for DJIA (𝑛 = 28) with a 12 weeks rebalancing applying the heuristic procedure.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.) MRE (%)

Market 1.657 5.460 7.090 0.117 28 – –

Markowitz 1.908 4.036 9.500 0.157 9.9 0.031 –

RMT 1.842 4.039 9.164 0.152 9.7 0.038 –

Power Mapping 1.930 3.893 9.780 0.163 11.9 0.035 –

Heuristic

𝐾 = 1 1.915 4.136 9.418 0.158 9.8 1.985 0
𝐾 = 2 1.897 4.103 9.367 0.156 9.7 4.206 0.073
𝐾 = 3 1.957 4.106 9.658 0.161 9.8 6.557 0.294
𝐾 = 4 1.980 4.176 9.690 0.162 9.8 8.870 0.453
𝐾 = 5 2.069 4.245 10.043 0.169 9.8 11.155 0.575
Table 7
Out-of-sample performances for EUROSTOXX (𝑛 = 49) with a 12 weeks rebalancing applying the heuristic procedure.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.) MRE (%)

Market 0.799 8.732 2.703 0.043 49 – –

Markowitz 1.778 4.902 8.029 0.124 8.9 0.036 –

RMT 1.666 4.899 7.527 0.115 9.1 0.041 –

Power Mapping 1.705 4.785 7.793 0.120 11.1 0.038 –

Heuristic

𝐾 = 1 1.724 5.250 7.526 0.116 9.6 3.259 0
𝐾 = 2 1.810 5.388 7.798 0.121 9.7 7.303 0
𝐾 = 3 1.803 5.502 7.686 0.118 9.9 11.711 0.011
𝐾 = 4 1.862 5.541 7.909 0.122 9.8 16.110 0.160
𝐾 = 5 1.840 5.620 7.763 0.119 9.9 20.493 0.247
Table 8
Out-of-sample performances for FTSE100 (𝑛 = 83) with a 12 weeks rebalancing applying the heuristic procedure.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.) MRE (%)

Market 0.762 6.656 2.954 0.047 83 – –

Markowitz 1.852 4.339 8.892 0.144 12.7 0.042 –

RMT 1.577 4.333 7.578 0.121 14.4 0.046 –

Power Mapping 1.749 4.091 8.646 0.139 16.4 0.047 –

Heuristic

𝐾 = 1 2.406 4.015 12.008 0.197 12.7 7.939 0
𝐾 = 2 2.149 3.951 10.811 0.175 13.3 15.569 0.074
𝐾 = 3 1.876 4.176 9.179 0.147 13.2 22.999 0.206
𝐾 = 4 1.899 4.147 9.325 0.151 13.0 30.215 0.465
𝐾 = 5 1.992 4.107 9.830 0.159 13.2 37.339 0.498
Table 9
Out-of-sample performances for SP500 (𝑛 = 442) with a 12 weeks rebalancing applying the heuristic procedure.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.) MRE (%)

Market 1.292 7.544 4.704 0.076 442 – –

Markowitz 1.560 3.603 8.220 0.127 16.4 0.230 –

RMT 1.619 3.347 8.847 0.140 21.2 0.263 –

Power Mapping 1.506 3.398 8.170 0.129 21.8 69.195 –

Heuristic

𝐾 = 1 1.273 3.707 6.611 0.103 17.6 9.018 0
𝐾 = 2 1.202 3.828 6.144 0.096 17.4 17.641 0.113
𝐾 = 3 1.364 4.008 6.814 0.107 17.3 26.040 0.097
𝐾 = 4 1.472 4.250 7.142 0.112 17.8 34.249 0.518
𝐾 = 5 1.860 4.265 9.006 0.143 18.1 42.331 −0.743
and dark blue lines coincide since, as pointed out in Section 3.3, the
solutions of the exact and heuristic methods coincide for 𝐾 = 1. From
ur computational experiments, one can conclude that our exact and
euristic algorithms outperform the alternative filtering methods on the
nalyzed real-world datasets.
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4.1. Daily prices dataset

In order to validate our approach also in a set-up with high-
frequency observations, we replicate the analysis above using daily
prices data (see e.g. Jegadeesh and Titman, 2001; Onnela et al., 2004;
Tola et al., 2008). In particular we consider the following dataset that
was used for the first time in Scozzari (2021):
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Fig. 1. Weekly out-of-sample portfolio values for the four weekly prices datasets.
1. FTSEMIB (Financial Times Stock Exchange Milano Indice Borsa,
Italy), containing 23 assets and 3432 daily price observations
(period: 03/09/2007–12/03/2021).

Similar to the analysis made for the four weekly prices datasets, we
use a rolling time window scheme for the FTSEMIB dataset adopting a
period of 52 days as in-sample window and we consider 12 days as out-
of-sample, while the rebalancing is performed every 12 days. Table 10
reports the out-of-sample analysis, based on the previous considered
performance measures, of the different exact methods. In Table 11
it is also shown the results obtained with the heuristic procedure.
The daily out-of-sample portfolio values obtained with the different
methods is shown in Fig. 2, where 𝐾 is chosen as the number of filtered
observations that provides the best value (in bold) in the column
‘‘AvReturn’’ in Table 10.

The results shown in Table 10, Table 11 and Fig. 2, are in line with
the ones obtained considering weekly prices observations, so our ap-
proach is also valid when high-frequency observations are considered.
12
Fig. 2. Daily out-of-sample portfolio values for the FTSEMIB dataset.
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Table 10
Out-of-sample performances for FTSEMIB (𝑛 = 23) with a 12 days rebalancing.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.)

Market 0.004 2.845 0.023 0.001 23 –

Markowitz 0.353 1.270 3.129 0.048 7.6 0.033

RMT 0.401 1.304 3.508 0.054 7.0 0.053

Power Mapping 0.343 1.261 3.058 0.046 9.0 0.059

Scenario Filtering

𝐾 = 1 0.419 1.242 3.763 0.058 7.6 1.847
𝐾 = 2 0.393 1.292 3.456 0.053 7.6 2.452
𝐾 = 3 0.432 1.267 3.836 0.058 7.7 4.033
𝐾 = 4 0.406 1.279 3.591 0.055 7.7 9.016
𝐾 = 5 0.362 1.288 3.192 0.049 7.6 21.654
Table 11
Out-of-sample performances for FTSEMIB (𝑛 = 23) with a 12 days rebalancing applying the heuristic procedure.

AvReturn (⋅10−3) V-Out (⋅10−4) Sharpe (⋅10−2) Sortino MeanAssets MeanTime (sec.) MRE (%)

Market 0.004 2.845 0.023 0.001 23 – –

Markowitz 0.353 1.270 3.129 0.048 7.6 0.033 –

RMT 0.401 1.304 3.508 0.054 7.0 0.053 –

Power Mapping 0.343 1.261 3.058 0.046 9.0 0.059 –

Heuristic

𝐾 = 1 0.419 1.242 3.763 0.058 7.6 1.836 0
𝐾 = 2 0.428 1.293 3.759 0.058 7.6 3.752 0.088
𝐾 = 3 0.413 1.275 3.660 0.056 7.7 5.743 0.113
𝐾 = 4 0.393 1.283 3.471 0.053 7.7 7.797 0.242
𝐾 = 5 0.368 1.290 3.237 0.049 7.7 9.838 0.410
c
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5. Conclusions

Due to the presence of outliers in the distribution of assets’ returns,
covariance matrices typically incorporate a huge amount of noise.
Therefore, their use in portfolio selection may be misleading. Several
methods have been presented in the literature to cope with this problem
ranging from extending the Gaussian model incorporating methods for
handling outliers to models based on the minimization of downside risk
measures.

In this paper we propose a new approach based on Quadratic
Programming that fits in the MVO framework, which is still at the
basis of the most popular portfolio selection models used by practition-
ers. We provide a new MIQP model and apply it to some real-world
financial datasets. We show that it is able to eliminate outliers in
order to lower the in-sample variance and obtaining a good out-of-
sample performance of the portfolios. We compare our approach with
some popular outliers filtering procedures provided in the literature. In
order to solve large size financial datasets we also provide a heuristic
procedure based on the same MIQP. We show that our new approach
for filtering is effective in hitting the goal of eliminating noise in
the observed data. From a computational viewpoint, the two possible
(exact and heuristic) strategies are able to find optimal or near optimal
solutions in reasonable times.

Finally, under some assumptions on the tolerance level 𝛽, we show
that the CVaR𝛽 of a portfolio can be interpreted as the minimum
first moment of a portfolio rate of return, while the optimal value
of our filtered variance corresponds to the minimum second central
moment of a portfolio rate of return. These observations lead one
to consider how it may be possible to model higher order minimum
filtered moments like filtered skewness and filtered kurtosis, which is
worth investigating in future lines of research.
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