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Abstract. In this note, a vector space of real-analytic functions on the
plane is explicitly constructed such that all its nonzero functions are non-
integrable but yet their two iterated integrals exist as real numbers and
coincide. Moreover, it is shown that this vector space is dense in the space
of all real continuous functions on the plane endowed with the compact-
open topology.
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1. Introduction

Fubini’s theorem asserts that if a real function f , which is defined on a measure
space X × Y that is the product of two σ-finite product spaces, is integrable,
then its two iterated integrals exist as real numbers and coincide, and in fact
their common value is the integral of f on the product space; see e.g. [8, Chap-
ter 17]. Throughout this paper we shall consider the real line R as endowed
with the Lebesgue measure dx, so that the plane R

2 = R×R is equipped with
the bidimensional Lebesgue measure dxdy, which is nothing but the product
measure of dx with itself.
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Of course, Fubini’s theorem is only a sufficient criterion, so that it is not
too difficult to provide examples of non-integrable functions R

2 → R such
that the iterated integrals exist as real numbers and share the same value. For
instance, if Ik := (k, k+1) (k ∈ N := {1, 2, . . . }), then the function f : R

2 → R

given by

f(x, y) =

⎧
⎨

⎩

1 if (x, y) ∈ I21 ∪ ⋃
n∈N

[(I2n × I2n+1) ∪ (I2n+1 × I2n)]
−1 if (x, y) ∈ ⋃

n∈N
[(I2n × I2n−1) ∪ (I2n−1 × I2n)]

0 otherwise,
(1)

is Lebesgue-measurable and satisfies
∫

R

( ∫

R

f(x, y) dx
)

dy =
∫

R

0 dy = 0 =
∫

R

0 dx =
∫

R

(∫

R

f(x, y) dy
)

dx,

but it is not integrable on R
2 because, as |f | = 1 on a set of infinite area,

we have
∫ ∫

R2 |f(x, y)| dxdy = +∞. In the much more general setting of the
product X×Y of two measurable spaces, the existence of measurable functions
X × Y → R satisfying analogous properties –as well as the size of the set of
them– is analyzed in [3].

A natural question is whether such “pseudo-Fubini functions” f can be
found to be continuous on R

2. This is, again, not too difficult: for instance, just
replace “1” and “−1” in (1) by, respectively, ϕm(x)ϕp(y) and −ϕm(x)ϕp(y)
on each product Im × Ip (m, p ∈ N), where

ϕk(t) :=
{

t − k if t ∈ (k, k + 1
2 ]

k + 1 − t if t ∈ (k + 1
2 , k + 1) (2)

for every k ∈ N.
Going one step further, we may wonder whether f can even be chosen

to live in the class C∞(R2) of infinitely differentiable functions R
2 → R. The

answer is, again, affirmative: the construction of such an f is as in the preceding
paragraph, with the sole exception that each function ϕk : (k, k + 1) → R

(k ∈ N) in (2) is this time given by

ϕk(t) = e
1

(t−k)(t−k−1) .

Then the following questions arises: Are there real-analytic pseudo-Fubini
functions on R

2? Recall, if Ω is an open subset of R
2, then a function f : Ω →

R is said to be real-analytic on Ω whenever, given (x0, y0) ∈ Ω, there are an
neighborhood U of (x0, y0) with U ⊂ Ω and a double sequence {ajk}j,k≥0 ⊂ R

such that f(x, y) =
∑

j,k≥0 ajk(x − x0)j(y − y0)k for every (x, y) ∈ U , the
convergence being absolute. The set of all such functions will be denoted by
Cω(Ω). Note that, due to the Analytic Continuation Principle, the piece-by-
piece construction of the last three paragraphs is not possible in the analytic
case. The reader is referred to [4, Chap. 4] for background on real or complex
analytic functions of several variables.
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The aim of this short note is to show that not only such real-analytic
functions exist but also that there is a plethora of them. Specifically, we shall
construct a vector space of real-analytic functions in the plane all of whose
nonzero members are non-integrable but satisfy that both iterated integrals
exist as real numbers and share the same value. Moreover, this vector space
has the dimension of the continuum and is dense in the space of all continuous
functions in the plane when endowed with the topology of uniform convergence
on compacta. The problem of replacing the class of analytic functions by the
more stringent one of entire functions is also considered.

2. Construction of a Special Class of Real-Analytic Functions

In our construction we shall consider the vector space C(Ω) of continuous
functions Ω → R, where Ω is a nonempty open subset of R

2. Note that
Cω(Ω) ⊂ C∞(Ω) ⊂ C(Ω). Recall that C(Ω) becomes a separable complete
metrizable topological vector space when it is endowed with the compact-open
topology, that is, the topology of uniform convergence on compact subsets
of Ω (see e.g. [6, Chapter 2]). For instance, a translation-invariant distance
generating this topology is given by

d(f, g) := sup
n∈N

min{1/n, sup
Bn

|f − g|},

where Bn is the Euclidean closed ball centered at the origin with radius n.
It is also well-known (an easy proof follows, for instance, from the Baire

category theorem) that dim C(Ω) = c, the cardinality of the continuum.
Hence, c is the maximal value that one can expect for the dimension of a
vector subspace of C(Ω).

Our results concerning pseudo-Fubini analytic functions are collected in
the next theorem. Note that it tells us that there is a plethora of such functions,
in both topological and algebraic senses.

Theorem 1. There is a family A of functions R
2 → R enjoying the following

properties:

(a) A ⊂ Cω(R2).
(b) For every f ∈ A both iterated Lebesgue integrals

∫

R

( ∫

R
f(x, y) dx

)
dy,

∫

R

( ∫

R
f(x, y) dy

)
dx exist as real numbers and have the same value.

(c) No nonzero function in A is Lebesgue-integrable on R
2.

(d) A is a c-dimensional vector space.
(e) A is dense in C(R2).
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Proof. Our first task is to locate an analytic pseudo-Fubini function on R
2.

We start with the function

f : (x, y) ∈ (0, 1)2 �−→ x − y

(x + y)3
∈ R.

Clearly, f ∈ Cω((0, 1)2). Now, we practice a number of elementary calculations.
If we fix y ∈ (0, 1) then we have

∫ 1

0

f(x, y) dx =
∫ 1

0

(x + y) − 2y

(x + y)3
dx =

∫ 1

0

(
(x + y)−2 − 2y(x + y)−3

)
dx

=
[ − (x + y)−1 + y(x + y)−2

]x=1

x=0
=

−1
1 + y

+
1
y

+
y

(1 + y)2
− 1

y
=

−1
(1 + y)2

.

Therefore
∫ 1

0

( ∫ 1

0

f(x, y) dx
)

dy =
∫ 1

0

−1
(1 + y)2

dy =
[ 1
1 + y

]y=1

y=0
=

1
2

− 1
1

= −1
2
.

Since f(x, y) = −f(y, x) for all (x, y) ∈ (0, 1)2, by exchanging the roles of x
and y we obtain

∫ 1

0

( ∫ 1

0

f(x, y) dy
)

dx = −
∫ 1

0

( ∫ 1

0

f(y, x) dy
)

dx = −−1
2

=
1
2
.

Next, we consider the function g : (0, 1)2 −→ R defined as

g(x, y) = f(x, y) − f(1 − x, 1 − y) = (x − y) · {
(x + y)−3 + (2 − x − y)−3

}
.

(3)

Again, g ∈ Cω((0, 1)2). Let Φ(y) :=
∫ 1

0
f(x, y) dx for y ∈ (0, 1). Now, observe

that by applying successively the changes of variables x �→ 1−x and y �→ 1−y
we get

∫ 1

0

( ∫ 1

0

f(1 − x, 1 − y) dx
)

dy =
∫ 1

0

(∫ 1

0

f(x, 1 − y) dx
)

dy

=
∫ 1

0

Φ(1 − y) dy =
∫ 1

0

Φ(y) dy =
∫ 1

0

( ∫ 1

0

f(x, y) dx
)

dy.

It follows from (3) that

∫ 1

0

( ∫ 1

0

g(x, y) dx
)

dy = 0 (4)

and, analogously,
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∫ 1

0

(∫ 1

0

g(x, y) dy
)

dx = 0. (5)

Next, let us observe that the mappings x ∈ (0, 1) �−→ xα ∈ (0, 1) (α ≥ 1) and
ϕ : s ∈ R �−→ 1

2 + 1
π · arctan s ∈ (0, 1) are analytic diffeomorphisms. Since

analyticity is stable under composition, we get that each mapping

ϕα : s ∈ R �−→ (ϕ(s))α ∈ (0, 1) (α ≥ 1)

is an analytic diffeomorphism. In order to use the theorem of change of varia-
bles for one-dimensional or multidimensional integrals (see, e.g., [5, Chapter
3]), we remark that ϕ′

α(s) = α·ϕα−1(s)
π·(1+s2) (s ∈ R), and that the mapping

Ψ : (s, t) ∈ R
2 �−→ (ϕ(s), ϕ(t)) ∈ (0, 1) × (0, 1)

is a diffeomorphism whose Jacobian determinant is detJΨ (s, t)= 1
π2(1+s2)(1+t2) .

For every fixed α ∈ [1,+∞), define the function fα : R
2 → R by

fα(s, t) :=
ϕα−1(s)ϕα−1(t)g(ϕα(s), ϕα(t))

(1 + s2)(1 + t2)
. (6)

We shall need for our purposes a subset of integrable real-analytic func-
tions that is dense in C(R2). Consider the countable set

D := {P · G1 : P is a polynomial of two real variables with coefficients in Q},

where Q is the set of rational numbers and G1 is the Gaussian function
G1(x, y) = e−x2−y2

, that is integrable on the plane (with integral equal to
π) together with every function Gα(x, y) := e−α(x2+y2) with α > 0. Plainly,
D ⊂ Cω(R2).

On the one hand, each function h := P · G1 ∈ D is integrable. Indeed,
since P is a polynomial, there are a constant M ∈ (0,+∞) and an N ∈ N

such that |P (x, y)| ≤ M(1 + (x2 + y2)N ) for all (x, y) ∈ R
2. And since

limt→+∞
M(1+tN )

et/2 = 0, we derive the existence of a constant γ ∈ (0,+∞)

such that |P (x, y)| ≤ γ · e
x2+y2

2 on R
2, and therefore |h(x, y)| ≤ γ · e

−x2−y2
2

on R
2. The comparison principle yields the integrability of h. In particular,

Fubini’s theorem implies that
∫

R

(
∫

R

h(x, y) dx
)
dy =

∫ ∫

R2
h(x, y) dxdy =

∫

R

(
∫

R

h(x, y) dy
)
dx (7)

for all h ∈ D.
On the other hand, it follows from the Stone–Weierstrass theorem in its

version for completely regular spaces (see [7, Theorem 16.5.7]; note that, since
R

2 is metrizable, it is completely regular), that the algebra generated by the
functions (x, y) �→ x, (x, y) �→ y is dense in C(R2). But this algebra is the
set of all polynomials of two real variables. Fix a function F ∈ C(R2), as
well as an ε > 0 and a compact set K ⊂ R

2. Select a polynomial P0 with
|P0 − F

G1
| < ε

2 on K. Now, pick a polynomial P having rational coefficients
such that |P − P0| < ε

2 on K. This together with the triangle inequality and
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the fact |G1| ≤ 1 yields |h − F | < ε on K, where h := P · G1 ∈ D. We have
proved the denseness of D in C(R2).

Our next step is to construct the desired family A satisfying properties
(a) to (e). With this aim, put D = {hn : n ∈ N}, which is possible because
of the countability of D. Select any sequence {cn}n∈N of pairwise different
points of [1, 2]. For each n ∈ N, the fact that C(R2) is a topological vector
space implies the existence of a constant μn > 0 such that d(μnfcn

, 0) < 1/n,
where fcn

is defined by (6). Now, we define

A := span
({hn + μnfcn

: n ∈ N} ∪ {fα : α > 2}). (8)

Observe first that A is a vector subspace of C(R2). In addition, each fα

with α ≥ 1 and each hn is analytic, which yields A ⊂ Cω(R2), that is (a).
Moreover, since {hn}n∈N is dense in C(R2) and

0 ≤ d(hn, hn + μnfcn
) = d(μnfcn

, 0) < 1/n −→ 0 (n → ∞),

one easily derives that the set {hn + μnfcn
}n∈N is also dense in C(R2). But

A ⊃ {hn + μnfcn
}n∈N, which shows that A is dense in C(R2), that is (e).

Now, our aim is to prove that any nonzero function F ∈ A is not inte-
grable on R

2. By (8), for such a function there are respective finite subsets
F1 ⊂ N, F2 ⊂ (2,+∞) with F1 ∪ F2 �= ∅ as well as scalars βi, δj ∈ R \ {0}
(i ∈ F1, j ∈ F2) satisfying F =

∑
i∈F1

βi(hi + μifci
) +

∑
j∈F2

δjfj , where any
of the sums

∑
i∈F1

or
∑

j∈F2
is understood as 0 if, respectively, F1 = ∅ or

F2 = ∅. After relabeling, we get

F = h +
p∑

i=1

λifαi

for certain p ∈ N, {λ1, . . . , λp} ⊂ R \ {0} and {α1 < α2 < · · · < αp} ⊂
[1,+∞), where h ∈ D. Assume, by way of contradiction, that F is integrable
on R

2. Since h is integrable, this would yield the integrability of the function
G :=

∑p
i=1 λifαi

. According to (6), we have

G(s, t) =
p∑

i=1

λi · ϕαi−1(s)ϕαi−1(t)g(ϕαi
(s), ϕαi

(t))
(1 + s2)(1 + t2)

,

where ϕγ(s) = ϕ(s)γ =
(
1
2 + 1

π · arctan s
)γ for all γ ≥ 0 and all s ∈ R. If

we consider the diffeomorphism Ψ(s, t) = (ϕ(s), ϕ(t)), the change of variables
theorem leads us to the integrability on (0, 1)2 of the function G̃ : (0, 1)2 → R

given by

G̃(x, y) =
p∑

i=1

λi · xαi−1yαi−1 · g(xαi , yαi),
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which, according to (3), can be written as

G̃(x, y) =
p∑

i=1

λi · xαi−1yαi−1

·(xαi − yαi) · {
(xαi + yαi)−3 + (2 − xαi − yαi)−3

}
.

Trivially, G̃ would also be integrable on the square (0, 1/2)2. But, since each
function xαi−1yαi−1(xαi−yαi )

(2−xαi −yαi )3 is continuous on the closed square [0, 1/2]2, it is
integrable on (0, 1/2)2, and this implies that the function

H(x, y) :=
p∑

i=1

λi · xαi−1yαi−1(xαi − yαi)
(xαi + yαi)3

is also integrable on (0, 1/2)2.
For every c ∈ (0, 1/2) we define the triangular set

Sc :=
{
(x, y) ∈ R

2 : 0 < x <
1
2

and cx < y < 2cx
}
.

Observe that Sc is open (so Lebesgue-measurable) and S ⊂ (0, 1/2)2. Then
H is integrable on Sc. Letting ψα(x, y) := xα−1yα−1(xα−yα)

(xα+yα)3 we are allowed to
write

H =
p∑

i=1

λi · ψαi
.

Moreover, for every (x, y) ∈ Sc and every α ≥ 1, it is easy to check that

0 <
1
8

· cα−1(1 − 2αcα) · x−2 ≤ ψα(x, y) ≤ 2α−1cα−1 · x−2. (9)

We assume that p > 1 (the case p = 1 is easier to deal with). Let us define
the functions μ, ν : (0, 1/2) → R by

μ(c) = |λ1| · 1
8

· cα1−1(1 − 2α1cα1) and ν(c) =
p∑

j=2

|λj |2αj+2cαj−α1

|λ1|(1 − 2α1cα1)
. (10)

Observe that μ(c) > 0 for all c ∈ (0, 1/2). In addition, it follows from 0 <
α1 < αj (j = 2, . . . , p) that

lim
c→0+

ν(c) = 0.
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In particular, we can select a value c ∈ (0, 1/2) such that ν(c) < 1
2 . From (9),

(10) and the triangle inequality we obtain that for every (x, y) ∈ Sc (with c
chosen as before) the following holds:

|H(x, y)| =
∣
∣
∣

p∑

i=1

λi · ψαi
(x, y)

∣
∣
∣

≥ |λ1| · ψα1(x, y) ·
(
1 −

p∑

i=2

|λi| · ψαi
(x, y)

|λ1| · ψα1(x, y)

)

≥ μ(c) · x−2 · (
1 − ν(c)

) ≥ μ(c)
2

· x−2.

Recall that the conclusion of Fubini’s theorem holds for nonnegative measura-
ble functions. Therefore
∫ ∫

Sc

|H(x, y)| dxdy ≥
∫ ∫

Sc

μ(c)
2

· x−2 dxdy =
μ(c)
2

·
∫ 1/2

0

(∫ 2cx

cx

x−2 dy
)

dx

=
μ(c)
2

·
∫ 1/2

0

x−2(2cx − cx) dx

=
c μ(c)

2
·
∫ 1/2

0

x−1 dx = +∞,

and so H is not integrable on Sc, which is absurd. This contradiction shows
that F is not integrable on R

2, which is (c). Note that the same argument
(taking h = 0 and αi ∈ (2,+∞)) yields the linear independence of the func-
tions fα (α > 2). But these functions belong to A. Consequently, dim (A) = c,
that is (d).

Concerning the property (b), consider a function F ∈ A. Again, F
has the shape F = h +

∑p
i=1 λifαi

for certain p ∈ N, {λ1, . . . , λp} ⊂ R,
{α1, α2, . . . , αp} ⊂ [1,+∞), and h ∈ D. The λi’s that are zero make no influ-
ence in the calculations, so that we can assume λi �= 0 for all i = 1, . . . , p.
Let us denote

L(y) :=
∫ 1

0

g(x, y) dx for y ∈ (0, 1).

It follows from (4), (5), (6), the linearity of the integral and the change of
variable formula for integrals on R (twice applied) that both iterated integrals
for F exist as real numbers and

∫

R

( ∫

R

F (s, t) ds
)

dt =

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λi

∫

R

( ∫

R

fαi(s, t) ds
)

dt

=

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λiπ
2

α2
i

∫

R

ϕ′
αi
(t)

( ∫

R

ϕ′
αi
(s)g(ϕαi(s), ϕαi(t)) ds

)
dt
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=

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λiπ
2

α2
i

∫

R

ϕ′
αi
(t)

( ∫ 1

0

g(x, ϕαi(t)) dx
)

dt

=

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λiπ
2

α2
i

∫

R

ϕ′
αi
(t)L(ϕαi(t)) dt

=

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λiπ
2

α2
i

∫ 1

0

L(y) dy

=

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λiπ
2

α2
i

∫ 1

0

( ∫ 1

0

g(x, y) dx
)

dy

=

∫

R

( ∫

R

h(s, t) ds
)

dt +

p∑

i=1

λiπ
2

α2
i

· 0 =

∫

R

( ∫

R

h(s, t) ds
)

dt,

and analogously,
∫

R

( ∫

R

F (s, t) dt
)

ds =
∫

R

(∫

R

h(s, t) dt
)

ds.

An application of (7) gives
∫

R

( ∫

R
F (s, t) ds

)
dt =

∫

R

( ∫

R
F (s, t) dt

)
ds, which

is (b). The theorem is proved. �

3. Final Remarks

1. Under the terminology of the modern theory of lineability (see [2] for back-
ground), what has been proved in Theorem 1 is that the set of non-integrable
real analytic functions on R

2 having finite equal iterated integrals is maximal
dense-lineable in C(R2). A slight shortening of the proof could have been done
by using [2, Theorem 7.3.1], but our approach has the virtue of being totally
constructive.
2. The existence of real entire functions –that is, of functions f : R

2 → R for
which an absolutely convergent expansion f(x, y) =

∑
j,k≥0 ajkxjyk is valid

on the whole plane– that are Lebesgue-integrable is well known. The simplest
instance of such functions is maybe f(x, y) = e−x2−y2

, which, incidentally,
has been used in the proof of Theorem 1. Note that every entire function is
in Cω(R2). This raises in a natural way the problem –which we pose here–
of existence of non-integrable real entire functions whose iterated Lebesgue
integrals exist as real numbers and coincide. If the answer were affirmative,
the study of the size of the set of such functions would also be interesting.
3. As a first step towards the solution of the problem posed in the preceding
remark, we have been able to find a non-Lebesgue-integrable entire function
f : R

2 → R such that both iterated integrals do exist in the Riemann sense
(but not in the Lebesgue one) and coincide. Indeed, consider the function
f(x, y) := sin(x2+y2), which is entire because both functions t ∈ R �→ sin t ∈ R

and (x, y) ∈ R
2 �→ x2 + y2 ∈ R are. Then f is not Lebesgue-integrable
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because |f | is not. Indeed, if the contrary is assumed, then a change to polar
coordinates together with Fubini’s theorem would imply that the integral α :=
∫ 2π

0

( ∫ +∞
0

| sin(t2)| · t dt
)
dθ is finite, which is not true because

α = 2π ·
∫ +∞

0

| sin(t2)| · t dt ≥ 2π ·
∞∑

n=1

∫ (π
2 +2πn)1/2

(π
6 +2πn)1/2

| sin(t2)| · t dt

≥ 2π ·
∞∑

n=1

∫ (π
2 +2πn)1/2

(π
6 +2πn)1/2

t

2
dt =

π

2
·

∞∑

n=1

(π

2
+ 2πn − (

π

6
+ 2πn)

)

=
π2

6
·

∞∑

n=1

1 = +∞.

Now, fix x0 ∈ R. If the function ϕ : y ∈ R �→ f(x0, y) = sin(x2
0 + y2) ∈ R

were Lebesgue-integrable then so would be the function |ϕ|. This is, again,
false because, if we choose N ∈ N large enough to have x2

0 < π
6 + 2πN , then

we get

∫

R

|ϕ(y)| dy ≥
∫

⋃∞
n=N [(π

6 +2πn−x2
0)

1/2,(π
2 +2πn−x2

0)
1/2]

sin(x2
0 + y2) dy

≥
∞∑

n=N

1
2

· (
(
π

2
+ 2πn − x2

0)
1/2 − (

π

6
+ 2πn − x2

0)
1/2

)

=
π

6
·

∞∑

n=N

1
(π
2 + 2πn − x2

0)1/2 + (π
6 + 2πn − x2

0)1/2
= +∞

by the comparison test and the divergence of
∑

1
n1/2 . Therefore, no func-

tion y �→ f(x0, y) (and, analogously, no function x �→ f(x, y0)) is Lebesgue-
integrable.

Now, consider the Fresnel integrals (see, e.g., [1, Chapter 7])

S(x) =
∫ x

0

sin(t2) dt and C(x) =
∫ x

0

cos(t2) dt (x ∈ R).

It is known that sin(t2) and cos(t2) are Riemann-integrable on R and that,
in the Riemann sense, it holds that

∫ +∞

0

sin(t2) dt = lim
x→+∞ S(x) =

√
π

8
= lim

x→+∞ C(x) =
∫ +∞

0

cos(t2) dt.
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Since sin(t2) and cos(t2) are even functions, we also have
∫ 0

−∞ sin(t2) dt =
√

π
8 =

∫ 0

−∞ cos(t2) dt. Note that S and C are odd functions, and so S(x) →
√

π
8 ← C(x) as x → −∞.

Finally, if all the following integrals are considered in the Riemann sense,
we have

∫ ∞

−∞

( ∫ ∞

−∞
f(x, y) dx

)
dy =

∫ ∞

−∞

(∫ ∞

−∞
sin(x2 + y2) dx

)
dy

=
∫ ∞

−∞

(∫ ∞

−∞
(sin(x2) cos(y2) + cos(x2) sin(y2)) dx

)
dy

=
∫ ∞

−∞

(∫ ∞

−∞
sin(x2) dx

)
cos(y2) dy

+
∫ ∞

−∞

(∫ ∞

−∞
cos(x2) dx

)
sin(y2) dy

= 2
√

π

8
·
∫ ∞

−∞
cos(y2) dy + 2

√
π

8
·
∫ ∞

−∞
sin(y2) dy

= 2
√

π

8
· 2

√
π

8
+ 2

√
π

8
· 2

√
π

8
= π.

Since f(x, y) = f(y, x) for all (x, y) ∈ R
2, we derive that the value of the

other iterated integral
∫ ∞

−∞
( ∫ ∞

−∞ f(x, y) dy
)
dx is also π. Hence both integrals

coincide.
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