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Abstract. The continuous performance improvement of business
processes usually involves the definition of a set of process performance
indicators (PPIs) with their target values. These PPIs can be classi-
fied into lag PPIs, which establish a goal that the organization is trying
to achieve, though are not directly influenceable by process performers,
and lead PPIs, which are influenceable by process performers and have
a predictable impact on the lag indicator. Determining thresholds for
lead PPIs that enable the fulfillment of the related lag PPI is a key
task, which is usually done based on the experience and intuition of
the process owners. However, the amount and nature of currently avail-
able data make it possible for data-driven decisions to be made in this
regard. This paper proposes a method that applies statistical techniques
for thresholds determination successfully employed in other domains. Its
applicability has been evaluated in a real case study, where data from
more than a thousand process executions was used.

Keywords: Thresholds · Process-related KPIs · Process performance
indicators · Case study · Decision making · Decision support

1 Introduction

In process-oriented organisational settings, the evaluation of process performance
plays a key role in obtaining information on the achievement of their strategic
and operational goals. To carry out this evaluation, a performance measurement
system (PMS) is implemented, so that business processes (BPs) can be contin-
uously improved [1]. The implementation of this PMS includes the definition of
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a set of PPIs, their target values, and associated alarms that warn whenever
certain predetermined value, named threshold [2], is exceeded [3]. These PPIs
are quantifiable metrics that allow the efficiency and effectiveness of BPs to be
evaluated and can be computed directly from data generated during their exe-
cution, either at an instance level (single-instance PPIs) or at a process level,
i.e., computed applying certain functions to the execution data gathered from a
set of instances (multi-instance PPIs) [4].

Based on these PPIs, several methodologies have been developed to contin-
uously improve the process performance. One of the best known is based on the
concept of lag and lead indicators [5]. Performance indicators defined for a busi-
ness process can be broadly classified into two categories, namely: lag and lead
indicators, also known as outcomes and performance drivers respectively. The
former establishes a goal that the organization is trying to achieve and is usually
linked to a critical success factor. For instance, one could have a PPI for a man-
uscript management process that specifies that its cycle time should be less than
40 working days in order to keep customer (author) satisfaction. However, the
problem of lag indicators is that they tell the organization whether the goal has
been achieved, but they are not directly influenceable by the performers of the
process. On the contrary, lead indicators have two main characteristics. First,
they are predictive in the sense that if the lead indicators are achieved, then it
is likely the lag indicator is achieved as well. Second, they are influenceable by
the performers of the process, meaning that they should be something that the
performers of the process can actively do or not do. For instance, if we think that
one major issue that prevents fulfilling the lag indicator is assigning the manu-
script to an employee with a large queue of work and we know we can control the
queue of work of each employee up to a certain point (e.g. by balancing the work
amongst all employees), then reducing the workload could be a lead indicator
for the cycle time lag indicator defined above. Each lag indicator may have one
or more lead indicators that are influenceable by the process performers and
help to predict its value. Therefore, if thresholds are established for those lead
indicators, the focus will be on fulfilling lead indicators, which are actionable,
and this will enable the fulfillment of the lag indicator.

Determining these thresholds appropriately is, thus, one of the key parts of
the methodology. This is usually done based on the experience and intuition
of the process owners. However, nowadays, the amount and nature of available
data (e.g. event logs) make it possible for data-driven decisions to be made in
this regard. Unfortunately, although a number of works to identify relationships
between process characteristics and PPIs have been proposed in the last years,
e.g. [4,6–8], the identification of proper thresholds for a PPI (lead) in order to
support the achievement of another PPI (lag) has not been tackled up to date.

The goal of the presented research is to provide a method to determine the
aforementioned thresholds, focusing on single-instance PPIs. To this end, we
build on a set of statistical techniques successfully used in other domains for
threshold determination [9–11]. In particular, we propose the use of Receiver
Operating Characteristic (ROC) curves and the Bender method. While the



former allows the pursued thresholds to be determined, the latter provides ranges
of values with the associated probabilities of fulfilling the target value. This
information is specially useful when the changes required to reach the identified
threshold cannot be implemented, since it gives hints on the risk taken.

In order to evaluate this approach, we have performed a case study in the con-
text of the manuscript management process of an international publishing com-
pany. In this case, data from the execution of more than a thousand of instances
of the selected business process are used to study the relationship between the
workload, a lead indicator that measures how busy an employee is, and its cycle
time, which is a lag indicator of the process. In this scenario, not only a thresh-
old for the workload is identified, which allows for the achievement of the cycle
time target value established. Furthermore, if the actions required to keep the
workload under that threshold are not possible, our method provides informa-
tion about the probabilities of achieving the cycle time target value depending
on the range the workload value is located in.

The remainder of this paper is structured as follows. Section 2 discusses
related work on both the problem and solution domains. Section 3 describes
the method for threshold determination we propose. In Sect. 4, this method is
applied in a case study to validate its usefulness. Finally, we conclude the paper
and discuss future research directions in Sect. 5.

2 Related Work

This section describes previous research related to the work presented in this
paper. Two main streams can be distinguished. One is focused on the problem
domain and includes techniques developed to identify relationships between per-
formance indicators. The other is focused on the solution domain and comments
on some proposals for the definition of measures and associated thresholds.

2.1 Proposals for the Identification and Definition of PPI
Relationships

Concerning the problem domain related research stream, there are a number of
proposals that are focused on establishing relationships between PPIs. In partic-
ular, within the performance measurement context, there are some works that
use different techniques, including correlation analysis or principal component
analysis [6,12], for this purpose. In the context of process performance eval-
uation, there also exist some approaches to define relationships between PPIs
such as: Popova and Sharpanskykh [7], where a variant of the first order sorted
predicate language is employed to define cause, correlation or aggregation rela-
tionships; del-Ŕıo-Ortega et al. [4], which extracts PPI relationships with BP
elements from their definition through description logic; Diamantini et al. [13],
that allows for the explicit definition of algebraic relationships between PPIs
using semantic techniques, or de Leoni et al. [8], who use decision and regression
trees to correlate process or event characteristics. In addition, other approaches



[6,14] have been presented to quantify these relationships in magnitude and
direction, providing information to determine their importance depending on
whether the relationships are weak or strong. Although these works provide
mechanisms to define and, somehow, quantify relationships between PPIs, none
of them allow for the extraction of thresholds for PPIs from execution data.
Our approach can be seen, therefore, as complementary to these previous works.
Based on the PPI relationships identified with them, and given some objective
to fulfill, our approach can provide thresholds for the influencing PPIs that lead
to the achievement of the objective.

2.2 Thresholds Definition Proposals

Measurement of business processes is a vast research area and, in related lit-
erature, we can find numerous definitions of measures which support busi-
ness process evaluation from both perspectives: modelling [15,16] and execu-
tion [4,7,17]. However, to facilitate a better decision making process from the
assessment of the measurement results, it is necessary the specification of limit
values or thresholds which indicate whether or not the measurement results are
acceptable.

In this context, the research on thresholds associated with business process
measures is more limited. Traditionally, the definition of thresholds has been
applied in other disciplines such as medicine [9]. On the other hand, in the soft-
ware engineering area, we can find several proposals mainly focused on measures
for object oriented systems [10,11,18]. Several techniques are used for that pur-
pose, including the mean and standard deviation, Bender Method, ROC curves,
Linear Regression, clustering algorithms (k-means) and machine learning based
methods.

From the business process modelling perspective, the application of tech-
niques for threshold definition has been applied in [2,19,20]. In these works,
thresholds for understandability, modifiability and correctness measures of
BPMN models are extracted. To do so, Bender method, ROC curves and a new
algorithm based on ANOVA called ATEMA are applied. In addition, the appli-
cation of extracted thresholds to suggest improvement guidelines for business
process models in a case study is presented in [21]. This research constitutes
the background of the present work, which aims to apply the same threshold
extraction techniques in the context of business process execution. The thresh-
olds in this case are extracted from execution data and are aimed at assuring the
fulfillment of a given PPI. To the best of our knowledge, there exists no previous
work in this direction.

3 Threshold Determination Method

The method we propose is based on the concept of lag and lead indicators [5].
Specifically, our method takes as input the lag PPI, the set of performance

indicators that, according to the knowledge of domain experts, can be considered



lead PPIs for that particular lag PPI and the values for those lag and lead PPIs
computed from a set of process executions. This method includes the following
steps: (1) preprocessing; (2) checking the relationship; (3) threshold extraction
with Roc Curve; (4) application of the Bender Method to determine probabili-
ties of errors for threshold ranges; (5) threshold validation. In the following, we
describe these steps, which are performed for a pair lag PPI-lead PPI, and need
to be repeated as may times as lead indicators provided as input.

3.1 Preprocessing

This step is twofold: first, some information need to be gathered in the format it
will be required by the statistical techniques that will be applied, and second we
need to divide our input data set (with the PPI values) into two. Regarding the
former, we need to define a Boolean variable that represents the fulfillment of
the lag indicator. In particular, for every process instance considered, we assign
this variable the value 1 if the lag PPI is fulfilled, and 0 otherwise. We will refer
to this variable as fulfilledLagPPITargetV alue. As for the latter, we need to
split our data set into two groups, one group will be used to define the thresholds
and the other to validate them.

3.2 Checking the Relationship

The second step is to prove that the values of the lead PPI do actually have
an influence on the fulfillment of the lag PPI. Actually, this is a required step
for the two techniques we use later on. ROC curves and the Bender method
involve a two-step approach. The first step is about estimating the discriminator
function, that allows the aforementioned influence to be checked, and the second
is the determination of thresholds and the associated probabilities, that will be
described in the following steps (Subsects. 3.3 and 3.4).

We utilize logistic regression for estimating a discriminator function, in which
the p-value should be lower than 0.05 to confirm that an influence exists. Logistic
regression is a statistical model for estimating the probability of binary choices
[22]. In our case, we are interested in the binary variable defined in the previous
step whose range is {fulfillment, non − fulfillment}. The idea of a logistic
regression is that this probability can be represented by the odds. This is the
ratio of fulfillment probability divided by probability of non-fulfillment. The
logistic regression estimates the odds based on the logit function, which is:

logit(pi) = ln(
pi

1 − pi
) = α + β1x1,i + . . . + βkxk,i, (1)

where α is called the intercept and β1, β2, β3, etc., are called the regression
coefficients of independent variables x1,i, x2,i, x3,i respectively. In our case we
only consider one independent variable for every repetition of the steps, which
corresponds to the lead PPI under analysis, i.e. k = 1, and observations from i
business process instances.



3.3 Threshold Extraction with ROC Curve

“Receiver Operating Characteristics (ROC) curves provide a pure index of accu-
racy by demonstrating the limits of a test’s ability to discriminate between alter-
native states” (fulfillment/non-fulfillment) [23]. In order to define an ROC curve,
two variables need to be specified: one binary, which is the previously defined
fulfilledLagPPITargetV alue variable, whose values correspond to the fulfill-
ment or not fulfillment of the lag PPI target value; and another continuous,
which is the estimated fulfillment probability function from the logistic regres-
sion of the lead PPI. In a ROC curve, the true positive rate (sensitivity) is
plotted in function of the false positive rate (1-specificity). Each point in the
ROC curve represents a pair of sensitivity and 1-specificity corresponding to a
particular decision threshold, i.e. it represents the classification performance of
any potential threshold.

Table 1. Confusion matrix for lead PPI and threshold.

Classified Actual

Fulfillment Non-fulfillment

Lead PPI ≤ threshold True positives (TP) False positives (FP)

Lead PPI > threshold False negatives (FN) True negatives (TN)

The determination of the best threshold builds on the confusion matrix
(Table 1), for which sensitivity and specificity values are calculated as follows:
sensitivity = true positive (TP) rate = TP/(TP+FN), specificity = true negative
(TN) rate = TN/(FP+TN), where TP is true positives, FN is false negatives, FP
is false positives, and TN is true negatives. A TP is found when the assessment
of a value of the lead PPI in relation to the threshold indicates that the lag PPI
is likely to be fulfilled in that process instance, and that in fact it does have been
fulfilled. Something similar, but with the non-fulfillment, happens to the TN, the
assessment of a value of the lead indicator in relation to the threshold indicates
that the lag indicator is likely to not be fulfilled in that process instance, and
that in fact it has not been fulfilled. On the other hand, an FN indicates that
the prediction says that for that value of the lead indicator the lag indicator is
not fulfilled while indeed it is. Finally, an FP indicates that the process instance
is predicted to fulfill the lag indicator and, actually, it has not fulfilled it.

The test performance is assessed using the Area Under the ROC Curve
(AUC). AUC is a widely-used measure of performance of classification [24]. It
ranges between 0 and 1, and can be used to assess how good threshold val-
ues are at discriminating between groups. According to [22], there exist rules
of thumb for assessing the discriminative power of the lead indicator based on
AUC. An AUC < 0.5 is considered no good, poor if 0.5 ≤ AUC < 0.6, fair if
0.6 ≤ AUC < 0.7, acceptable if 0.7 ≤ AUC < 0.8, excellent if 0.8 ≤ AUC < 0.9
and outstanding if 0.9 ≤ AUC < 1. The standard error or p-value is estimated
using a 95% confidence interval. The test checks if the AUC is significantly dif-
ferent from 0.5.



Fig. 1. ROC Curve and threshold.

Then, we can determine a threshold value for the lead PPI based on the
ROC curve, but for doing so, wee need a criterion. The purpose is to maximize
sensitivity and specificity, while at the same time [22] minimizing false positives
and false negatives. Following [2,20], where sensitivity and specificity are consid-
ered to be equally important, we select the best threshold as depicted in Fig. 1.
The best threshold is the point with the greatest distance from the 0.5 diagonal
(that corresponds to a test without any ability to discriminate between the two
alternatives).

Due to the involvement of humans in the process execution, one would not
expect the same accuracy of predictions as in natural sciences like physics or
chemistry [25]. Therefore, it is important to reflect upon the probability of errors
associated with this threshold. This probability can be obtained by means of the
Bender method as described in the following Subsect. 3.4.

3.4 Application of the Bender Method to Determine Probabilities
of Errors for Threshold Ranges

The goal of this step is manifold. First we are interested in determining the
probability associated to the threshold obtained in the previous step through
the application of ROC curves. In addition, there are situations in which it is
not possible to apply the changes required to reach that threshold. In those
cases, it is important to provide the decision makers with information about the
risk taken accepting other values lower or greater (depending if the threshold
is a maximum or a minimum respectively) than the threshold. Therefore, this
step also aims at providing other threshold values, or ranges, associated with
different probabilities of the lag PPI fulfillment. To this end, the Bender method
is applied.



The Bender method [9], developed for quantitative risk assessment in epi-
demiological studies, assumes that the risk of an event occurring is constant
below a specific value (i.e. the threshold), and increases according to a logistic
equation otherwise. By defining acceptable levels for the absolute risk, the cor-
responding benchmark values of the risk factor can be calculated by means of
nonlinear functions of the logistic regression coefficients. Generally, a benchmark
value is a characteristic point of the dose-response curve at which the risk of an
event rises so steeply. The difficulty is to define what is meant by “so steeply”.
According to [9], one possibility to define benchmark values is based on the logis-
tic curve. A benchmark can initially be defined as the “Value of an Acceptable
Risk Level” (VARL) defined as Eq. (2), in which the acceptable risk level is given
by a probability p0.

V ARL =
1
β

(ln(
p0

1 − p0
) − α) (2)

p0 =
eα+βx

1 + eα+βx
(3)

In Eq. 2, p0 represents the probability of an event occurring. This value is
indicated by the person who is applying that method and it can vary from
0 to 1. For example, applied to our case, p0 = 0.7 indicates that there is a
probability of 0.7 the lead PPI to be considered as appropriate, i.e., to lead
to the fulfillment of the lag PPI. On the other hand, α and β are coefficients
of a logistic regression equation, as was indicated in Eq. (1). The independent
variable in the logistic regression model is the lead PPI for which we want to
determine the threshold. The dependent variable must be a binary variable, in
our case the fulfilledLagPPITargetV alue variable, that evaluates if the lag
PPI was fulfilled or not.

We can then use this method to determine the probability associated to the
threshold obtained through the application of ROC curves as follows. From the
formula of Eq. 2 we can obtain Eq. 3 to calculate that probability, where x is the
threshold value previously obtained, and α and β the coefficients also previously
obtained. If, for instance, the resulting probability is 0.9, it means that when
the lead indicator is lower or equal to the threshold obtained (considering it a
maximum), there is a 90% of probability that the lag indicator is fulfilled.

Furthermore, as stated above, we can apply this method to identify other
threshold values associated with different probabilities of the target value fulfill-
ment, enriching the information provided to the manager to make a decision. For
this purpose, the Bender method requires the definition of p0, which indicates
the probability of considering a BP instance as fulfilling lag indicator. Since there
is no recommendation that can be used to configure this variable, we propose
9 values between 0 and 1 with the idea of obtaining a wide group of results.
Therefore p0 starts in 0.1, and 0.1 is added successively until reaching 0.9. Thus,
we associate ranges of probability (from 10% to 90%) to different values of the
lead PPI (see Table 4 to see the result in our case study).



3.5 Threshold Validation

In order to check the validity of the threshold obtained, we propose the appli-
cation of cross-validation to that threshold. To this end, the second data set
must be used. It is important to highlight that it contains information related
to process instances different from those used for threshold determination.

We propose to approach the cross-validation of the thresholds by calculating
precision and recall measures for assessing the quality of the prediction, as it is
applied for evaluating a search result in information retrieval field [26]. Precision
is the ratio of true positives to the sum of true and false positives (Precision =

TP/(TP + FP )) [27]. In our context, this is the ratio of correctly predicted lag
PPI fulfillments based on a threshold value in relation to all predicted lag PPI
fulfillments. Recall is the ratio of true positives to the sum of true positives
and false negatives (Recall = TP/(TP + FN)) [27]; i.e., the ratio of correctly
predicted lag PPI fulfillments based on a threshold value in relation to all actual
Lag PPI fulfillments.

To achieve accurate predictions, a technique should achieve both high preci-
sion and recall. However, an intrinsic relationship between precision and recall
exists: increasing one of them may decrease the other. To combine precision and
recall in a single value, literature thus recommends using measures such as the
F-measure [28] (also known as F-score or F-1), which is defined in Eq. 4.

F-measure =
2 × Precision × Recall

Precision + Recall
(4)

The above measures do not reflect a prediction technique’s ability in pre-
dicting true negatives [29]. To complement our evaluation, we also propose to
include specificity and accuracy measures. Specificity (Spec), as explained in
Sect. 3, is calculated as the ratio of true negatives to the sum of false positives
and true negatives (Spec = TN/(FP + TN)), and indicates how many actual
non-fulfillments were correctly predicted as non-fulfillments. Finally, the accu-
racy (Acc) is a widespread measure of effectiveness, to evaluate a classifier’s
performance [30] and it is calculated as the sum of true positives and true
negatives to the sum of true and false positives and true and false negatives
(Acc = (TP + TN)/(TP + FP + TN + FN)), in other words, it is the percent-
age of correctly classified instances. Precision, recall, F-measure, specificity and
accuracy are measures that are appropriate for computing the effectiveness of
search results [26,29].

4 Evaluation with a Case Study

In order to evaluate the applicability of our approach, we conducted a case study.
It was carried out in the context of an international publishing company1 aiming
at improving its core business processes. In particular, we focused on one of them,
1 No further information can be provided about the company and its business processes

due to privacy reasons.



the process associated to the management of manuscripts from the moment they
are received by the editor to their publication (or rejection), trying to identify
the relationship between cycle time and workload, as required by the publishing
company quality manager. In this process, when a new instance arrives, the
manager has to assign it to an employee, so manager’s primary job is to divide
the work optimally over her team. Currently, a manager is given an overview of
his/her employee’s progress using a report tool. This tool contains information
like the number of instances his/her employees are working on or the subtasks
durations. When assigning a given instance to an employee, the manager has to
estimate how long this employee will take to finish the process (i.e. the cycle
time). In order to help the manager to decide which employee will finish the
process faster, it would be desirable to have information available to identify
those PPIs or performance measures that have an influence on the value of the
cycle time.

The guidelines proposed by Runeson and Höst [31] and Brereton et al. [32]
were followed to design and conduct the case study, which is described in the
following subsections.

4.1 Case Study Design

We carried out a holistic case study [33], with a single-case, in a single organi-
zation and in a single project of the organization. The object of the study was
the improvement of the performance of the manuscript management process of
this publishing company, and the main objective was to provide the publishing
company’s managers with additional performance information so that they can
divide tasks between employees optimally, obtaining the pursued target value
for cycle time. In this context, the cycle time was identified as a lag PPI and the
workload as a lead PPI. Thus, the research question for this case study can be
defined as follows: “How does workload influence cycle time and what thresholds
can be established for it to assure the fulfillment of the cycle time PPI?”.

Regarding the case selected, the reasons for this selection are mainly two:
first, the quality responsible was particularly interested in improving this process
since it is one of the most critical processes from a customer/user point of view
and can directly lead the company to success or failure; and second, a huge
amount of execution data was available for the analysis. Furthermore, its lag
PPI cycle time is very relevant for customer satisfaction according to the quality
department of the company. Though there are probably other factors apart from
the workload that influence the time it takes to an editor to complete the process,
we focused on the workload because we were specifically asked to look at the
relationship between workload and cycle time.

4.2 Data Collection and Analysis

The study presented in this paper consists of the application of our method to the
execution data retrieved from 1080 process instances of the selected BP. Using



insights from a business analytics platform2, we collected data from the object
BP and the computation of workload and cycle time values for each execution.
In particular, in the case of workload, the initial definition used was the begin
workload, i.e., the number of process instances an employee is working on at the
start of a new instance. However, we had to change it since, after a first analysis
of the data, no apparent connection was found between the defined workload
and the duration of a process instance (its cycle time). Instead, the average
workload was used for this study. It can be defined as the weighted average of
the number of instances an employee is working on during a process instance.
Regarding cycle time, their values were obtained in milliseconds, as this is the
unit provided by the information systems that gather the execution data in the
publishing company. Finally, a pursued target value for the cycle time PPI was
also provided by the quality department.

1. Preprocessing
The Boolean variable in this case corresponds to the fulfillment of the lag PPI
cycle time. The values of this variable were obtained by comparing the cycle
time value of each BP instance with the target value established. We assign
this variable the value 1 when the cycle time value is lower or equals to its
target value, and 0 in other case. In addition, the data set described above
was divided into two groups. The values from 700 BP instances were used for
threshold extraction, and the values from the remaining 380 BP instances for
threshold validation. Table 2 shows the average (μ) and standard deviation
(γ) values for workload and cycle time in these two datasets. Workload values
represent process instances (PI), and Cycle time values appear in milliseconds,
as obtained from the execution data, and in weeks, for readability reasons.

Table 2. Average and standard deviation for workload and cycle time in the two
datasets.

Dataset Workload (PI) Cycle time (ms) Cycle time (weeks)

μ γ μ γ μ γ

Extraction 29.46 12.72 5.43 E9 3.71 E9 8.98 6.14

Validation 25.65 13.67 4.95 E9 3.52 E9 8.19 5.82

2. Checking the relationship
Here we have to prove that workload values do have an influence on the
fulfillment of the cycle time target value. So as to apply logistic regression,
we are interested in the binary variable fulfilledCTTargetV alue with the
range {fulfillment, non−fulfillment}, the independent variable Workload,
and observations from i = 700 business process instances.

2 Its identity is not revealed for confidentiality restrictions.



Applying the logistic regression to our particular data, we obtain the coef-
ficients (the intercept α and the only regression coefficient β in our case) rep-
resented in Table 3. The results show that there exists a correlation between
both variables, the workload and the fulfillment of the cycle time target value,
and that it is statistically significant, given the resulting p-value for the model
of 0.000 < 0.05. This proves that the workload have an influence on the cycle
time.

Table 3. Coefficients of the logistic regression applied to our data.

Coeficients Value Std. error p-value

α 7.994 1.068 0.000

β −0.137 0.025 0.000

3. Threshold extraction with ROC Curve
The ROC curve obtained from our data is depicted in Fig. 1. The resulting
AUC value is 0.833, and the p-value 0.000 (<0.05), so the discriminative
power of the workload can be considered excellent and significantly different
from 0.5 from a statistical point of view. Now, we can determine a threshold
value for the workload based on the ROC curve, selecting the point with the
greatest distance from the 0.5 diagonal. In this case, this threshold is 39.68,
which means that for a process instance assigned to an employe working on
more than 39.68 instances on average during that instance, will likely not
fulfill the pursued cycle time.

4. Application of the Bender Method to determine probabilities of
errors for threshold ranges
For the application of the Bender method in our case, the indepen-
dent variable in the logistic regression model is the workload for which
we want to determine the threshold, and the dependent variable is
fulfilledCTTargetV alue. From Eq. 3 we get a probability of 0.93. This
can be interpreted as “if the employee’s workload is lower than or equal to
39,68, there is a 93% of probability that she finishes the BP instance in less
than the target value of the cycle time”.

Furthermore, as stated above, we can apply this method to identify other
threshold values associated with different probabilities of the target value ful-
fillment. Table 4 depicts this information for our case and can be interpreted
as follows. For a given instance, If the workload is approximately 74, then
the probability of fulfilling the cycle time target value for that instance is
10%, which indicate that the workload is not appropriate at all. Conversely,
if the workload is about 48, there is a probability of 80% that the BP instance
fulfills the cycle time target value.

5. Threshold validation
Finally, the calculations of the different measures defined in Sect. 3.5 in our
case study result in the values contained in Table 5. From all the BP instances



Table 4. Workload thresholds with associated probabilities extracted with the Bender
method.

Probability of
considering the cycle
time fulfilled

10% 20% 30% 40% 50% 60% 70% 80% 90%

Workload 74.39 68.47 64.54 61.31 58.35 55.39 52.17 48.23 42.31

Table 5. Values for Precision, Recall, F-measure, Specificity and Accuracy for the
extracted threshold.

Precision Recall F-measure Specificity Accuracy

0.98 0.87 0.92 0.59 0.86

predicted as fulfilling the cycle time target value, 98% of the cases actually
fulfilled it. In addition, from all the BP instances that really fulfilled the cycle
time target value, 87% were correctly predicted. The lowest value is obtained
for the specificity. In this case, from all the non-fulfilments, about 60% are
correctly predicted. As for the accuracy, 86% of the cases were correctly pre-
dicted. Though there is no existing benchmark to which compare these values,
they can be considered acceptable values taking into account they are in gen-
eral high values. Taking these results into consideration, this approach can
be used as a predictive model that supports the decision-making process of
the managers in the publishing company, and can be improved in the future
with data extracted from further process executions.

4.3 Interpretation of Results

The threshold obtained for the workload can be used to provide a more con-
fident answer to the research question put forth in Sect. 4.1. This information
supports managers during the assignment of new manuscripts to editors as fol-
lows. When a new manuscript needs to be assigned, the corresponding manager
will check workload values for his/her editors, and will select the one with the
lowest value. When possible, this workload value should be lower than 39.68,
which is the obtained threshold. Otherwise, two options are available: either hir-
ing new editors, which is not the common case at all; or taking certain risk.
Our approach also provides information in this direction thanks to the results
obtained from the Bender method (c.f. Sect. 3.4). If the manuscript is assigned
to an editor with a workload about 48, the probability to fulfill the cycle time
target value is 80%, if the workload is closer to 52, the probability of fulfillment
is closer to 70%, and so on. In this way, the manager is aware of the risk taken
when necessary.

These provided thresholds can serve as a starting point for application in
practice, and they should be continuously gauged according to feedback obtained



from the practical experience derived from its usage as well as from data pro-
duced in future process executions.

4.4 Threats to Validity

In the context of the presented case study, the following types of validity threats
can be considered. With regards to the conclusion validity, the size of the sample
data used to perform the case study is of 1080 execution instances (700 for
threshold extraction and 380 for validation), which is a considerable size for
these cases, however, the study could be enriched by varying the sizes of the
partitions and the samples.

In relation to construct validity, which is about reflecting our ability to mea-
sure what we want to measure, the measures used in this study (workload and
cycle time) are relevant measures used in related literature, and they were mea-
sured or computed according to definitions in the related literature (e.g. [34]).

Internal validity concerns whether the effect measured is due to changes
caused by the researcher, or from some other unknown cause. The possible
threats to internal validity were: ROC curves are used and a possible disadvan-
tage is that the discrimination (sensitivity, specificity) is not the only criterion
for a good prediction. A curve with a larger AUC (which is apparently better)
could be obtained even though the alternative may show superior performance
over almost the entire range of values of the classification threshold. This has
been mitigated with the validation of the obtained threshold. In addition, the
application of ROC curves mitigates some negative aspects of other statistical
techniques which require the setting of several input parameter values, which has
the risk of obtaining unrealistic results for a bad setting of such parameters. In
addition, ROC curves have a more intuitive interpretation of the results. With
regard to the application of the Bender method, the main limitation could be
the need of a binary variable as input which requires dichotomization in cases
in which this binary variable is not available, with the consequent loss of infor-
mation. This was not our case, as a binary variable was used as input.

Finally, regarding external validity, which describes the possibility of gener-
alizing its results, in this research real data have been used from a representative
business process of a company and a useful threshold has been obtained to sup-
port decision making in such process, which reinforces its validity. However, the
main threat is related to the fact that each business process is particular in each
organisation, and the same happens with the PPIs defined for each business
process and their associated target values. In other words, the extracted thresh-
old is context-dependent and it is not generalizable to other business processes
or companies, but the threshold determination method used in this research
could be reused for obtaining thresholds for other representative processes in
this company, or even in other companies and domains whenever enough execu-
tion data is available. Actually, the organization where our case study was carried
out presents several characteristics of organizations that would be interested in
applying the same method. For example, there is a set of representative BPs



with associated PPIs, from which execution data is recorded on different infor-
mation systems and from where it is possible to be gathered. Another important
characteristic is that the publishing company already has a quality department,
which is a key factor for providing key information about PPIs and objectives
to be fulfilled.

5 Conclusions and Future Work

In this paper we proposed a method to extract thresholds for lead PPIs that
allow the fulfillment of a lag PPI. This method was validated through a case
study performed in the context of an international publishing company, using
700 process instances to extract the threshold and 380 for its validation. The
extracted thresholds and associated probabilities allow the publishing company
managers to decide how to regulate workload levels to achieve the desired cycle
time target value, and when to assume certain risks, being aware of the exact
risk, according to the probabilities provided.

This method for threshold determination can be also applicable to other
domains such as SLAs, where a guarantee term is provided, and It must be
fulfilled to avoid penalties. This guarantee term could be seen as the lag PPI
and is defined on the basis of other measures, which would be analogous to our
lead PPIs. This is part of our future work. Furthermore, we plan to define a tool
to support the methodology presented, extend it for multi-instance PPIs and
apply it to other different domains.
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