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For a one-dimensional linear lattice, earlier work has shown how to systematically construct a slowly- de-

caying linear potential bearing a localized eigenmode embedded in the continuous spectrum. Here, we extend

this idea in two directions: The first one is in the realm of the discrete nonlinear Schrodinger equation, where

the linear operator of the Schrodinger type is considered in the presence of a Kerr focusing or defocusing non-

linearity and the embedded linear mode is continued into the nonlinear regime as a discrete solitary wave. The

second case is the Klein-Gordon setting, where the presence of a cubic nonlinearity leads to the emergence of

embedded-in-the-continuum discrete breathers. In both settings, it is seen that the stability of the modes near

the linear limit turns into instability as nonlinearity is increased past a critical value, leading to a dynamical

delocalization of the solitary wave (or breathing) state. Finally, we suggest a concrete experiment to observe

these embedded modes using a bi-inductive electrical lattice.

I. INTRODUCTION

In quantum mechanics it is typically expected that for a par-

ticle in the presence of an external potential (whose value at

infinity is set as the zero level), the eigenstates consist of ei-

ther extended modes, via a quasi-continuum spectrum with

positive energies, or of localized modes, with negative en-

ergy, forming a discrete (so-called point) spectrum. This re-

sult, which stems from a general analysis of the Schrödinger

equation, was challenged by Wigner and von Neumann [1]

who showed that it was possible for a localized state to co-

exist with the extended modes inside the continuum band. In a

seminal work, they constructed explicitly a three-dimensional

potential, using a reverse-engineering approach, to produce

a setting that was tailored to support a so-called bound state

in the continuum or embedded mode (EM). The method had

to face some difficulties since, for instance, the EM pro-

duced decreased in space as a power law, making it non-

renormalizable. Ideally, one would like to have a bona fide

normalized, localized mode that is decoupled from the con-

tinuum, like a resonance with zero width.

Regarded at first as a mathematical curiosity, the topic of

EM has re-emerged recently with an abundance of works on

its theory and applications in many diverse areas where wave

phenomena (quantum and classical) are dominant. During the

1970s, Stillinger [2, 3] and Herrick [4] improved the theory

∗ Corresponding author. Electronic address:palmero@us.es

of Wigner and von Neumann and pointed out that EMs could

be found in certain atomic and molecular systems. They also

suggested the use of superlattices to construct potentials that

could support EMs [5, 6]. More recently, direct observations

of electronic bound states above a potential well and local-

ized by Bragg reflections, were carried out using semicon-

ductor heterostructures [7]. A different approach comes from

the physics of resonant states in quantum mechanics. These

states are spatially localized but with non-decaying tails and

energies inside the band, and they eventually decay, i.e., they

possess a finite lifetime. However, it is possible to arrange

conditions in order to make a given resonance interfere nega-

tively with another one and produce a zero width resonance,

that is, an EM. This has been shown to occur in a hydro-

gen atom immersed in a magnetic field, modeled as a system

of coupled Coulombic channels, where interference between

resonances belonging to different channels can lead to the cre-

ation of EM [8, 9]. In recent times, EMs have been observed in

mesoscopic electron transport and quantum waveguides [10–

18], and in quantum dot systems [19–23]. A common theme

in all the above systems is that the onset of an EM can be

traced back to the destruction of the discrete-continuum decay

channels by quantum interference effects. The ultimate origin

of the EM phenomenon is regarded nowadays as the result

of interference and thus it should be inherent to any wavelike

theory besides quantum mechanics. The original approach of

Wigner and von Neumann has been extended to the case of a

discrete and periodic system, such as the usual tight-binding

model. There, the methodology consists of choosing an enve-

http://arxiv.org/abs/2108.00193v2
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lope that modulates a given chosen extended eigenstate, and

then imposing that its energy coincides with the original one

(no envelope). To achieve this a site energy distribution is

chosen judiciously, so that the energy for the modulated state

coincides with the energy of the original mode [24–26]; see

also details below.

While the above ideas have been developed in the linear

realm, a parallel track of efforts has concerned a wide range of

nonlinear models bearing localized modes, as summarized in

a number of reviews [28]. The corresponding applications of

the above studies are broad and far-reaching and extend from

the nonlinear optics of waveguide arrays [29] to the dynam-

ics of atomic Bose-Einstein condensates in periodic poten-

tials [30] and from the micro-mechanical models of cantilever

arrays [31] and electrical lattices [32] to prototypical models

of the DNA double strand [33]. Two of the most canonical

mathematical sets of models where localized nonlinear wave-

forms emerge consist of the discrete nonlinear Schrödinger

(DNLS) model [34] and the nonlinear discrete variant of the

wave equation in the form of nonlinear Klein-Gordon lat-

tices [28, 35]. These represent generic frameworks featuring

the interplay of discreteness, dispersion and nonlinearity and

are in one or another variant (i.e., for different nonlinearities,

external potentials etc.) involved in the description of each

one of the above physical settings.

In this work we combine these two aspects of dynamical lat-

tices. More specifically, we study the problem of constructing

an embedded mode (EM) inside the band of three different,

but related systems: (a) A nonlinear DNLS lattice (section II)

(b) A φ4 chain (section III) (c) A one-dimensional bi-inductive

electrical lattice (section IV). Our aim is, upon construction

of the linear EM mode, to continue the relevant mode in the

nonlinear realm, either as a solitary wave (in the DNLS set-

ting) or as a discrete breather (in the φ4 and electrical lattice

cases) and continue it parametrically over frequencies. We

observe that the relevant modes can be continued within the

(discretized —due to the finiteness of the domain—) continu-

ous spectrum, yet their stability changes along this continua-

tion. We detail the relevant instabilities and the corresponding

bifurcation diagrams. We also dynamically monitor the insta-

bility evolution, as well as propose an experimentally realistic

setting for the implementation of the ideas proposed herein.

We believe that the relevant findings offer a sense of the poten-

tial applicability of EMs in nonlinear dynamical lattices that

are of wide relevance in the above discussed physical settings.

Our presentation closes with section V which summarizes our

findings and presents our conclusions, as well as some inter-

esting directions for further study. We also note in passing

that the EMs obtained here are distinct from earlier works in-

volving the discretization of a continuous model that, in turn,

bears embedded solitons and where the EMs are genuinely

nonlinear entities; an example of the latter in a (spatially ho-

mogeneous, i.e., involving no external potential) lattice model

with competing quadratic and cubic nonlinearities has been

studied in ref.[36].

II. THE DNLS CHAIN

We start by considering a discrete model described by the

DNLS equation with a set of impurities following the ideas

of [24–26] in the form:

iΨ̇n + γ|Ψn|
2Ψn + C(Ψn+1 +Ψn−1) + ǫnΨn = 0, (1)

where n = 1 . . .N , while N represents the size of the system.

We consider fixed-end boundary conditions, and ǫn represents

the effective external potential leading to the existence of the

EM. As is customarily the case in such DNLS lattices [34], the

energy H =
∑

(C/2)|Ψn+1 −Ψn|
2 − (γ/2)|Ψn|

4 + ǫn|Ψ|2

and the power P =
∑

|Ψn|
2 are conserved magnitudes. Sta-

tionary states in such DNLS settings arise in the form of stand-

ing waves: Ψn = φn exp(iωt), with φn being the solutions of

the steady state problem:

(−ω + ǫn)φn + γφ3
n
+ C(φn+1 + φn−1) = 0 (2)

and ω are the corresponding frequencies.

A. Linear case

In order to get the effective potential {ǫn} necessary for

the existence of the EM, we follow the prescription of [24–

26], consisting in selecting an arbitrary eigenmode {φ′
n
} with

eigenfrequencyω′ of the linear homogeneous lattice (i.e. γ =
0, ǫn = 0 ∀n in (2)). Then, it is possible to build a spa-

tially localized linear state around site n0 in the linear non-

homogeneous case with the same frequency ω′, by choosing

an effective potential profile {ǫn} as:

ǫn = ω′ − C

[(

fn+1

fn

)(

φ′
n+1

φ′
n

)

+

(

fn−1

fn

)(

φ′
n−1

φ′
n

)]

,

(3)

where {fn} is a decreasing function with a maximum at n0

and defined to avoid singularities in {ǫn} as

fn =

|n−n0|−1
∏

m=1

(1− δm) n 6= n0,

fn = 1 n = n0, (4)

and

δn =
a

1 + |n− n0|b
N2φ

′2
n
φ

′2
n+1. (5)

for suitable parameter a and decay exponent b. In what fol-

lows, we have chosen a = 1/2 and b = 3/4. Notice that the

effective potential and the EM profiles depend on the particu-

lar choice of the homogeneous eigenmode {φ′
n}.

In Figure 1 we can see the spatial profiles of the linear state

in the homogeneous case {φ′
n
}, of frequency ω′ = 1.5497,

that we used to build the effective potential, the EM with the

same frequency ω′ and the spatial distribution of impurities
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ǫn. As expected, the EM is the only localized mode inside

the band ω ∈ [−2C, 2C] of linear modes of the homogeneous

lattice. This can be confirmed through Fig. 2, where the par-

ticipation ratio R on the vertical axis is defined as

R =

(
∑

n
|φn|

2
)2

∑

n
|φn|4

, (6)

with φn being the eigenmode of the linear non-homogeneous

equation (2). A large value of R, comparable to the lattice

size, illustrates that the relevant mode is extended, while a

small value of R ≪ N indicates the presence of localiza-

tion. We note the existence of some states outside the linear

modes band of the homogeneous lattice, which possess a par-

ticipation ratio even smaller than the EM. These modes are

localized around n0, constituting impurity modes similar to

e.g. those studied at [27]. As the present paper is devoted to

EMs (i.e. intraband modes) and out-of-band modes have been

thoroughly studied, we will not pay attention to them in what

follows. In fact, one can to get rid of those impurity modes

by devising an effective potential with smaller spatial fluctua-

tions.

A numerical examination of the density of states does show

the presence of the above mentioned impurity states outside

the band, but it does not show any gaps, implying that the

mode that has been accordingly prescribed based on the above

methodology is indeed inserted inside the continuous band

and is the only mode inside the band that is found to be lo-

calized. This is confirmed by examining the spatial profiles

of the modes. Indeed, in Fig. 3 we show the spatial profiles

of the EM mode and the closest frequency states in the band.

Nevertheless, because of linearity, the spatial localization oc-

curs for a single (i.e., isolated) frequency value. The idea is

to include nonlinear effects and to find a nonlinear localized

mode in a range of frequencies around ω′, i.e., to formulate

a continuation problem that allows us to find such nonlinear

modes for a wide range of frequencies around the correspond-

ing linear “bifurcation point”.

B. Nonlinear case

It has indeed been possible to find the nonlinear spatially lo-

calized mode with a spatial profile similar to the linear one and

determine its stability by means of numerical techniques sim-

ilar to those discussed, e.g., in [28, 34]. In general, we have

found that small amplitude stable nonlinear localized modes

exist for frequencies close to the linear one. When the fre-

quency progressively changes (i.e., detunes further from the

linear limit), the amplitude increases and these modes become

unstable with a correspondingly more delocalized spatial pro-

file for larger detuning, as shown in Figs. 4 and 5. On the

other hand, Fig. 6 shows some examples of the spatial pro-

files and spectral plane corresponding to stable and unstable

embedded solitons.

Notice that the soliton past a given value of the frequency

(close to eigenfrequency of a lineal eigenmode), hybridizes

with the linear modes and becomes a so-called hybrid soli-

0 50 100 150 200
-0.2
-0.1

0
0.1

n

(a)

0 50 100 150 200
-0.5

0
0.5

n

(b)

0 50 100 150 200
N

-2
-1
0n

(c)

FIG. 1. Linear case: linear extended state in the homogeneous case

(a) and linear localized state in the inhomogeneous case (b), with

the latter being constructed in line with the prescription analyzed in

the text. Spatial distribution of impurities ǫc is shown in (c). Here,

N = 201, C = 1, n0 = 101, ω′ = 1.5497.

-2 -1 0 1 2
0

50

100

R
(

)

FIG. 2. Linear case: Participation ratio R as a function of the

frequency corresponding to eigenstates in the inhomogeneous sys-

tem. Vertical (blue) lines show boundary limits corresponding to the

phonon band in the homogeneous chain. The localized state around

n0 is shown with an arrow. N = 201, C = 1, and n0 = 101.

ton (see e.g. [37]), i.e. the tails asymptote to non-vanishing

amplitude oscillations alike to wings.

The defocusing (γ < 0) and focusing cases (γ > 0) show

similar behaviours: in both cases the nonlinear modes emerge

from the linear one but in the focusing (defocusing) case,

when the frequency increases (decreases), the soliton ampli-

tude increases and the profile becomes more delocalized be-

cause of the increment of the wing amplitude. In both cases,

the solitons become unstable past a bifurcation point. The rel-

evant destabilization arising from a Hamiltonian Hopf bifur-

cation occurs when two pairs of stability eigenvalues λ with

the same |Im(λ)| collide. Determining the control parame-
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=1.5001
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n

=1.5005

0 100 200
-0.5

0

0.5
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0 100 200
-0.2

0
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N
-0.2

0

0.2

n

=1.5953

0 100 200

N

-0.1

0

0.1

=1.628

0 100 200

N

-0.1

0
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=1.629

FIG. 3. Linear case: States in the band closest in frequency to the

localized mode (central panel). N = 201, C = 1, n0 = 101,

ω′ = 1.5497. Notice, indeed, the localization at that frequency in

comparison with the delocalized nature of all neighboring eigenfunc-

tions.

ter value corresponding to the bifurcation point is, however,

not entirely trivial, as it can be appreciated in Fig. 7, because

small bifurcations can take place corresponding to instabili-

ties on the wings. We have considered a solution to be stable

when |Re(λ)| < 10−3 for all the eigenvalues of the stability

matrix.

FIG. 4. Bifurcation diagram (norm vs frequency) corresponding to

nonlinear localized modes in the phonon band for the defocusing

case of γ = −1. The black line corresponds to the stable solu-

tion and the red dashed line to the unstable one emerging from the

linear modes. Vertical cyan lines represent linear modes and the ver-

tical blue line the one corresponding to ω′. (a) Full picture and (b)

zoom around ω′, where only linear modes closest to ω′ are shown.

N = 201, C = 1, n0 = 101, and ω′ = 1.5497.

We have analyzed the effect of a small random perturba-

tion δn = an + ibn, where the real vector (an, bn) compo-

-2 -1 0 1 2
0

200

400

P
(

)

(a)

1.45 1.5 1.55 1.6 1.65
0

5

10

P
(

) (b)

FIG. 5. Bifurcation diagram (norm vs frequency) corresponding to

nonlinear localized modes in the phonon band for the focusing case

of γ = 1. The black line corresponds to the stable solution and the

red dashed line to the unstable one emerging from the linear modes.

Vertical cyan lines represent linear modes and the vertical blue line

the one corresponding to ω′. (a) Full picture and (b) zoom around ω′,

where only linear modes closest to ω′ are shown. N = 201, C = 1,

n0 = 101, and ω′ = 1.5497.

nents lie in the interval (−1, 1)× 10−3. We have numerically

integrated equations (1) to explore the temporal evolution of

a localized excitation and its dynamical stability properties.

More specifically, we consider an initial condition such as

Ψn(0) = φn+δn. As shown in Fig. 8, stable solutions remain

localized but unstable ones are delocalized as time evolves.

On the other hand, unstable ones eventually manifest their re-

spective instability after an initial transient stage. As a result

of the extended nature of the state, we typically observe the

evolution leading to a rather chaotic waveform with the power

P distributed broadly across the lattice sites. Similar results

regarding the dynamical redistribution of the mass of unstable

nonlinear states over the entire lattice have been obtained in

the focusing case and hence are not shown here.

III. THE φ4 CHAIN

We now turn to a φ4 Klein-Gordon chain described by the

equations

ün + ω2
0un + su3

n + C(2un − un+1 − un−1) + ǫnun = 0,(7)

supplemented by free-end boundary conditions. Here n =
1 . . .N , N is the size of the system. C is the coupling param-

eter, ω0 the frequency of the system in the linear limit and s
the nonlinear parameter that can be positive (hard potential)

or negative (soft potential) [28]. We consider free boundary

conditions, and ǫn prescribes the external potential leading at

the linear limit to an EM, and has the same spatial profile as
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FIG. 6. Spatial profiles and linear stability results corresponding to

nonlinear localized excitations in the defocusing case. (a); stable

excitation (ω = 1.51); (c) unstable localized excitation (ω = 1.45);

(e) unstable delocalized state below the phonon band (ω = −2.29).

(b), (d) and (f) show their corresponding real and imaginary part of

the eigenvalues λ. Here, γ = −1, N = 201, C = 1, n0 = 101,

ω′ = 1.5497. Notice the instability of the latter two states due to the

presence of eigenvalues with non-vanishing real part.

before. This system is Hamiltonian with an energy given by

H =
∑

n

1

2
u̇2
n+

1

2
(ω2

0+ǫn)u
2
n+

1

4
su4

n+
C

2
(un−un−1)

2. (8)

This is the sole conserved quantity of this nonlinear dynamical

lattice. Both for this reason, but also because the dependence

of H on the frequency ω of the breathers has been identified

as a key indicator for their stability [38], we select to show in

the relevant bifurcation diagrams below the dependence of H
on ω.

In the homogeneous chain (ǫn = 0 ∀n), it is possible for a

set of control parameter values to have stable nonlinear exci-

tations (discrete breathers) with frequencies above the linear

frequency band (phonon band) in the hard potential case (of

s = 1) and below this band in the soft case (of s = −1) [28].

Once again, the ideas of [24–26] enable the construction of

an EM at the linear limit, while our aim here is to explore,

upon “sculpting” an appropriate external potential profile ǫn,

the possibility of the existence, within the nonlinear problem,

of spatially localized states in the continuous spectrum band

with frequencies at or close to the corresponding linear mode.

These discrete breathers should, naturally, be reduced to spa-

tially localized linear excitations embedded in the continuous

spectrum in the linear limit. An illustration of the latter is

shown in Fig. 10, as constructed by analogy to what was re-

ported previously for the DNLS (the two linear problems are

1 1.2 1.4
-0.05

0

0.05

R
e(

0
)

FIG. 7. Real part (black dots) corresponding to the eigenvalues λ0

with the largest real part (in absolute value) of the nonlinear mode

emerging from the linear localized mode in the defocusing case (γ =
−1) as a function of the frequency. Due to the symmetries of the

system, the eigenvalues appear in quartets (if λ is an eigenvalue then

so are −λ and both of the corresponding complex conjugates). Here,

N = 201, C = 1, n0 = 101, ω′ = 1.5497. Notice the critical

point in the vicinity of ω = 1.5, whereby the real part substantially

increases (as ω decreases) mirroring the instability of the relevant

dynamical branch. The blue dashed line representing Re(λ0) = 0 is

included for reference.

FIG. 8. Spatial profiles corresponding to the evolution of a nonlinear

localized excitation Ψn(0) = φn + δn where φn is the stationary

state shown in Fig. 6 (a), ω = 1.5101 and T = 2π/ω (stable solu-

tions exist). Shown is the defocusing case with γ = −1, N = 201,

C = 1, n0 = 101, and ω′ = 1.5497.

qualitatively identical).
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FIG. 9. Spatial profiles corresponding to the evolution of a nonlinear

localized excitation Ψn(0) = φn + δn where φn is the stationary

state shown in Fig. 6 (c), ω = 1.45 and T = 2π/ω (unstable solu-

tions exist). Defocusing case γ = −1, N = 201, C = 1, n0 = 101,

and ω′ = 1.5497. Notice the wide spreading of the relevant wave-

form, as a result of its instability.
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FIG. 10. Linear φ4 chain. Spatial profiles of linear states in the band

closest in frequency to the spatially localized mode (central panel).

Here, N = 201, C = 1, n0 = 101, ω0 = 1, and ω′ = 2.132.

A. The nonlinear chain

Using the spatially localized linear state as an initial seed,

it is possible to perform numerical continuation to analyze

the nonlinear case. Indeed, we have used the Poincaré sec-

tion methodologies analyzed, e.g., in [28], to identify discrete

breathers with frequencies progressively detuning away from

the corresponding linear limit. In general, we have found that

the scenario for the resulting nonlinear time-periodic wave-

forms is similar to that of the DNLS chain case. Stable and

small amplitude nonlinear localized breathing states emerge

from the linear mode and become unstable when the fre-

quency varies and the amplitude increases, as shown in Figs.

11 and 13, respectively for the soft potential of s = −1 and

the hard potential case of s = 1. In both scenarios, the im-

mediate vicinity of the linear mode (with the frequency still

within the band) retains its stability, however sufficient de-

tuning from the linear limit results in instability, typically via

Hamiltonian Hopf bifurcations, as discussed further below.

FIG. 11. Bifurcation diagram (energy vs frequency) corresponding

to nonlinear localized modes in the phonon band (for the soft po-

tential case of s = −1). The black line corresponds to the stable

solution and the red dashed line to the unstable one emerging from

the linear localized mode. Vertical cyan lines represent linear modes

and the vertical blue line the one corresponding to ω′, as shown in

Fig. 10. The vertical blue line corresponds to the frequency ω′. (a)

Full picture and (b) zoom around ω′, where only linear modes closest

to ω′ are shown. N = 201, C = 1, n0 = 101 and ω0 = 1.

In Fig. 12 we show the spatial profiles and Floquet spec-

tra corresponding to stable and unstable nonlinear modes in

the soft potential case. The presence of a Floquet exponent λ
with modulus greater than 1 implies instability. When the fre-

quency decreases, oscillatory instabilities involving quartets

of Floquet multipliers take place corresponding to (Hamilto-

nian) Hopf bifurcations, as can be appreciated in Fig. 12 (c)

and (d). Eventually, lower frequency values produce an ex-

ponential (tangent) bifurcation, as shown in Fig. 12 (e) and

(f).

On the other hand, hybrid stable large amplitude breathers

can also exist in the gaps of the linear modes band, being de-

noted as phantom breather [39]; their properties depend on the

lattice size. The details of the above scenario are fairly similar

in the hard potential case. Moreover, the dynamical evolu-

tion leads to a similar extended, disordered redistribution of

the lattice energy as discussed in the DNLS case, and hence

relevant illustrations are omitted here for brevity.
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FIG. 12. (a), (c) and (d) Spatial profiles corresponding to nonlinear

localized excitations in the soft potential case. (a); stable excitation

(ω = 2.131); (c) unstable localized excitation (ω = 2.106); (e)

unstable delocalized state (ω = 1.805). (b), (d) and (e) show the

corresponding real and imaginary parts of the eigenvalues λ. Here,

s = −1, N = 201, C = 1, n0 = 101, ω′ = 2.132.

FIG. 13. Same as Fig. 11 but for a hard (s = 1) potential.

IV. A CONCRETE REALIZATION PROPOSAL: A

TAILORED ELECTRIC CIRCUIT TO OBSERVE

SPATIALLY LINEAR AND NONLINEAR EM STATES

The realm of electrical lattices has a time-honored history

as a highly controllable experimental testbed for the consider-

ation of localized modes [40, 41], as well as numerous vari-

ants thereof, such as traveling [42], higher-dimensional re-

alizations [43], connections with the Kuramoto model [44],

and considerations of impurities [45], among many others.

Here, we propose an electric line composed by resonant ele-

ments (LC oscillators) coupled by inductors as shown in Fig.

14. This system is rather analogous to the ones used for the

above mentioned experimental setups and can be tailored to

the needed properties. To induce the excitation we need an

external voltage source and a load resistor. The load resistor

and the external voltage source will, with the right phase, al-

low us to induce the localized state. Once the localized state

takes place we will turn off the driving and the load resistance.

Thus, we could observe, for a suitable time interval (given the

dissipative effects), this state.

FIG. 14. Schematic circuit diagrams of the electrical lattice, where

the circles represent circuit cells. Each cell is connected to a periodic

voltage source Vs(t) via a resistor R and grounded. Each point A of

an elemental circuit is connected via inductors L1 to the correspond-

ing points A of neighboring cells. Voltages are monitored at point

A.

For example, in line with with parameter values that have

been used in some of the above experimental works, we will

consider values of capacitance C = 770 pF, inductances

L1 = 680µH, L2 = 330µH, resistance R = 10kΩ and

voltage Vs(t) = Vd cos(ωt + ϕn). A chain size that is quite

suitable for experimental observations, in line with the above

works, is N = 31 with free boundary conditions. The (di-

mensionless) linear modes are the solutions of the equation

v̈n =
L2

L1
(vn+1 + vn−1 − 2vn)− vn, (9)

hence this creates the possibility to induce a spatially local-

ized linear mode by using a set of impurities {ǫn}, as an ef-

fective potential enabling the existence of an EM. To build the

relevant circuit we have to replace inductors L2 with a set of

inductorsL
(n)
2 whose values depend on the site, so as to create

the effective local potential. Thus, in this case:

L
(n)
2 =

L2

1 + ǫn
. (10)

In figure 15 we show different values of inductors to obtain

a linear localized state as shown in Fig. 16. By replacing the

capacitor by a varactor it is possible to explore nonlinear lo-

calized modes in the phonon band. In principle, we believe

that this concrete proposal renders the phenomenology pre-

sented herein accessible to the current state-of-the-art in elec-

trical lattice experiments. This is true not only at the linear
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FIG. 15. Linear case: Spatial profile of the impurities L
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n0 = 16, and ω′ = 1.6453ω0 , where ω0 = 1/
√
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FIG. 16. Linear case: Spatial profiles of states in the band closest in

frequency to the localized mode (central panel). N = 31, n0 = 16,

and ω′ = 1.6453 ω0, where ω0 = 1/
√

C0L2.

level described above, but also at the nonlinear one for suit-

ably larger values of the voltage.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have explored the possibility of re-

alizing embedded modes in the continuous spectrum of non-

linear dynamical lattices. Leveraging earlier ideas from the

realm of linear problems, we have systematically constructed

such modes in the linear (low-intensity) limit of the nonlinear

problem. Then, the use of nonlinearity (focusing or defocus-

ing, soft or hard) has allowed us to continue the relevant linear

state in the presence of nonlinearity at arbitrary strengths de-

tuning away from the linear limit. We have found that such

states can arise as nonlinear extensions both at the solitary

wave setting of the DNLS model and in the discrete breather

realm of nonlinear Klein-Gordon dynamical lattices. More-

over, in the vicinity of the linear limit the states may be stable,

while they destabilize, typically towards spreading their mass

throughout the lattice, further away from the limit. Not only

have we explored the existence, stability and dynamics of such

EM states, but we have also proposed a concrete experimen-

tal implementation thereof in the form of a 31-node electrical

lattice of inductors and capacitors (and resistors, and external

drive, as is typical in such experiments).

It will of course be interesting to attempt to pursue such

lattices in future experimental work and to attempt to explore

the damped-driven variants of the relevant models (as in such

experiments it is not straightforward to completely eliminate

dissipation towards the Hamiltonian realm as in this study).

Another interesting direction is to examine generalizations

of such modes in higher dimensions and the exploration of

how higher-dimensionality may affect the stability conclu-

sions reached herein. As yet another interesting point, con-

sidering such EMs close to the band edge of the continuous

spectrum and examining how their stability may be affected

by this effective “distance” in frequency from the band edge

would be another interesting property to explore in the con-

text of such nonlinear embedded modes. These topics are

currently under investigation and associated findings will be

reported in future publications.
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