
Theoretical and Applied Fracture Mechanics 119 (2022) 103274

A
0
(

Contents lists available at ScienceDirect

Theoretical and Applied Fracture Mechanics

journal homepage: www.elsevier.com/locate/tafmec

Comparative analytical study of the coupled criterion and the principle of
minimum total energy with stress condition applied to linear elastic
interfaces
M. Muñoz-Reja, V. Mantič, L. Távara ∗

Grupo de Elasticidad y Resistencia de Materiales, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos
s/n, 41092 Sevilla, Spain

A R T I C L E I N F O

Keywords:
Linear Elastic Brittle Interface Model (LEBIM)
Coupled criterion
Finite Fracture Mechanics (FFM)
Double cantilever beam test
Total energy minimization

A B S T R A C T

In the present work the Coupled Criterion of Finite Fracture Mechanics (CCFFM) is used to predict crack
onset or growth by finite increments in a linear elastic interface. The predictions of the interface failure by
two alternative approaches of the CCFFM applied to the Linear Elastic Brittle Interface Model (LEBIM): the
widely used method based on looking for an intersection of stress and energy criteria curves and the novel
Principle of Minimum Total Energy subjected to a Stress Condition (PMTE-SC), are studied and compared.
For this purpose, two analytical studies, based on the stress and energy criteria curves and the PMTE-SC, are
carefully explained, providing appropriate graphical representations, by considering the widely used Double
Cantilever Beam (DCB) test as benchmark problem. For the sake of simplicity, the Euler–Bernoulli beam model
including an elastic interface (the Winkler interface) to model the adhesive layer joint is used in this study.
To the authors’ best knowledge, this is the first study showing, for both load and displacement control, that
the PMTE-SC is equivalent to the classical formulation of the CCFFM, providing exactly the same analytical
predictions for the crack onset and propagation. The fact that onset of a finite crack-advance typically predicted
by CCFFM is associated to tunnelling the total energy barrier is also illustrated on the DCB test. The main
advantages of the PMTE-SC are its versatility and possibility of applying it to complex configurations including
multiple cracks and fracture mixed-mode behaviour.
1. Introduction

Finite Fracture Mechanics (FFM) theory assumes that the crack
onset is produced (at the considered time scale apparently) instantly
with a finite length. It may be caused by an abrupt coalescence of
defects of the material for a critical value of the tension. Therefore, FFM
does not maintain the Griffith hypothesis for the Linear Elastic Fracture
Mechanics (LEFM) theory, which assumes that the crack growth is
infinitesimal. This is why FFM is able to predict the onset of fracture
in the form of a new finite crack segment even under a uniform stress
field [1].

In the framework of the FFM, the Coupled Criterion of the FFM
(CCFFM) was proposed [2]. This criterion combines two criteria tradi-
tionally used separately in brittle and quasi-brittle materials: the stress
criterion and the energy criterion. The first one was commonly used
to predict failure when stress singularities are not present, while the
energy criterion was employed in the presence of cracks. There are
many experimental evidences supporting the hypothesis by Leguillon,
see e.g. [2–10].
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On the other hand, interface conditions ahead of an interface crack
front play a critical role when defining a crack growth model. The
Linear Elastic-(perfectly) Brittle Interface Model (LEBIM) was proposed
and studied in [11–14], among many others, to model cracks propagat-
ing on a weak surface/interface, which may represent, e.g., an adhesive
layer. It is characterized by a continuous spring-distribution (often
referred to as the Winkler interface) with a linear elastic-(perfectly)
brittle law, which relates the displacement jump across this interface
(material separation, in Mode I) and tractions acting there.

An improved constitutive law including a failure criterion of the
LEBIM was introduced and analysed in [15–17]. This model covers also
interface fracture due to shear under compression, by extending the
range of variation of the interface fracture energy with the fracture
mode mixity, and considering the possibility of frictionless elastic
contact at broken portions of the interface.

Traditionally, LEBIM has been applied to characterize interfaces
with a relatively low stiffness. This is because the fracture energy and
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critical tractions of an interface modelled by LEBIM are coupled by an
equation involving the interface stiffness. However, such an interface
model may be far from reality, especially for thin adhesive layers
characterized by a large stiffness. Another disadvantage of the LEBIM
is that it considers only infinitesimal propagation of damage, similarly
to the LEFM. However, in some fracture processes, the failure occurs
instantaneously, leading to a crack growth with a finite length. Due
to these two facts, the CCFFM approach has been incorporated into
LEBIM [18–22]. Using this new approach, it was possible to decouple
the fracture energy, critical traction and stiffness of an interface.

The novelty of this work is the comparative study between two alter-
native approaches of the CCFFM. The first approach is the well-known
method based on the stress and energy criteria curves which is used by
most authors. The second approach is the novel Principle of Minimum
Total Energy subjected to a Stress Condition (PMTE-SC) introduced
in [23]. Moreover, several aspects and applications of PMTE-SC to
the crack onset and propagation are analysed, assuming a quasistatic
problem evolution (i.e. inertial forces are neglected). The Double Can-
tilever Beam (DCB) test is used as reference problem. Additionally,
some analyses regarding the effect of the way the test is controlled (load
or displacement control) are done using an analytical solution based
on the beam theory models including an elastic interface. Noteworthy,
the main advantage of the proposed methodology based on the PMTE-
SC is its versatility and applicability to complex configurations with
multiple cracks and mixed-mode fracture. This methodology can be
implemented in a straightforward manner in a numerical tool based
on FEM, eliminating the need to derive an analytical solution.

2. Theoretical framework of the CCFFM + LEBIM

Several authors [18,21,22,24,25] have previously applied the
CFFM to elastic interface models and described in detail the theo-
etical framework of this method. Thus, for the sake of brevity, the
CFFM + LEBIM formulation to be used in this paper is just briefly

described in this section. As mentioned above, the present CCFFM is
based on the interface strength and fracture energy criteria, each of
them representing a necessary but not sufficient condition for a crack
onset and/or growth.

The stress criterion is evaluated before the crack onset on the entire
weak surface where the crack is expected to initiate or grow. However,
in this method, as the coupled criterion is applied to elastic interfaces,
the stress criterion is imposed for all undamaged points 𝑥 at every
interface component of the problem. The aim is to localize one or
several finite segments of the interface which can be damaged, e.g. from
𝑥 = 0 to 𝑥 = 𝛥𝑎, satisfying the stress criterion. This condition can be
written as:
𝑡(𝑥)

𝑡𝑐 (𝜓(𝑥))
≥ 1, for all 𝑥, 0 ≤ 𝑥 ≤ 𝛥𝑎, (1)

with 𝑡(𝑥) =
√

𝜎2(𝑥) + 𝜏2(𝑥) and 𝑡𝑐 (𝜓(𝑥)) =
√

𝜎2𝑐 (𝜓(𝑥)) + 𝜏2𝑐 (𝜓(𝑥)),

where 𝜎(𝑥) and 𝜏(𝑥) are the normal and shear stress components at an
undamaged interface point 𝑥, and 𝑡(𝑥) is the traction vector modulus.
𝜎𝑐 (𝜓(𝑥)) and 𝜏𝑐 (𝜓(𝑥)) are the maximum allowed stress components at
𝑥 giving the critical traction vector modulus 𝑡𝑐 (𝜓(𝑥)), which can be
defined by several suitable stress criteria (similarly to LEBIM) and
depends on the fracture mode-mixity angle 𝜓(𝑥) at 𝑥 [17], see also [22]
for a deeper analysis of the formulation. The critical normal and
shear stress components can be defined by dimensionless functions as
proposed in [17]:

𝜎𝑐 (𝜓) = 𝜎c,ch𝜎̂𝑐 (𝜓) and 𝜏𝑐 (𝜓) = 𝜎c,ch𝜏𝑐 (𝜓), (2)

where 𝜎c,ch is a characteristic interface strength parameter, e.g., for
cracks growing in pure mode I (as in the DCB test) 𝜎c,ch becomes the
tensile strength of the interface 𝜎c. Then, the dimensionless critical

̂

2

traction vector modulus is defined by 𝑡𝑐 (𝜓(𝑥)) = 𝜎c,ch𝑡𝑐 (𝜓(𝑥)).
Following the dimensionless and general formulation introduced
in [23], the (pointwise) stress criterion can be written in general form,
as
𝜎nom
𝜎c,ch

≥ 𝑠(𝑥) =
𝑡𝑐 (𝜓(𝑥))
𝑡(𝑥)

, for all 𝑥 ∈ [0, 𝛥𝑎], (3)

here 𝜎nom is the applied nominal stress which depends on the problem
nd represents the external loads, and 𝑡(𝑥) = 𝜎nom𝑡(𝑥).

In addition to the stress criterion, to initiate or propagate an in-
erface crack by a finite increment of its length 𝛥𝑎 > 0, the following
nergy balance condition must be fulfilled

− 𝛥𝛱(𝛥𝑎) ≥ 𝛥𝑅(𝛥𝑎), (4)

here the left and right hand sides are defined as the decrement
f the potential energy and the increment of the dissipated energy,
espectively, at this (typically instantaneous) finite crack-advance 𝛥𝑎.
he energy released in the fracture process can be computed by several
ethods, its suitability may depend on the CCFFM approach used,

.g., calculating either the integral of the ERR considering a virtual
rack growing on the interface part defined by 𝛥𝑎 [17,19,21], or the
ecrement of potential energy by subtracting the potential energies
efore and after the interface failure [23].

Following [23,26,27], the energy condition for linear elastic ma-
erials can be written in terms of dimensionless functions as follows

−
𝜎2nom𝑙

2
ch

2𝑘ch
𝛥𝛱̂(𝛥𝛼) ≥ 𝐺c,ch𝑙

2
ch𝛥𝑅̂(𝛥𝛼), (5)

here 𝑙ch is a characteristic length of the problem, 𝛥𝛼 = 𝛥𝑎
𝑙ch

, 𝜎nom is the
pplied nominal stress (as considered in the stress criterion), and 𝛱̂ and
̂ are dimensionless functions. Additionally, 𝐺c,ch is the characteristic
racture-energy of the interface, and 𝑘ch is the characteristic stiffness
f the interface, becoming the fracture energy of the interface 𝐺Ic and
he normal stiffness of the interface 𝑘𝑛, respectively, for pure mode I.

Following the formulation of the CCFFM introduced in [26], the
imensionless function 𝑔(𝛥𝑎) can be defined as

(𝛥𝛼) =
𝛥𝑅̂(𝛥𝛼)
−𝛥𝛱̂(𝛥𝛼)

. (6)

Following [18,19,21,22], an adequate way to represent the relation
between the critical stress, the fracture energy and the stiffness of the
interface in pure mode I, is the one represented in Fig. 1, see [19],
where it can be seen that the dimensionless parameter

𝜇 =
2𝐺Ic 𝑘𝑛
𝜎2c

=
(

𝜎max
𝜎c

)2
=
(

𝛿max
𝛿c

)2
(7)

characterizes the interface brittleness or toughness in mode I in CCFFM
+ LEBIM. Note that 𝜎max and 𝜎c are the maximum and critical tensions
ssociated with the energy and stress based criteria, and similarly 𝛿max
nd 𝛿c are the maximum and critical normal relative displacements
ssociated with the energy and stress based criteria, respectively.

If 𝐺Ic and 𝜎c are considered constant, then the interface becomes
tiffer when 𝜇 value increases, and the perfect interface (with vanishing
elative displacements on undamaged parts) is recovered for 𝜇 → ∞.

Finally, the energy criterion can be rewritten as
𝜎nom
𝜎c

≥
√

𝜇 𝑔(𝛥𝛼). (8)

If the stress criterion in (3) is expressed as a function of the dimen-
ionless finite segment of the crack, 𝛥𝛼, like in the energy criterion (8),
he CCFFM applied to LEBIM can be written as
𝜎nom,c
𝜎c

= min
𝛥𝛼

max
{

𝑠(𝛥𝛼),
√

𝜇 𝑔(𝛥𝛼)
}

, (9)

where 𝜎nom,c is the minimum load that satisfies both criteria and
produces a crack with length 𝛥𝛼 = 𝛥𝛼 .
c
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Fig. 1. CCFFM + LEBIM constitutive law in pure mode I.

It is interesting to recall that some authors related the behaviour
f the bi-linear traction separation law, in the framework of the well-
nown Cohesive Zone Model (CZM), and the Coupled Criterion of Finite
racture Mechanics (CCFFM) for elastic interfaces [14,18]. Although
he physical effect in both approaches is similar (i.e. an increase in 𝜇
eads to a more ductile behaviour of the interface), their mathematical
efinition is different. In a bi-linear traction separation law the stiffness
hanges (being a function of the damage parameter) while in the
CFFM approach the stiffness remains unaltered until the breakage
f a portion of interface happens when this stiffness suddenly jumps
own to zero. Let us recall that, the mechanical characterization of the
nterface in the CCFFM approach is based on two hypotheses:

• CCFFM does not follow Griffith hypothesis, where an infinitesimal
crack growth is assumed. Thus, the energy balance is defined
incrementally, and a finite crack growth can be predicted.

• Both, the stress- and energy-based criteria must be fulfilled si-
multaneously. The stress-based criterion establishes a condition
on the traction vector along the possible crack path (prior to
the crack generation). The energy-based criterion is based on the
incremental energetic balance between the state prior and after
the instantaneous crack formation.

These assumptions allow modelling the interface failure in the
inear-elastic framework and using the same value of the stiffness of
he undamaged part of the interface until a certain moment, when
his stiffness jumps down in the instantaneous crack growth process
i.e., without a presence of a softening zone).

Note that, for 𝛥𝛼 → 0 the functions 𝑠(𝛥𝛼) and 𝑔(𝛥𝛼) represent the
original LEBIM if the same failure criterion is used. This is due to the
equivalence between the Energy Release Rate (ERR) and the tractions,
and the equivalence between the fracture energy and critical tractions,
at a particular unbroken interface-point, as showed in [17]. This equiv-
alence implies that for 𝛥𝛼 → 0 and 𝜇 = 1 the CCFFM+LEBIM reverts to
the original LEBIM, due to the characterization of the interface failure
represented by 𝜇 = 1, and by the infinitesimal propagation of the LEBIM
𝛥𝛼 → 0. These two features of the original LEBIM highlight the two
main reasons for the application of CCFFM to LEBIM:

• In CCFFM+LEBIM it is possible to uncouple the fracture tough-
ness, critical traction and stiffness of an adhesive interface with
𝜇 ≥ 1.

• CCFFM+LEBIM is able to predict the onset of a new finite segment
of the crack 𝛥𝛼 at a given moment. In this way, an abrupt failure
of the interface due to adhesive defects can be modelled.

The condition given by (9) corresponds to the CCFFM applied to
the LEBIM by the approach based on the stress and energy criteria
curves. As an alternative, the PMTE-SC, introduced in [23], can also
used to predict the crack onset and/or growth by finite increments of
the crack length on a linear elastic interface. This approach seems to
3

more versatile for solving complex fracture problems than the previous t
methodology. This is mainly because PMTE-SC is more suitable for a
general computational implementation of a time stepping procedure
covering problems of competition between the initiation and propaga-
tion of several cracks. Moreover the total energy can be formulated as a
separately convex functional in terms of the displacements and damage
variable fields, allowing to apply efficient and robust optimization al-
gorithms to minimize the total energy. According to [23], the PMTE-SC
can be formulated by the following constrained minimization

min
𝛥𝑎⊂𝐴𝜎

𝛥𝛱(𝛥𝑎) + 𝛥𝑅(𝛥𝑎), (10)

where, as above, 𝛥𝛱(𝛥𝑎) is the increment of the potential energy
of the system and 𝛥𝑅(𝛥𝑎) the energy dissipated due to a (possibly
finite) interface crack advance 𝛥𝑎. For the sake of generality, 𝛥𝑎 is
understood in (10) as a subset of the interface 𝛤C, i.e. 𝛥𝑎 ⊂ 𝛤C, possibly
being composed by one or several connected components. 𝛥𝑎 defines a
possible crack advance, representing the set of points on 𝛤C that are
oing to be damaged in this crack advance. 𝐴𝜎 ⊂ 𝛤C is the subset of
ll (still) undamaged points on 𝛤C where the stress pointwise criterion
efined in (3) is satisfied before the considered crack advance happens.

. Double Cantilever Beam test

The DCB is a well-known test used to determine the fracture energy
n pure fracture mode I of adhesively bonded joints. This test allows a
ood understanding and characterization of the adhesive layer which
s very important in the quality evaluation of adhesively bonded joints.
n particular it allows determining the parameters that characterize
heir resistance to fracture and failure. The DCB test is also used to
tudy delamination growth and to compare the performance of different
omposite laminates. A review of several applications of this test can
e found in [28,29].

In Section 3.1, an analytical model is developed to obtain the stress
nd the displacement fields on the interface between the two beams of
he coupon test. Similar models were developed, e.g., in [24,30–33].

ith this model, the CCFFM+LEBIM is applied using both the stress and
energy criteria curves method and the PMTE-SC. Moreover, the effect
of applying displacement or load control is studied, for each of the
two approaches of the CCFFM+LEBIM. Both studies will be carried out
separately and with an adequate (different) parametrization for each
case, in Sections 4 and 5.

One of the most interesting and original result of this work is a
detailed study of the PMTE-SC applied to the DCB test. As follows
from (10), see also [23], the increment of the potential energy plus
the energy dissipated at the abrupt formation of a new debonded part
must be equal or smaller than zero,

𝛥𝛱(𝛥𝑎) + 𝛥𝑅(𝛥𝑎) ≤ 0. (11)

Let 𝑎0 includes all possible cracks advances previous to the currently
studied crack advance 𝛥𝑎. In the first step of specimen analysis, 𝑎0 is
iven by a possible pre-crack. Then, 𝑎 = 𝑎0 + 𝛥𝑎 denotes the current
racked interface part. Then, according to (11), 𝛱(𝑎) + 𝑅(𝑎) should
eep constant or decrease for a new crack onset, 𝑅(𝑎) being the total
issipated energy during the fracture of the interface of size 𝑎, and 𝛱(𝑎)
he stored elastic strain energy 𝑈 (𝑎) plus the potential energy of the
xternal load (negative external work) 𝛱ext(𝑎) = −𝑊 (𝑎). Therefore,
he minimization of the function 𝛱(𝑎) + 𝑅(𝑎) gives onset of a crack
dvance 𝛥𝑎 associated to the minimum total energy, for a zone 𝛥𝑎 of
he undamaged interface part which verifies the stress criterion.

Specifically, in this case, the whole interface between the two beams
f the DCB is a potential failure zone, starting from a possible initial
rack 𝑎0, till the end of the interface. However, the crack growth is
nly possible in those zones where the stress criterion is satisfied, which
ill depend on the applied load. The minimization of the function
(𝑎) +𝑅(𝑎) is restricted to these zone. As can be seen in the following

ections, there are important differences in the energy behaviour for

he DCB test when either load or displacement control is imposed.
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Fig. 2. Double Cantilever Beam test configuration and equilibrium of an infinitesimal element of a beam. The bar over u and P means the imposed boundary conditions.
Fig. 3. Boundary conditions used to model the DCB test under displacement control.
w
b

In DCB tests the crack growth in mode I is predominant, therefore
he interface shear stresses are omitted and the fracture mode mixity
ngle 𝜓(𝜉) = 0.

.1. Analytical model for the DCB test

Referring to the free-body diagram of an element of length d𝑥 rep-
resented in Fig. 2, the following equilibrium equations can be written
for the upper beam
d𝑉 (𝑥)
d𝑥

+ 𝑏 𝜎(𝑥) = 0, (12)

d𝑀(𝑥)
d𝑥

− 𝑉 (𝑥) = 0, (13)

where 𝑉 (𝑥) and 𝑀(𝑥) are the shear force and the bending moment, and
𝜎(𝑥) is the normal stress component on the interface (adhesive layer).
The kinematic equations for each of the beams are

𝜒(𝑥) =
d𝜑(𝑥)
d𝑥

, (14)

𝜑(𝑥) =
d𝑤(𝑥)
d𝑥

, (15)

where 𝜑(𝑥), 𝜒(𝑥) and 𝑤(𝑥) are the rotation, curvature and transverse
isplacement, respectively. The constitutive equation for each beams is

(𝑥) =
12𝑀(𝑥)
𝐸′ℎ3𝑏

, (16)

where, 𝐸′ = 𝐸
(1−𝜈2) is the elastic modulus for plane strain conditions in

n isotropic material.
4

As the adhesive layer is modelled by a spring distribution, then the
normal stress component is directly related to the normal relative dis-
placement between the adherents 𝛿𝑛. Then, the Euler–Bernoulli beam
kinematical assumption yields

𝜎(𝑥) = 𝑘𝑛𝛿𝑛(𝑥) = 2𝑘𝑛𝑤(𝑥), (17)

here 𝑘𝑛 represents the normal stiffness of the adhesive layer, or in a
roader view the stiffness of the bonded interface.

By differentiating (15) and accounting for (14) and (16) we obtain

d2𝑤(𝑥)
d𝑥2

=
12𝑀(𝑥)
𝐸′ℎ3𝑏

. (18)

By differentiating (18) we get, in view of (13),

d3𝑤(𝑥)
d𝑥3

=
12𝑉 (𝑥)
𝐸′ℎ3𝑏

. (19)

Finally, by differentiating (19), in view of (12) and (17), we get

d4𝑤(𝑥)
d𝑥4

+
24𝑘𝑛𝑤(𝑥)
𝐸′ℎ3

= 0. (20)

Note that, considering (17) and (20), a similar differential equation for
the normal stress component is obtained

d4𝜎(𝑥)
d𝑥4

+
24𝑘𝑛𝜎(𝑥)
𝐸′ℎ3

= 0. (21)

In order to get dimensionless expressions, the characteristic length
parameter 𝑙 , relating the stiffness of the beam to that of the interface,
𝑐ℎ
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Table 1
Dimensionless variables and parameters.

𝜉 = 𝑥
𝑙𝑐ℎ

𝜆 = 𝑙
𝑙𝑐ℎ

𝛼 = 𝑎
𝑙𝑐ℎ

𝑤̂ = 𝑤
𝑢̄

𝜎̂ = 𝜎
𝑃∕(𝑏 𝑙𝑐ℎ)

is defined in a similar way as in [24,32],

𝑙𝑐ℎ = 4

√

𝐸′ℎ3
6𝑘𝑛

. (22)

Differential equations (20) and (21) can be rewritten in terms of the
imensionless parameters defined in Table 1 as

̂ iv(𝜉) + 4𝑤̂(𝜉) = 0, (23)
𝜎̂iv(𝜉) + 4𝜎̂(𝜉) = 0, (24)

here the derivatives are now taken with respect to 𝜉.
Finally, the dimensionless displacement 𝑤̂(𝜉) and stress 𝜎̂(𝜉) can be

xpressed in a similar way as in [24],

̂ (𝜉) = 𝑒𝜉 (𝐶1 sin 𝜉 + 𝐶2 cos 𝜉) + 𝑒−𝜉 (𝐶3 sin 𝜉 + 𝐶4 cos 𝜉), (25)
𝜎̂(𝜉) = 𝑒𝜉 (𝐶1 sin 𝜉 + 𝐶2 cos 𝜉) + 𝑒−𝜉 (𝐶3 sin 𝜉 + 𝐶4 cos 𝜉), (26)

where 𝐶1,… , 𝐶4 are integration constants to be determined from the
boundary conditions.

3.2. Displacement solution on the interface under displacement control

The four boundary conditions are obtained by substituting the
values of the shear force, bending moment and the displacement at the
extreme of the beams into the previous equations. As represented in
Fig. 3(b), the first two boundary conditions are given by evaluating
(18) and (19) at 𝑥 = 0,

𝑤̂′′(0) = 0, (27)
𝑤̂′′′(0) = 0. (28)

For the third and fourth boundary conditions application it is nec-
essary to write the reaction 𝑃 (𝑢̄) as a function of 𝑤(𝑥). According to
Fig. 3(b) and (19) the following relation can be obtained

𝑤′′′(𝑙 − 𝑎) =
−12𝑃 (𝑢̄)
𝐸′ℎ3𝑏

. (29)

The third boundary condition is shown in Fig. 3(a), where the ap-
lied displacement at the extreme of the beams is 𝑢̄. This displacement
s composed of three parts: the normal relative displacement at the
rack tip 𝑤(𝑙−𝑎), the rotation of the beam at the crack tip by the length
f free interface beam 𝑎, and the deflection of this free interface beam
s a cantilever beam,

̄ = 𝑤(𝑙 − 𝑎) +𝑤′(𝑙 − 𝑎) 𝑎 +
4 𝑃 (𝑢̄) 𝑎3

𝐸′ℎ3𝑏
. (30)

Then, using the relation between 𝑃 (𝑢̄) and 𝑤′′′(𝑙 − 𝑎) in (29), the
third boundary condition can be written in terms of the dimensionless
parameters,

𝑤̂(𝜆 − 𝛼) + 𝑤̂′(𝜆 − 𝛼)𝛼 − 𝑤̂′′′(𝜆 − 𝛼)𝛼
3

3
= 1. (31)

Finally, the last boundary condition must satisfy that 𝑀(𝑙−𝑎) = 𝑃𝑎.
Therefore, from (18) and (29) the following boundary condition can be
obtained

𝑤̂′′(𝜆 − 𝛼) + 𝑤̂′′′(𝜆 − 𝛼)𝛼 = 0. (32)

The system of equations is solved using the computer algebra soft-
ware Mathematica [34]. The displacement field obtained depends on
three of the dimensional parameters defined in the Table 1: 𝜉, 𝛼 and
𝜆. However, only 𝜉 and 𝛼 will change in the rest of the problem
5

𝜎

formulation, since 𝜉 refers to any point on the interface between the
beams and 𝛼 refers to the crack tip location. Recall that 𝛼0 includes
all possible cracks advances previous to the currently studied crack
advance 𝛥𝛼, and 𝛼 = 𝛼0 + 𝛥𝛼. Therefore, in the rest of the formulation,
the displacement field is written in terms of the two variables 𝜉 and
𝛼. Thus, (33) represents the solution of the displacement field on the
interface for any undamaged point 𝜉 and a crack length 𝛼,

𝑤̂(𝜉, 𝛼) =
[

−3
(

e3𝛼+𝜁+𝜆 +e𝛼−𝜁+3𝜆
)

𝛼 cos (𝛼 − 𝜁 − 𝜆)

+ 3 e3𝛼−𝜁+𝜆
(

(

−1 − e2𝜁 +𝛼
)

cos (𝛼 + 𝜁 − 𝜆)
)

− 3 e3𝛼−𝜁+𝜆
(

e2𝜁
(

−1 + 𝛼
)

sin (𝛼 − 𝜁 − 𝜆)
)

− 3 e3𝛼−𝜁+𝜆
(

(

𝛼 + e2𝜁 (−1 + 2𝛼)
)

sin (𝛼 + 𝜁 − 𝜆)
)

+ 3 e𝛼−𝜁+3𝜆
(

(

1 + e2𝜁 (1 + 𝛼)
)

cos (𝛼 + 𝜁 − 𝜆)
)

+ 3 e𝛼−𝜁+3𝜆
(

2 cos (𝜁 ) sin (𝛼 − 𝜆)
)

+ 3 e𝛼−𝜁+3𝜆 𝛼
(

sin (𝛼 − 𝜁 − 𝜆) + (2 + e2𝜁 ) sin (𝛼 + 𝜁 − 𝜆)
) ] /

[

e4𝛼
(

−3 + 2𝛼
(

3 + (−3 + 𝛼)𝛼
)

)

+ e4𝜆
(

3 + 2𝛼
(

3 + 𝛼(3 + 𝛼)
)

)

+ 2 e2(𝛼+𝜆)
(

−4𝛼3 + 2𝛼
(

−3 + 𝛼2
)

cos
(

2(𝛼 − 𝜆)
)

)

+ 2 e2(𝛼+𝜆)
(

(

3 − 6𝛼2
)

sin
(

2(𝛼 − 𝜆)
)

)]

.

(33)

The displacement at the crack tip, necessary for the rest of the prob-
lem development, is obtained by evaluating the previous expression for
𝜉 = 𝜆 − 𝛼,

𝑤̂(𝜆 − 𝛼, 𝛼) =
[

3 e4𝛼
(

−1 + 𝛼
)

+ 3 e4𝜆
(

1 + 𝛼
)

− 6 e2(𝛼+𝜆)
(

𝛼 cos
(

2(𝛼 − 𝜆)
)

− sin
(

2(𝛼 − 𝜆)
)

) ] /

[

e4𝛼
(

−3 + 2𝛼
(

3 + (−3 + 𝛼)𝛼
)

)

+ e4𝜆
(

3 + 2𝛼
(

3 + 𝛼(3 + 𝛼)
)

)

+ 2 e2(𝛼+𝜆)
(

−4𝛼3 + 2𝛼
(

−3 + 𝛼2
)

cos
(

2(𝛼 − 𝜆)
)

)

+ 2 e2(𝛼+𝜆)
(

(

3 − 6𝛼2
)

sin
(

2(𝛼 − 𝜆)
)

)]

.

(34)

3.3. Stress solution on the interface under load control

The four boundary conditions are obtained by substituting the
values of the shear force and the bending moment at 𝑥 = 0 and 𝑥 = 𝑙−𝑎,
as shown in Fig. 4(b).

Thus, the first two boundary conditions are given by evaluating (18)
and (19) at 𝑥 = 0. These boundary conditions can be expressed in terms
of the normal stress component, see (17),

𝜎̂′′(0) = 0, (35)

̂ ′′′(0) = 0. (36)

In the third boundary condition, 𝑉 (𝑙 − 𝑎) = −𝑃 must be fulfilled, and
from (19) the following expression can be obtained
′′′
̂ (𝜆 − 𝛼) = −4. (37)
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𝑀

f

Fig. 4. Boundary conditions used to model the DCB test under load.
The last boundary condition is obtained from (18) to satisfy
(𝑙 − 𝑎) = 𝑃𝑎,

𝜎̂′′(𝜆 − 𝛼) = 4𝛼. (38)

In a similar way as done for the analysis under displacement control,
this system is solved by using Mathematica. Then, the stress distribution
on the interface is obtained, it depends on the same parameters and
variables as the solution defined in Section 3.3. Thus, the following
function defines the normal stress component at a point 𝜉 within an
undamaged zone of the interface, and a crack length 𝛼,

𝜎̂(𝜉, 𝛼) =
[

−2
(

e3𝛼+𝜁+𝜆 +e𝛼−𝜁+3𝜆
)

𝛼 cos (𝛼 − 𝜁 − 𝜆)

+ 2 e3𝛼−𝜁+𝜆
(

(

−1 − e2𝜁 +𝛼
)

cos (𝛼 + 𝜁 − 𝜆)
)

− 2 e3𝛼−𝜁+𝜆
(

e2𝜁
(

−1 + 𝛼
)

sin (𝛼 − 𝜁 − 𝜆)
)

− 2 e3𝛼−𝜁+𝜆
(

(

𝛼 + e2𝜁 (−1 + 2𝛼)
)

sin (𝛼 + 𝜁 − 𝜆)
)

+ 2 e𝛼−𝜁+3𝜆
(

(

1 + e2𝜁 (1 + 𝛼)
)

cos (𝛼 + 𝜁 − 𝜆)
)

+ 2 e𝛼−𝜁+3𝜆
(

2 cos (𝜁 ) sin (𝛼 − 𝜆)
)

+ 2 e𝛼−𝜁+3𝜆 𝛼
(

sin (𝛼 − 𝜁 − 𝜆) + (2 + e2𝜁 ) sin (𝛼 + 𝜁 − 𝜆)
) ] /

[

e4𝛼 +e4𝜆 +2 e2(𝛼+𝜆)
(

−2 + cos
(

2(𝛼 − 𝜆)
)

)]

.

(39)

Note that, although (39) seems to be different from (33), the two
equations are equivalent but associated to different dimensionless pa-
rameters. This can be clearly seen from (29), since this equation defines
the relationship between the 𝑢̄ under displacement control and 𝑃 under
load control, i.e., for an imposed displacement 𝑢̄, the reaction of the
system at the same point would be 𝑃 = −𝑢̄ 𝑘𝑛𝑙𝑐ℎ𝑏

2 𝑤̂′′′(𝜆 − 𝛼), and vice
versa. Therefore, the relationships between 𝑤̂ and 𝜎̂ is 4𝑤̂ = 𝑤̂′′′(𝜆−𝛼) 𝜎̂
or a specific 𝑢̄ with the associated specific 𝑃 .
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Table 2
Default mechanical and geometrical characteristics used for the debond analysis of the
DCB test.

𝑙 (mm) ℎ (mm) 𝑎0 (mm) 𝐸 (GPa) 𝜈

Beams 237 1.5 0 135 0.3

𝑘𝑛 (MPa/μm)

Adhesive 0.30

Characteristic length: 𝑙𝑐ℎ = 4.08388 mm
Dimensionless parameter: 𝜆 = 58.033

The normal stress at the crack tip under load control is obtained by
evaluating the expression in (39) for 𝜉 = 𝜆 − 𝛼,

𝜎̂(𝜆 − 𝛼, 𝛼) =
[

2 e4𝛼
(

−1 + 𝛼
)

+ 2 e4𝜆
(

1 + 𝛼
)

− 4 e2(𝛼+𝜆)
(

𝛼 cos
(

2(𝛼 − 𝜆)
)

− sin
(

2(𝛼 − 𝜆)
)

) ] /

[

e4𝛼 +e4𝜆 +2 e2(𝛼+𝜆)
(

−2 + cos
(

2(𝛼 − 𝜆)
)

)]

.

(40)

However, this equation is different from that for the displacement at
the crack tip under displacement control, see (34). This is due to the
fact that this function represents the evolution of the stress in the crack
tip with the crack size 𝛼 and for a specific 𝑃 . Recall that 𝛼 includes
all possible previous crack advances and the current crack advance,
i.e. 𝛼 = 𝛼0 + 𝛥𝛼. Further explanations are included in the next section
with an example for clarification.

3.4. Stress and displacement distributions on the interface for a specific case

In order to analyse the behaviour of the stress and displacement
solutions at the crack tip obtained in the previous sections, the data
included in Table 2 are used to graphically represent them for a specific
interface. The obtained values of the dimensionless parameters defined
in Table 1 are also presented in Table 2.

Note that the dimensionless equations developed in this article are
independent of the fracture energy and the critical stress. This is be-
cause these mechanical properties are used to define the dimensionless
solution of the problem. Moreover, the width of the beam does not
influence the stress distributions and relative displacement field along

the interface. Additionally, as this is a purely theoretical study, whose
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Fig. 5. Crack tip value of 𝑤̂(𝜆 − 𝛼, 𝛼) under displacement control and 𝜎̂(𝜆 − 𝛼, 𝛼) under load control, from 𝛼 = 𝛼0 = 0 to 𝛼 = 𝜆.
t
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aim is to analyse the CCFFM, it is considered appropriate to start the
test without a pre-crack, i.e. 𝑎0 = 0.

Fig. 5(a) represents the solution obtained by (34), where the di-
mensionless displacement at the crack tip is obtained as a function
of the dimensionless crack length from 𝛼 = 𝛼0 = 0 to 𝛼 = 𝜆 under
displacement control. It can be seen that the displacement at the crack
tip decreases when the crack length increases. Fig. 5(b) represents the
solution obtained by (40), where the dimensionless stress at the crack
tip is obtained as a function of the dimensionless crack length from
𝛼 = 𝛼0 = 0 to 𝛼 = 𝜆 under load control. It can be seen that the stress at
the crack tip increases when the crack length increases.

As follows from Fig. 5, the evolution of both solutions is very dif-
ferent for load and displacement control. These different behaviours of
the two solutions will result in a significant difference in the evolution
of the interface failure for each configuration.

4. CCFFM applied to a linear-elastic interface for the DCB under
displacement control

4.1. Solution obtained by the stress and energy criteria curves

Based on the theoretical concepts exposed in [17,19,21], for the
specific case of the DCB test under displacement control, the ERR can
be defined for a point associated with the crack tip, whose position in
this system is 𝜆 − 𝛼′, as

𝐺(𝑎′) = 2𝑘𝑛𝑢̄2𝑤̂2(𝜆 − 𝛼′, 𝛼′) = 2𝑘𝑛𝑢̄2𝐺̂(𝜆 − 𝛼′)

with 𝐺̂(𝜆 − 𝛼′) = 𝑤̂2(𝜆 − 𝛼′, 𝛼′)
. (41)

where 𝛼′, with 𝑎′ = 𝛼′𝑙𝑐ℎ, represents the ‘‘virtual advance’’ of the crack
tip, between 𝛼0 and 𝛼, in the energy criterion framework. The initial
crack length 𝑎0 includes all possible cracks advances previous to the
currently studied crack advance 𝛥𝛼, and 𝛼 = 𝛼0 + 𝛥𝛼.

Therefore, to initiate or propagate an interface crack by a finite
increment of its length, the following energy balance condition, based
on (5), must be fulfilled:

2𝑘𝑛𝑢̄2

𝐺Ic
≥ 𝑔(𝛥𝛼) with 𝑔(𝛥𝛼) =

𝛥𝑅̂(𝛥𝛼)
−𝛥𝛱̂(𝛥𝛼)

= 𝛥𝛼
∫ 𝛼0+𝛥𝛼𝛼0

𝐺̂(𝜆 − 𝛼′) d𝛼′
, (42)

where in general the dimensionless 𝑔(𝛥𝛼), defined by (6), is the quotient
of the dimensionless dissipated energy 𝛥𝑅̂(𝛥𝛼) and the dimensionless
energy released (the decrease of the dimensionless potential energy
𝛥𝛱̂(𝛥𝛼) by this (typically instantaneous) finite crack-advance. Actually,
in the present case of pure mode I crack advance, 𝑔(𝛥𝛼) is the reciprocal
7
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of the average of the dimensionless ERR on a finite segment given by
the finite crack-advance.

In order to be consistent with the nondimensionalisation used in the
previous sections and to be able to subsequently compare both results
obtained under displacement and load control, the definition of critical
displacement as

𝑤c =
𝛿c
2

=
𝜎c
2𝑘𝑛

(43)

is used, where 𝜎c and 𝛿c are the critical normal stress and the relative
displacement between the beams of the specimen associated to pure
mode I and represented in Fig. 1.

The stress criterion is evaluated, based on (3), along the undamaged
interface and must be satisfied in the same 𝛥𝛼 zone as the energy
criterion, i.e. 𝜆 − 𝛼0 − 𝛥𝛼 ≤ 𝜉 ≤ 𝜆 − 𝛼0, for a given value of 𝛼0,
𝑢̄
𝑤c

≥ 𝑠(𝜉) = 1
𝑤̂(𝜉, 𝛼0)

for all 𝜉, 𝜆 − 𝛼0 − 𝛥𝛼 ≤ 𝜉 ≤ 𝜆 − 𝛼0. (44)

Nevertheless, as 𝑠(𝜉) increases with decreasing 𝜉, the above stress
criterion condition can be written just for the minimum value of 𝜉
considered, i.e., 𝑢̄

𝑤c
≥ 𝑠(𝜆 − 𝛼0 − 𝛥𝛼). For the sake of simplicity, the

following convention will be assumed: 𝑠(𝛥𝛼) def
= 𝑠(𝜆 − 𝛼0 − 𝛥𝛼).

Finally, the parameter 𝜇 in (7), defined tacitly for typical load con-
rol, is redefined here to be suitable for displacement control, writing
t in terms of the critical displacement (without changing the value of
), as

=
𝐺Ic

2𝑘𝑛𝑤2
c
. (45)

The CCFFM given by the stress and energy criteria curves can be
xpressed as
𝑢̄
𝑤c

≥
𝑢̄f
𝑤c

= min
𝛥𝛼

max
{

𝑠(𝛥𝛼),
√

𝜇 𝑔(𝛥𝛼)
}

, (46)

where 𝑢̄f is the minimum displacement applied at the beam end that
satisfies both criteria and produces a crack advance by length 𝛥𝛼c = 𝛥𝛼.

In order to interpret the behaviour of the failure criterion in (46)
or this specific test, the two criteria curves are plotted in Fig. 6 using
he geometrical and mechanical characteristics described in Table 2,
or 𝜇 = 8.

Fig. 6 shows that for small values of 𝛥𝛼, the energy criterion curve
represented by the yellow line) starts above the stress criterion curve
represented by the blue line), both having a positive slope. Actually,
he initial part of the energy criterion function, for 𝛥𝛼 → 0, always
ives larger values than those obtained in the initial part of the stress
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Fig. 6. Functions associated to the energy criterion,
√

𝜇𝑔(𝛥𝛼) and
√

𝜇
𝐺̂(𝜆−𝛼)

, and func-
tion of the stress criterion 𝑠(𝛥𝛼), using the geometrical and mechanical characteristics
described in Table 2, for 𝜇 = 8 and 𝛼0 = 0.

criterion function, due to 𝜇 > 1. However, the shape of the increasing
function

√

𝜇 𝑔(𝛥𝛼) depends on the problem type. If the slope of the
energy criterion curve increases continuously until the intersection with
the stress criterion curve, the growth of the interface crack will be in-
finitesimal with 𝛥𝛼c → 0. This leads to a stable crack propagation, i.e. if
the displacement at the ends of the beams is continuously increased,
the interface debond growth is also produced in a continuous way with
𝛼 = 𝛼0 + d𝛼. Consequently, in this occasion, as in the original LEBIM,
the interface failure is in fact only governed by the ERR, instead of the
ERR average on a finite segment, and the failure criterion (46) can be
expressed as

𝑢̄
𝑤c

≥
𝑢̄f
𝑤c

=
√ 𝜇
𝐺̂(𝜆 − 𝛼)

. (47)

otice that the expression under the square root in the above criterion
s the limit of 𝜇 𝑔(𝛥𝛼) for 𝛥𝛼 → 0, i.e. recovering the prediction by the
riginal LEBIM but with the critical energy given by 𝐺Ic = 𝜇 2𝑘𝑛𝑤2

c
ccording to (45).

In Fig. 6, the CCFFM + LEBIM solution for this test is shown as a
ashed yellow line. To verify the solution obtained with this method,
he results have been compared with the solution obtained in [33]
green line). Equation C.2 in [33] shows the load required for crack
nitiation and propagation, for a solution of the Euler–Bernoulli beam
heory for a DCB with a linear-elastic interface with brittle failure.

.2. Solution obtained by the PMTE-SC

The change in the potential energy of a system 𝛥𝛱 is given by the
hange of the strain energy 𝛥𝑈 and the work of external forces 𝛥𝑊 ,
.e. 𝛥𝛱 = 𝛥𝑈 − 𝛥𝑊 . Recall that 𝛥𝑊 vanishes under displacement
ontrol. Thus, the incremental energy balance (11) for this test under
isplacement control can be expressed as

𝑈 (𝛥𝑎) + 𝛥𝑅(𝛥𝑎) ≤ 0. (48)

Therefore, in this case the total energy function 𝑈 (𝑎) + 𝑅(𝑎) is
inimized subjected to a stress condition. In the following section,

he energy formulation used to obtain 𝑈 (𝑎) + 𝑅(𝑎) is explained, and
he calculation of its minimum by the definition of the ERR, for this
pecific case, is shown. Eventually, the PMTE-SC is applied to the same
est studied previously by the CCFFM+LEBIM, applying the stress and
nergy criteria curves, in Section 4.1.
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Fig. 7. DCB test configuration.

4.2.1. Energy based formulation
For an easier understanding of the present formulation, the zone

of the beam including an undamaged interface is named AB, and the
zone of the beam where the interface is damaged is called BC, as shown
in Fig. 7. In general, the strain energy of both zones according to the
Euler–Bernoulli theory can be expressed as

𝑈AB = 2𝑈AB beam + 2𝑈AB interface,

BC = 2𝑈BC beam,
(49)

here,

AB beam = ∫AB

1
2

(

12𝑀(𝑥)2

𝐸′ℎ3𝑏

)

d𝑥,

𝑈AB interface = ∫AB

1
2
𝑏 𝜎(𝑥)𝑤(𝑥)d𝑥,

𝑈BC beam = ∫BC

1
2

(

12𝑀(𝑥)2

𝐸′ℎ3𝑏

)

d𝑥.

(50)

Relations (50) show that the strain energy of a beam is the sum
of the strain energies corresponding to the internal work within the
beam and that corresponding to the interface springs. Notice that, as
this model is based on the Euler–Bernoulli beam theory, the shear
strain energy has not been taken into account, because the shear
deformation of the beam is neglected. It should also be noticed that the
displacements on the interface 𝑤(𝑥) is half of 𝛿𝑛(𝑥), the relative normal
isplacement between the two beams. The solution for 𝑤(𝑥) in AB zone

is given by (33), it depends on two problem variables 𝑎 and 𝑥, and is
ritten in dimensionless form as 𝑤̂(𝜉, 𝛼). Remember that 𝛼 = 𝛼0 + 𝛥𝛼

includes also all possible cracks advances previous to the currently
studied crack advance 𝛥𝛼. The energy expressions in this section are
presented for a specific configuration of the DCB with a debonded zone
𝛼 and a bonded zone 𝜆 − 𝛼. The dependence on these two variables
must be taken into account in order to calculate the definite integrals
included in (50).

In view of (50) and substituting the equations of the beam mo-
ment (18) and the stresses on the interface (17), the dimensionless
elastic energy at AB zone can be written as

𝑈̂AB(𝛼) =
12 𝑙3𝑐ℎ

𝐸′ℎ3 𝑏 𝑢̄2
𝑈AB(𝑎) = ∫

𝜆−𝛼

0

(

𝜕2𝑤̂(𝜉, 𝛼)
𝜕𝜉2

)2

+ 4
(

𝑤̂(𝜉, 𝛼)
)2d𝜉, (51)

here the first term of the integral is associated with the deformation of
he two beams and the second term is associated with the deformation
f the interface.

For the determination of the elastic energy of the BC zone, the
quations of the free-body diagram developed in Section 3.1 cannot be
sed, because these are formulated only for the zone where an elastic
nterface exists. However, the bending moment equation in BC zone can
e easily deduced, as

(𝑥) = 𝑃 (𝑙 − 𝑥) for all 𝑥, 𝑙 − 𝑎 ≤ 𝑥 ≤ 𝑙. (52)

aking into account the relationship between the load at the beam ends

nd the vertical displacement of the crack tip by (29), the elastic energy
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Fig. 8. Total energy function 𝑈̂ (𝛼) + 𝑅̂(𝛼) for several values of the dimensionless
oundary condition in displacement 𝑢̄

𝑤c
, for 𝜇 = 8.

of BC zone can be expressed as

𝑈̂BC(𝛼) =
12 𝑙3𝑐ℎ

𝐸′ℎ3 𝑏 𝑢̄2
𝑈BC(𝑎) = ∫

𝜆

𝜆−𝛼

(

(𝜆 − 𝜉)
𝜕3𝑤̂(𝜆 − 𝛼, 𝛼)

𝜕𝜉3

)2

d𝜉. (53)

The energy dissipated by the abrupt formation of a new crack and
he total dissipated energy including the formation of the new debond
n the interface are given by the fracture energy in Mode I

(𝛥𝑎) = 𝐺Ic𝛥𝑎 𝑏 and 𝑅(𝑎) = 𝐺Ic𝑎 𝑏. (54)

Finally, the total energy function to be minimized can be expressed
s

(𝑎) + 𝑅(𝑎) = 𝐸′ℎ3 𝑏 𝑢̄2

12 𝑙3𝑐ℎ

(

𝑈̂AB(𝛼) + 𝑈̂BC(𝛼)
)

+ 𝑏 𝑙𝑐ℎ𝐺Ic𝛼

= 𝑏 𝑙𝑐ℎ𝐺Ic

(

𝑢̄2

4𝜇𝑤2
c

(

𝑈̂AB(𝛼) + 𝑈̂BC(𝛼)
)

+ 𝛼

)

,
(55)

nd in dimensionless form as

̂ (𝛼)+𝑅̂(𝛼) = (𝑈 (𝑎) + 𝑅(𝑎)) 1
𝑏 𝑙𝑐ℎ𝐺Ic

= 𝑢̄2

4𝜇𝑤2
c

(

𝑈̂AB(𝛼) + 𝑈̂BC(𝛼)
)

+𝛼. (56)

The graphs of the total energy function shown in Fig. 8 are obtained
using (56) and the parameters included in Table 2, for 𝜇 = 8 and
for several displacement values imposed at the beam ends. Results in
Fig. 8 show that for small values of the imposed displacement 𝑢̄

𝑤c
, the

minimum of the function is obtained at 𝛼 = 0, i.e. no crack growth.
However, when the imposed displacement increases, the total energy
function becomes steeply convex with a minimum for values of 𝛼 > 0.
Recall that the calculation of the energies is for a specific configuration
of the problem with a certain debonded zone of the interface 𝛼 =
𝛼0 + 𝛥𝛼. It should be noted that if the problem had an initial pre-crack
length, e.g., 𝛼0 = 2, none of the four imposed displacements represented
in Fig. 8 would cause an interface failure. This is because none of the
total energy functions have their minimum for 𝛼 > 2.

A way to find the local minimum of the total energy functions
obtained by (56), is to use the first-derivative test within the interval
for 𝛼 where the stress criterion is fulfilled,
d𝑈̂ (𝛼)
d𝛼

+
d𝑅̂(𝛼)
d𝛼

= 0. (57)

The expression of the ERR in (41) is used to calculate the first term
of the derivative, as in LEFM the ERR 𝐺 is given by the negative
variation of the potential energy per unit area of the crack. However,
as mentioned above, under displacement control the potential energy
equals the elastic strain energy, thus

𝐺(𝑎) = −
d𝛱(𝑎)

= −
d𝑈 (𝑎) (58)
9

𝑏 d𝑎 𝑏 d𝑎
The ERR at the crack tip with 𝜉 = 𝜆− 𝛼 is defined in (41) but replacing
𝛼′ by 𝛼. While the derivative of the elastic strain energy of the whole
system with respect to the crack length 𝛼 can be obtained using (51)
and (53),

d𝑈 (𝑎)
𝑏d𝑎

= 𝐸′ℎ3𝑢̄2

12𝑙4𝑐ℎ

(

d𝑈̂AB(𝛼)
d𝛼

+
d𝑈̂BC(𝛼)

d𝛼

)

=
𝑢̄2𝑘𝑛
2

(

d𝑈̂AB(𝛼)
d𝛼

+
d𝑈̂BC(𝛼)

d𝛼

)

.

(59)

herefore, the relationship between the expressions of the ERR and the
erivative of the elastic strain energy, in dimensionless form, becomes

𝐺̂(𝜆 − 𝛼) = 4 (𝑤̂(𝜆 − 𝛼, 𝛼)) 2 = −

(

d𝑈̂AB(𝛼)
d𝛼

+
d𝑈̂BC(𝛼)

d𝛼

)

. (60)

Hence, the local extreme point of the total energy function is
roduced for an 𝛼 value which satisfies
d𝑈 (𝑎)
𝑏d𝑎

+
d𝑅(𝑎)
𝑏d𝑎

= −2𝑘𝑛𝑢̄2(𝑤̂(𝜆 − 𝛼, 𝛼))2 + 𝐺Ic = 0, (61)

and substituting 𝐺Ic from (45), the dimensionless expression of (61) is
obtained
𝑢̄
𝑤c

(𝑤̂(𝜆 − 𝛼, 𝛼)) =
√

𝜇. (62)

Fig. 9 represents the dimensionless total energy given by (56), for
the data included in Table 2 and 𝜇 = 8, and for several values of the two
input variables: the displacement imposed at the beam ends 𝑢̄

𝑤c
and the

damaged interface length 𝛼. The convex total energy function defines
a surface where the ‘‘warm’’ colours represent the areas of the surface
with the lowest energy, and ‘‘cold’’ colours the areas with the highest
energy. The red dots located in the surface valley are the minimum
values for each displacement imposed 𝑢̄

𝑤c
obtained using (62).

4.2.2. Application of the PMTE-SC to a specific case and comparison
between methods

Fig. 10 shows the function 𝑈̂ (𝛼) + 𝑅̂(𝛼) for the geometrical and
echanical characteristics described in Table 2 and 𝜇 = 8. As an

xample and in order to describe the total energy behaviour, eleven
ifferent 𝑢̄

𝑤c
values are used, which represent the displacement imposed

at the beam ends for the same 𝑤c. These displacements are increased
from 1 to 3.03, in intervals of 0.203 (this value is chosen so the
initial part of one of the curves coincides with the initial part of the
energy criterion curve, see Fig. 6, and to get a reasonable size of the
displacement increment). Fig. 10 shows that for increasing values of
𝑢̄
𝑤c

the initial values of these curves (for 𝛼0 = 0) and their curvatures
ncrease.

Before looking for the minimum of each represented function, the
nterface zone that verifies the stress criterion must be analysed in each
urve, because the minimum of the function is looked for only within
his zone. The interface zone that fulfils the stress criterion (44) can be
btained for each 𝜉 point on the undamaged interface part,

Stress criterion (44) defines the zone including points (𝜉 values)
which are prone to fail by the imposed displacement 𝑢̄. This zone is
represented in Fig. 10 by a dashed line in each curve. For increasing
𝑢̄
𝑤c

the zone satisfying the stress criterion also increases, starting from
he first curve, where no point verifies (44), to the last curve, which has
he largest zone where failure is possible. Once the zone where interface
ailure is possible according to the stress criterion is computed, the
inimum of the total energy 𝑈̂ (𝛼) + 𝑅̂(𝛼) is determined by means

f the ERR, as described in the previous section. However, from the
leven curves plotted in Fig. 10, only the last two (those produced by
he largest 𝑢̄

𝑤c
) satisfy the condition (62) for an 𝛼 which verifies the

stress criterion. The minima of these last two curves are represented
in the figure by filled circles. Note that, the minimum 𝑢̄

𝑤c
that has

to be applied to initiate crack growth, corresponds to the green curve
with the imposed displacement 2

√

2, since the derivative of this curve
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Fig. 9. Dimensionless total-energy surface given by (56), and the minimum values for each load and for the data included in Table 2 and 𝜇 = 8.
Fig. 10. Dimensionless total energy 𝑈̂ (𝛼)+ 𝑅̂(𝛼) for several values of the dimensionless
imposed displacement 𝑢̄

𝑤c
(ranging from 1 to 3.03 in intervals of 0.203). The

discontinuous lines indicate the intervals of 𝛼 values that satisfy the stress criterion.
The filled circles represent the minimum of the curves that satisfies the condition (62).

vanishes at 𝛼 = 0. For example, the last (red) curve with 𝑢̄
𝑤c

= 3.03
produces a crack growth up to 𝛼 = 0.0674. The rest of the curves of
the total energy, with 𝑢̄

𝑤c
< 2

√

2, start with a positive slope at 𝛼 = 0,
thus, they do not satisfy the energy balance condition to initiate crack
growth, although the stress criterion allows crack initiation in these
cases as well.

For a deeper understanding of the PMTE-SC methodology, the
results in Fig. 10 are compared with the results obtained by the
CCFFM+LEBIM using the stress and energy criteria curves, developed
in Section 4.1. Fig. 11 shows the curves 𝑠(𝛥𝛼) and

√

𝜇
𝐺̂(𝜆−𝛼)

for 𝜇 = 8,
obtained in Section 4.1. For comparison purposes, horizontal lines
coinciding with 𝑢̄

𝑤c
values and colours used in Fig. 10 are also included

in the plot. In Fig. 11 the intersection of the horizontal lines with
the 𝑠(𝛥𝛼) curve is indicated by the change from dashed to continuous
lines. The dashed parts of these lines represent, for each 𝑢̄

𝑤c
, the length

of the zone 𝛥𝛼 where the damage is allowed according to the stress
criterion. Notice that these zones coincide with those indicated by
10
Fig. 11. Comparison of the 𝛥𝛼 value predicted using PMTE-SC and the stress and
energy criteria curves methodology. Each horizontal line represents the same applied
dimensionless displacement 𝑢̄

𝑤c
included in Fig. 10.

the associated dashed lines in Fig. 10. Moreover, according to the
stress and energy criteria curves, 𝑢̄

𝑤c
= 2

√

2 is the minimum applied
displacement that initiates the interface damage, and 𝑢̄

𝑤c
= 3.03 is the

applied displacement shown in the figure producing the interface crack
propagation with 𝛥𝛼 = 0.0674 (recall that the crack growth predicted
is infinitesimal), exactly as predicted by the PMTE-SC approach.

5. CCFFM applied to a linear-elastic interface for the DCB under
load control

5.1. Solution obtained by the stress and energy criteria curves

Following the previous case, for the specific case of the DCB test
under load control, the ERR can be expressed as

𝐺(𝑎′) = 𝑃 2

𝑏2𝑙2𝑐ℎ2𝑘𝑛
𝜎̂2(𝜆 − 𝛼′, 𝛼′) = 𝑃 2

𝑏2𝑙2𝑐ℎ2𝑘𝑛
𝐺̂(𝜆 − 𝛼′)

′ 2 ′ ′
(63)
with 𝐺̂(𝜆 − 𝛼 ) = 𝜎̂ (𝜆 − 𝛼 , 𝛼 ).
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Fig. 12. Stress and energy criteria functions 𝑠(𝛥𝛼) (blue lines) and
√

𝜇𝑔(𝛥𝛼) (yellow
lines), for the DCB under load control with 𝜇 = 8, and several load steps.

Remember that 𝛼′ represents the ‘‘virtual advance’’ of the crack tip in
the energy criterion framework.

Following the above relations, the energy criterion, based on (5),
can be written as

𝑃 2

𝑏2𝑙2𝑐ℎ2𝑘𝑛𝐺Ic
≥ 𝑔(𝛥𝛼) with 𝑔(𝛥𝛼) =

𝛥𝑅̂(𝛥𝛼)
−𝛥𝛱̂(𝛥𝛼)

= 𝛥𝛼
∫ 𝛼0+𝛥𝛼𝛼0

𝐺̂(𝜆 − 𝛼′) d𝛼′
.

(64)

As in the previous section, the stress criterion, based on (3), depends
on 𝜎c and can be expressed as a function of 𝜉, for a specific value of 𝛼0,

𝑃
𝑏 𝑙𝑐ℎ𝜎c

≥ 𝑠(𝜉) = 1
𝜎̂(𝜉, 𝛼0)

for all 𝜉, 𝜆 − 𝛼0 − 𝛥𝛼 ≤ 𝜉 ≤ 𝜆 − 𝛼0. (65)

or the sake of simplicity, the following convention will be assumed
lso here: 𝑠(𝛥𝛼) def

= 𝑠(𝜆 − 𝛼0 − 𝛥𝛼).
Finally, using the parameter 𝜇 defined in (7), the CCFFM by can be

efined as:
𝑃

𝑏 𝑙𝑐ℎ𝜎c
≥

𝑃f
𝑏 𝑙𝑐ℎ𝜎c

= min
𝛥𝛼

max
{

𝑠(𝛥𝛼),
√

𝜇 𝑔(𝛥𝛼)
}

, (66)

here 𝑃f is the minimum load applied to the beam end that satisfies
oth criteria and produces a crack advance with length 𝛥𝛼 = 𝛥𝛼c.

Fig. 12 shows the stress and energy criteria functions in (66), for the
geometrical and mechanical characteristics described in Table 2 and
𝜇 = 8. These functions are plotted for several load steps, given by
different lengths of the initial crack 𝛼0 in each step.

Unlike the previous configuration under displacement control, the
energy criterion starts with a negative slope, above the stress criterion.
Therefore, the minimum load that satisfies both criteria is given by the
intersection of the curves. This produces an instantaneous onset of a
new finite segment of the crack 𝛥𝛼c for a specific load 𝑃f

𝑏 𝑙𝑐ℎ𝜎c
. Both 𝛥𝛼c

and 𝑃f are defined by the intersection of these curves. In Fig. 12, the
intersection points (𝛼0+𝛥𝛼c,

𝑃f
𝑏 𝑙𝑐ℎ𝜎c

) for each step of the CCFFM+LEBIM
are depicted with different colours of filled circles. Note that if a crack
grows up by a new segment 𝛥𝛼𝑖c in an 𝑖-th step, the evaluation of the
next crack growth starts at the crack length computed in the current
𝑖-th step 𝛼𝑖0 = 𝛼𝑖−10 + 𝛥𝛼𝑖c, and so on.

As done in the previous section, the results have been compared
with the solution in [33] (green line) in Figs. 12 and 13. Unlike
the displacement control test, the failure of the interface using the
coupled criterion is given by the intersection of the energy and the
stress criteria curves in a finite segment of the interface. However, the
solution in [33] is exactly the same as that by the original LEBIM with
the critical energy defined in (7) and therefore the damage process is
infinitesimal and is controlled only by the ERR.

It is also interesting to observe that considering Fig. 1, in the test
under displacement control, the relative displacement at failure is 𝛿
11

max
Fig. 13. Load — Crack propagation curve for the DCB test under load control.

for infinitesimal crack growth. However, under load control test, for a
finite crack advance, the relative displacements at the failed zone along
the interface (abruptly broken) are within an interval above 𝛿c. This
observation shows that the crack growth by finite crack advances is also
associated to a certain increase of the interface ductility (as described
previously by other authors) when 𝜇 increases. Notice that relative
displacements larger than 𝛿c are achieved at the crack tip before its
damage. To illustrate this effect, the following maximum values of
relative displacements at the crack tip before its damage are observed
in the first finite crack advance: 1.65 𝛿c for 𝜇 = 4, 2.17 𝛿c for 𝜇 = 8 and
.88 𝛿c for 𝜇 = 16.

Fig. 13 shows the variation of critical loads with respect to finite
dvances of the crack, each point is defined by 𝛥𝛼c and 𝑃f

𝑏 𝑙𝑐ℎ𝜎c
for each

load step, until the end of the interface. Noteworthy, while in the DCB
test under displacement control the crack propagation is stable, it is
unstable under load control, as the failure load value decreases for
subsequent crack advances, especially the failure load for the first crack
advance is the highest failure load of all crack advances.

5.2. Solution obtained by the PMTE-SC

The procedure developed in this section is similar to that presented
in Section 4.2. An important difference is that the potential energy
variation of the system is 𝛥𝛱 = 𝛥𝑈 − 𝛥𝑊 , including the external-work
term now. Therefore, the incremental energy balance for the DCB test
under load control can be expressed as

𝛥𝑈 (𝛥𝑎) − 𝛥𝑊 (𝛥𝑎) + 𝛥𝑅(𝛥𝑎) ≤ 0, (67)

and 𝑈 (𝑎) −𝑊 (𝑎) + 𝑅(𝑎) is minimized subjected to a stress condition.

5.2.1. Energy based formulation
In view of (49)-(50) and substituting the equations of the beam

moment (18) and the stresses on the interface (17), the dimensionless
elastic energy at AB zone can be written as

𝑈̂AB(𝛼) =
𝑏 𝑙𝑐ℎ2𝑘𝑛
𝑃 2

𝑈AB(𝑎) = ∫

𝜆−𝛼

0

1
4

(

𝜕2𝜎̂(𝜉, 𝛼)
𝜕𝜉2

)2

+ (𝜎̂(𝜉, 𝛼))2 d𝜉, (68)

here the first term of the integral is associated with the deformation
f the two beams and the second term with the deformation of the
nterface. Recall that in the PMTE-SC approach, the energy expressions
re presented for a specific configuration of the DCB which has a
ebonded zone 𝛼 and a bonded zone 𝜆 − 𝛼. To calculate the elastic
nergy of the BC zone, bending moment in BC zone is obtained by (52),
iving

̂BC(𝛼) =
𝑏 𝑙𝑐ℎ2𝑘𝑛 𝑈BC(𝑎) =

𝜆
4(𝜆 − 𝜉)2d𝜉. (69)
𝑃 2 ∫𝜆−𝛼
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Fig. 14. Functions 𝛱̂(𝛼)+ 𝑅̂(𝛼) for a specific dimensionless boundary condition in load
𝑃

𝑏 𝑙𝑐ℎ𝜎c
, and 𝜇 = 8.

The energy dissipated at this abrupt formation of a new crack and
he total dissipated energy including the formation of the new crack on
he interface are the same as under displacement control in (54).

To compute the external work 𝑊 (𝑎) (the negative potential energy
of the external loads) appearing in the definition of the potential energy
𝛱(𝑎) and given by 𝑊 = 2𝑃𝑢(𝑃 ), the load applied at the end of the
beams 𝑃 , and the displacement produced by these loads at the same
point 𝑢(𝑃 ), are needed. To obtain this displacement, the procedure rep-
resented in Fig. 3 and explained in (30) is used, substituting adequately
(17) in each definition of 𝑤(𝑥). Therefore 𝑊 (𝑎) can be expressed as

𝑊 (𝑎) = 2𝑃𝑢(𝑃 ) = 𝑃 2

𝑏 𝑙𝑐ℎ2𝑘𝑛

(

2𝜎̂(𝜆 − 𝛼, 𝛼) + 2𝛼
𝜕𝜎̂(𝜉, 𝛼)
𝜕𝜉

|

|

|

|𝜆−𝛼
+ 8

3
𝛼3

)

,

ith 𝑊̂ (𝛼) =
𝑏 𝑙𝑐ℎ2𝑘𝑛
𝑃 2

𝑊 (𝑎).
(70)

Note that 𝑊 (𝑎) = 2𝑈 (𝑎). This allows us to obtain a simpler expres-
sion of the total energy function to be minimized

𝑈 (𝑎) −𝑊 (𝑎) + 𝑅(𝑎) = 𝑃 2

𝑏 𝑙𝑐ℎ2𝑘𝑛

(

𝑈̂AB(𝛼) + 𝑈̂BC(𝛼) − 𝑊̂ (𝛼)
)

+ 𝑏 𝑙𝑐ℎ𝐺Ic𝛼

= 𝑏 𝑙𝑐ℎ𝐺Ic

(

𝑃 2

𝑏2 𝑙2𝑐ℎ𝜇 𝜎
2
c

(

𝑈̂AB(𝛼)

+𝑈̂BC(𝛼) − 𝑊̂ (𝛼)
)

+ 𝛼

)

= 𝑏 𝑙𝑐ℎ𝐺Ic

(

− 𝑃 2

2 𝑏2 𝑙2𝑐ℎ𝜇 𝜎
2
c
𝑊̂ (𝛼) + 𝛼

)

.

(71)

The dimensionless form of this function writes as

− 𝑈̂ (𝛼) + 𝑅̂(𝛼) = (−𝑈 (𝑎) + 𝑅(𝑎)) 1
𝑏 𝑙𝑐ℎ𝐺Ic

=

(

− 𝑃 2

2 𝑏2 𝑙2𝑐ℎ𝜇 𝜎
2
c
𝑊̂ (𝛼) + 𝛼

)

.

(72)

The curves plotted in Fig. 14 are obtained by applying (72) using
the parameters defined in Table 2 for different imposed loads at the
ends of the beams and 𝜇 = 8. This figure shows that the different
curves provided by the energy balance are concave and 𝛱̂(𝛼) + 𝑅̂(𝛼) =
−𝑈̂ (𝛼) + 𝑅̂(𝛼) → −∞ for 𝛼 → ∞. Thus, the global minimum of the
total energy will coincide with its value for the largest possible value
of 𝛼, i.e. −𝑈̂ (𝜆) + 𝑅̂(𝜆), which corresponds to the total fracture of
the specimen. However, the interface failure is only possible in zones
where the stresses are high enough to satisfy the stress criterion. A
12

l

Fig. 15. Total energy function 𝛱̂(𝛼) + 𝑅̂(𝛼) for a specific dimensionless boundary
condition in load 𝑃

𝑏 𝑙𝑐ℎ𝜎c
. The dashed part of a curve represents the interface region

of length 𝛼 that fulfils the stress criterion.

consequence of the minimization of the total energy function, restricted
only to the interface points subjected to sufficiently high stresses, is the
prediction of crack onset as associated to a possible tunnelling through
the total energy barrier for some load values, cf. [23]. See Fig. 14,
where such situations are graphically illustrated by the curves for the
lowest applied loads (represented by the blue and yellow lines). Such
tunnelling effect is only allowed if all the interface points in the zone
from 𝛼 = 0 to the intersection of the horizontal line with the curve of
−𝑈̂ (𝛼) + 𝑅̂(𝛼) verify the stress criterion. Note that, such tunnelling is
possible because the energy condition −𝛥𝑈 (𝑎) + 𝛥𝑅(𝑎) ≤ 0 is fulfilled.
Nevertheless, in the case of the highest applied load (represented by
the green line) the energy balance is fulfilled for any 𝛼, thus the size
of the new crack segment would be given only by the stress criterion.
In general, when the applied load increases, the zone needed to satisfy
the stress criterion for tunnelling decreases, making easier the fracture
onset.

5.2.2. Application of the PMTE-SC to a specific case and comparison
between methods

To explain the PMTE-SC procedure for this DCB test, Fig. 15 shows
the function 𝛱̂(𝛼) + 𝑅̂(𝛼) = −𝑈̂ (𝛼) + 𝑅̂(𝛼), for the geometrical and

echanical characteristics described in Table 2, 𝜇 = 8 and 𝛼0 = 0.
Similarly as in the DCB under displacement control, eleven different

𝑃
𝑏 𝑙𝑐ℎ𝜎c

values are used, ranging from 0.5 to 1.47, in intervals of 0.097.

he ratio 𝑃
𝑏 𝑙𝑐ℎ𝜎c

represents the load imposed at the end of beams. For

increasing values of 𝑃
𝑏 𝑙𝑐ℎ𝜎c

, the initial values of the total energy, for
𝛼 = 0, and also its maxima decrease. The zone of possible interface
fracture is given by undamaged interface points satisfying the stress
criterion (65). Thus, tunnelling the total energy barrier is only possible
for a given 𝛼 verifying 𝛱̂(𝛼) + 𝑅̂(𝛼) = 𝛱̂(0) + 𝑅̂(0) if all interface points
, 𝜆 − 𝛼 ≤ 𝜉 ≤ 𝜆, fulfil the stress criterion.

The interface zones that satisfies (65) are represented in Fig. 15 by
ashed lines. As expected, for increasing 𝑃

𝑏 𝑙𝑐ℎ𝜎c
the zone that fulfils

the stress criterion also increases, from the first curve, where no point
verifies the stress criterion, to the last curve, which has the largest
zone where fracture is possible. Although this zone increases with the
applied load, it can be seen that in the first six curves the interface
fracture cannot occur according to the PMTE-SC, since 𝛥𝛱̂(𝛼)+𝛥𝑅̂(𝛼) >

for the largest value of 𝛼 fulfilling the stress criterion. However, the
oad associated to the seventh curve (light blue) allows a crack onset by
unnelling through the total energy barrier because 𝛥𝛱(𝛥𝑎c)+𝛥𝑅(𝛥𝑎c) =
. It should be stressed that this configuration represents the minimum
oad applied that satisfies both stress and energy criteria. In the next



Theoretical and Applied Fracture Mechanics 119 (2022) 103274M. Muñoz-Reja et al.

e
l

i
w

s
s
i
t
v
m
p
t
l

6

F
a
a
T
i
a
f
i

t
p
d
b
u

Fig. 16. Comparison of the 𝛥𝛼c value predicted using PMTE-SC and the stress and en-
rgy criteria curves methodology. Horizontal lines represent the applied dimensionless
oads 𝑃

𝑏 𝑙𝑐ℎ𝜎c
included in Fig. 15 to make easy connections between these figures.

three curves, the applied loads allow the damage due to tunnelling
through the total energy barrier and subsequent unstable crack growth
due to an excess of energy, because 𝛥𝛱(𝛥𝑎c) + 𝛥𝑅(𝛥𝑎c) < 0. In the
last curve, for the largest load considered, only unstable crack growth
is predicted, this observation can be explained by the fact that, for
a linear elastic interface, a nonzero ERR, 𝐺 > 0, is obtained even in
configurations with no pre-crack, i.e. 𝛼0 = 0.

For a better understanding of the results obtained by the PMTE-SC
included in Fig. 15, a comparison with the CCFFM+LEBIM using the
stress and energy criteria curves methodology developed in Section 5.1
is carried out. Fig. 16 plots the curves 𝑠(𝛥𝛼) and

√

𝜇 𝑔(𝛥𝛼) for 𝜇 = 8, as
n Section 5.1. Eleven horizontal lines have been added which coincide
ith the 𝑃

𝑏 𝑙𝑐ℎ𝜎c
values and colours used in Fig. 15. The intersection

of these horizontal lines with the curve 𝑠(𝛥𝛼) is indicated by the
change from dashed to continuous lines. These dashed lines define,
for each 𝑃

𝑏 𝑙𝑐ℎ𝜎c
value, the length of the region 𝛥𝛼 that satisfies the

tress criterion. The lengths of the regions subjected to sufficiently high
tresses coincide perfectly with the end of the dashed lines in Fig. 15. It
s interesting to note, that from the seventh horizontal line (light blue)
he next horizontal lines also intercept the energy criterion curve at
alues higher than the stress criterion. This light blue point defines the
inimum load that satisfies both criteria. Noteworthy, all higher loads
roduce an excess of energy which leads to unstable crack growth at
he interface and it is represented by the dotted lines within the dashed
ines.

. Conclusions

In the present study an insight into the coupled criterion of Finite
racture Mechanics (CCFFM) is presented by analysing two alternative
pproaches: (a) the traditional method based on intersection of stress
nd energy criteria curves and (b) the novel Principle of Minimum
otal Energy subjected to a Stress Condition (PMTE-SC) introduced

n [23]. Recall that CCFFM assumes the possibility of a damage mech-
nism leading to the onset of a new finite segment of crack. There-
ore, it releases Griffith’s hypothesis assuming that crack growth is
nfinitesimal.

These two approaches to CCFFM are applied to the well-known DCB
est for isotropic materials with a thin adhesive layer, as reference
roblem. The present analysis includes a discussion of the effect of
isplacement or load control on crack growth. Analytical solutions
ased on Euler–Bernoulli’s beams bonded by a spring interface are
13

sed for both configurations. A deep study of the energies behaviour
in the DCB test under displacement and load control is presented. As
expected, stable and unstable crack growth, respectively, is predicted
for displacement and load control. Specifically, for the test under
displacement control an infinitesimal crack growth on the interface is
predicted, reverting the CCFFM predictions to those based on Griffith’s
hypothesis. In the test under load control, failure occurs in the whole
interface when the critical load is reached.

In all studied cases, both CCFFM methodologies provide identi-
cal analytical predictions for fracture, showing that the PMTE-SC is
equivalent to the classical formulation of the CCFFM. Moreover, the
analysis for DCB under load control by PMTE-SC indicates that typical
CCFFM predictions of finite crack onset are in fact associated to a
tunnelling effect of the total energy barrier, as suggested in [23].
Actually the main objective of the presented study is to analyse this
new methodology for the prediction of damage onset and propagation.
The present results open up new possibilities for PMTE-SC, as this
approach could be more versatile when implemented in FEM codes
by an incremental load stepping scheme, and it could be applied to
more complex configurations including multiple cracks initiating and
propagating under mixed mode. Noteworthy, that in fracture mixed
mode, 𝐺𝑐 does not remain constant and may change depending on the
crack advance.
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