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ABSTRACT

Energy-awareness remians the important problem in
today’s cloud computing (CC). Optimization of the
energy consumed in cloud data centers and comput-
ing servers is usually related to the scheduling prob-
lems. It is very difficult to define an optimal schedul-
ing policy without negoative influence into the system
performance and task completion time. In this work,
we define a general cloud scheduling model based on
a Stackelberg game with the workload scheduler and
energy-efficiency agent as the main players. In this
game, the aim of the scheduler is the minimization of
the makespan of the workload, which is achieved by
the employ of a genetic scheduling algorithm that maps
the workload tasks into the computational nodes. The
energy-efficiency agent selects the energy-optimization
techniques based on the idea of switchin-off of the idle
machines, in response to the scheduler decisions. The
efficiency of the proposed model has been tested using
a SCORE cloud simmulator. Obtained results show
that the proposed model performs better than static
energy-optimization strategies, achieving a fair balance
between low energy consumption and short queue times
and makespan.

I. Introduction

New paradigms, such as cloud computing, and the
ever-growing web applications and services, have im-
posed new challenges to traditional high-performance
computing (HPC) systems. In the same time, HPC in-
frastructures that provide the core foundation for the
parallel computing solutions have grown drastically in
recent years to satisfy the ever-evolving user require-
ments. Modern large-scale HPC systems are composed
of thousands of computational distributed servers. The
energy consumed by such HPC systems may be com-
pared to the energy utilized by the small towns and
large factories. Data centers account for more than
1.5% of global energy consumption [16].

Several hardware and infrastructure models have

been recently developed for the successful reduction
of the energy consumption in real-life large-scale data
centers. The most popular models and technologies in-
clude: (i) cooling and temperature management [22] [4],
(ii) memory and CPU power proportionality [19] [5],
(ii) construction of the efficient new-generation green
hard disks [1]; and new techniques in energy transporta-
tion [6]. Also the resource management and schedul-
ing models in clouds are defined with the energy opti-
mization modules. Energy utilization policies may be
based on various power related physical models, how-
ever the most popular scenario is to switch off idle
servers. Although such power-off strategy is commonly
used in small-area grids and clusters [20], in realistic
CC systems, the existing power-off models need to be
improved especially in the case of dynamical changes
in the task workloads and cloud resource infrastructure
[8].

In this work, the balance between two opposed needs
of the data-center environment is modelled by means
of a Stackelberg Game (SG). On one hand, the per-
formance side, represented by the Scheduling Manager
(end users experience), wants tasks to be processed as
fast as possible, while the efficiency side (CC provider),
represented by the Energy-Efficiency Manager, wants
the minimization of the energy consumption of the data
center.

In our SG model, the Scheduling Manager, that is
the leader of the game, processes firstly every task to
make its decision (move). Once the particular Task
is processed by the leader, then the follower, that is
the Energy-efficiency Manager, handles it to make its
move. This competition process is implemented in a
trustworthy simulation tool focused on simulating real-
istic large-scale data-center scenarios.

The paper is organized as follows. In Section II we
briefly describe the most usual and relevant strategies
for achieving energy-efficiency in CC systems. In Sec-
tion III, the shut-down decisions under consideration in
this paper are presented. In Section IV, we formally de-
fine the proposed Stackelberg Game model for the bal-
ance between energy consumption and performance in
CC systems, which is the theoretical core of this work.
The used simulation tool and the experimentation per-
formed, including the experimental environment and
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workload, as well as the results obtained are presented
in Section V. Finally, the conclusions and future work
are discussed in Section VI

II. Related work

One of the most popular method of saving the en-
ergy in the distributed computational environments is
deactivation of the idle servers, since data centers in
cloud environments usually operate at 20-30% of their
capacity [2], [21] and the workload pressure and require-
ments suffer from fluctuations, such as those derived of
day/night or weekdays/weekend patterns. Such servers
are switched into the ’sleeping’ mode in the idle periods
or simply switched off. This strategy was used as the
main energy conservation method in data center clouds
and was fundamental for the other methodologies and
models used in cloud scheduling and data and tasks
processing. We present below a very simple state-of-
the-art analysis of the main trends and achievements
in the domain of energy-awareness in the data center
clouds:

Several energy-aware scheduling policies have been
developed to raise server utilization [13], [17]. These
policies are useful to minimize the number of machines
that process workload rather than spreading the tasks
among the maximum number of available servers. This
enables the application of several energy-efficiency ap-
proaches, such as DVFS and hibernating nodes in an
idle state. However, these strategies are static and
can not easily address drastic workload pattern changes
without having a negative impact on the performance
of the CC system.

Consolidation and migration of virtual machines
(VMs) in the cloud clusters are other well explored
models of energy conservation in the cloud computa-
tional environments [23], [3]. In this work we adopt
a different strategy in order to achieve efficiency: the
modeling of the data-center environment as a Stackel-
berg Game. However, these models may be incorpo-
rated as a part of the Stackelberg Game in a future
work.

Other authors [14], [18] propose the application of
various energy-efficient techniques in cloud computing
subsystems, such as the distributed file system, and
other paradigms such as Grid Computing [9], in or-
der to improve cluster power proportionality. However,
these approaches focus usually on only one side of the
whole CC system, which makes them sub-optimal when
a complex cloud-computing operation process is under
consideration.

The major contribution of this work is a model for the
dynamic application of energy-efficiency policies based
on the Stackelberg Game model. We model the op-
posed requirements of any energy-efficient data center,
that are performance and energy efficiency, as the sides
of this game. The application of the proposed model
results on the balance between fast and reliable task
execution and low energy consumption.

III. ”Switch-off” decision policies

We assume in our model that the energy conserva-
tion policies do not have a notable negative impact on
the performance of the whole cloud network. There-
fore we define in our model a Central Energy-efficiency
Manager that decides the power-off strategy to be ap-
plied, which deactivates the servers in an idle mode. It
should be noted that Always strategy cannot be kept
active when a machine compute tasks and send/receive
data. In the case of huge workloads, where tasks and
data may leave and arrive dynamically from and to the
cloud servers, the active servers may be overloaded and
the whole task execution process can be significantly
delayed. Therefore, there is a need of the development
of the decision model which allows us to activate the
Always power-off strategy in the optimal periods. The
following shut-down decision policies have been imple-
mented in our model:

• Margin – this decision strategy activates the Always
power-off strategy only if, at least, a specified amount
of resources (servers) is ready to accept the incoming
tasks.

• Random– in this case, the Always power-off strategy
is activated randomly. This strategy is usually defined
together with the Never shut-down policy, where all
servers are kept in the active mode (it happens usually
in realistic cloud data centers) and the Always shut-
down scenario, where all idle machines are switched-off.

• Gamma – in this case, the Always shut-down strategy
is activated depending on the probability of incoming
tasks of oversubscribing the available resources. This
probability is computed by the means of the Gamma
distribution.

The utilization of the Energy-efficiency Manager in
our model does not guarantee the fair reduction of the
energy consumed by the cloud system. Therefore, we
define another component of the model, that is the
Scheduling Manager. This component allows the op-
timal schedule of tasks onto the cloud servers based on
the energy-conservation criterion. In this work, we fo-
cus on the problem of the independent tasks scheduling.
We use the genetic cloud scheduler developed in [11]
and ETC Matrix scheduling model described in [10].
The makespan constitutes the most representative pa-
rameter of the performance, and hence it becomes the
scheduling goal.

IV. Stackelberg Game model

In the model presented in this work we used the
Stackelberg Game framework for the optimization of
the balance between two main and opposed compo-
nents of the model: Scheduling Manager – Leader and
Energy-efficiency Manager –Follower.

Let us define first a 2-players non-zero symmetric
game Γn as follows:

Γn = ((N, {Si}i∈N , {Qi}i∈N ) (1)

where:

• N = {1, . . . , 2} is the set of players,



• {S1, . . . , S2} (cardSi ≥ 2; i = 1, . . . , 2 ) is the set of
strategies for them

• {H1, . . . ,Hn};Hi : S1 × · · · × S2 → R;∀i=1,...,n is the
set of payoff functions for each player players.

Each player in this game may make its own deci-
sions. A single decision is one from the set of possible
actions. In this game, the strategy is defined by the set
of actions that the player considers beneficial for him.
Both pure strategies and mixed strategies are consid-
ered in our model, see [24]. A pure strategy specifies
the most beneficial actions for a given situation, thus,
pure strategies are deterministic. Mixed strategies ex-
tend pure strategies by the assignation of a probability
to each pure strategy. The usage of a mixed strategy
enables a player to randomly select a single pure strat-
egy from the set of available strategies. Let us denote
by si the Pure strategy of the player i and the set of
all pure strategies specified for player i is denoted by
Si. The mixed strategy of the player i is denoted
by σi ∈ Si ⊂ ∆Si and may be defined as follows:

σi = {σi(si1), σi(si2), ..., σi(sim)}, (2)

where σi(si) is the probability that the player i choses
the pure strategy si.

Randomization in the game is provided by the prob-
ability distribution σi(si).

The result of following a given strategy is the ex-
pected payoff of the player i in the 2-players game.
Let this pay-off function be defined as:

Hi(si, σ−i) :=
∑

s−i∈S−i
σ−i(s−i)Hi(si, s−i) (3)

It is assumed in that game, that player i plays the pure
strategy si ∈ Si and his opponents plays the mixed
strategy σ−i ∈ ∆S−i.

The expected payoff of the player i when playing
the mixed strategy σi ∈ ∆Si and when his enemy plays
the mixed strategy σ−i ∈ ∆S−i is defined as:

Hi(σi, σ−i) =
∑
si∈Si

σi(si)Hi(si, σ−i) (4)

=
∑
si∈Si

(
∑

s−i∈S−i

σi(si)σ−i(s−i)Hi(si, s−i)) (5)

In Stakelberg Games (SG), one player (the leader)
may play first, and the rest of the players (the followers)
are obliged to follow the leader and make their decisions
after him [24]. The main objective of the game for each
player is to maximize his expected payoff by finding and
playing the optimal strategy.

During the game proposed in this paper the leader
and the follower evolve their strategies alternately.
Thus, each player reacts to the decisions made by the
opponent. We assumed only two players in the game,
therefore i = 1 or 2 and −i = 1 or 2.

In our model, we define independently the utility
functions of both players. It is modeled as a non-zero
sum game and allow us to generate a separate game
model for each player.
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Fig. 1: Stackelberg Game workflow, scheduling workflow,
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TABLE I: Players in the proposed game, their roles in the

cloud and in the game model

Player 1 Player 2
Scheduling Unit Energy-Efficiency Manager
Choses one of Choses one of

several schedules several energy policies
Leader Follower

A. Leader Payoff and decisions

The leader in the proposed model is the Sched-
uler component, which perform the scheduling logic
and dispatches tasks among the Computing Nodes.
These Computing Nodes are grouped into Computa-
tional Units, denoted as CU1, CU2, ...CUP . The Sched-
uler is responsible for processing incoming Jobs, which
are composed of a set of Tasks, and for deploying these
Tasks on the available Computing Nodes of a given
Computational Unit.

Therefore there are P possible decisions. The strat-
egy vector σi(si) represents the probability for a Job to
be assigned to the CUp, for p = 1, 2, ..., P . The si may
be taken from the set 1, 2, ..., P .

The expected payoff of the Scheduler in the Stackel-
berg Game depends on the completion time of all the
Tasks in the scheduled Job, thus, the makespan of that
Job. In order to minimize the makespan, we employed
a Monolithic Scheduler [15] which makes scheduling de-
cisions based on the Expected Time to Compute (ETC)
matrix, defined as follows:

ETC = [ETC[j][i]]
i=1,...,mp

j=1,...,n (6)

where
ETC[j][i] = wlj/cc

p
i (7)

In this equation, ccpi denotes the computational
capacity of the i-th Computing Node (CN) in the
pth Computing Unit (CU) in Giga Flops per Second
(GFLOPS) and wlj represents the workload of j-th



task in Flops (FLO); n and mp denote the number
of tasks and number of Computing Nodes in the pth
Computing Unit respectively, see [12]. The main goal
of the scheduling strategy is the minimization of the
Job makespan:

Cmax(wl1, ..., wln, cc
p
1, ..., cc

p
mp ,mp, n, p) = (8)

= min
S∈Schedules

{
max

j∈Tasks
Cj

}
, (9)

where Cj is the completion time of the j-th task. Tasks
represents the set of tasks in the Job, and Schedules is
the set of all possible schedules that can be generated
for the Tasks of that Job. The shortest makespan is
achieved by the means of the Expected Time to Com-
pute (ETC) matrix. In this matrix, the cell correspond-
ing to the ith row and the jth column shows the com-
pletion time of the jth task if deployed on the ith CN.
The lower values are to be considered, since the higher
the value, the longer the makespan of the Job. Once the
optimal schedule is computed, the obtained makespan
value for that Job is taken as the utility function value
for the game leader:

H1(σ1, σ2)
=

∑
p=1,...,P

∑
l=1,..,L

σp
1σ

l
2Cmax(wl1, ..., wln, cc

p
1, ..., cc

p
mp ,mp, n, p)

(10)

= Cmax = min
S∈Schedules

{
max

j∈Tasks
Cj

}
, (11)

where L indicates the number of decisions that may
be taken by the game follower. The value of the
makespan depends on the computational power of the
CNs. These parameters may be modified by the second
player. Therefore, we may rewrite the eq. (5) in the
form of:

H1(σ1, σ2)
=

∑
p=1,...,P

∑
l=1,..,L

σp
1σ

l
2Cmax(wl1, ..., wln, cc

p
1(l), ..., ccpmp(l),mp(l), n, p(l))

(12)
Thus, each player decisions infers the decision of the
other player.

B. Follower Payoff and decisions

The follower in the game is the Central Energy-
efficiency Manager, which applies energy policies to all
the CNs in the data center. Those policies may change
the availability of the CNs, which directly impact on
their computational capacity. Therefore, the follower
may decide about the ccpi (l) and the mp(l). Those deci-
sions will influence not only the follower’s utility value,
but also the behavior of the leader. The payoff for the
follower player is the energy consumed by the CC sys-
tem for the execution of the scheduled computed by the
Scheduler and can be defined by the following equation:

H2(σ1, σ2)
=

∑
i=1,...,m

∑
j=1,..,n

σj
1σ

i
2E(wl1, ..., wln, cc

p
1, ..., cc

p
mp ,mp, n, p, schedule)

(13)
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The above equation shows that the payoff of the fol-
lower player depends on both the workload of the Job
under consideration, and the schedule resulting of the
leader player move. This means that every decision
made by the leader player influences the next decision
of the follower player. This scenario is similar to a
chess play. Thus, each move of a given player changes
the game environment and enforces the other player to
make a decision.

In order to calculate the energy consumed by the
CC during computing the given tasks according the the
chosen schedule, the following values were introduced:

• Etotal - the total energy spent by particular Job

• tiidle - c;

• tibusy - the time that the i-th CN spends on computing
tasks;

• P i
idle - the power a CN requires to operate in a idle state;

• P i
busy - the power a CN requires to compute tasks

Therefore, we may express the time that the i-th CN
spends on computing tasks by calculating:

tibusy = maxj∈Tasks scheduled for CNi
Cj (14)

and the time that the i-th CN spends on computing
tasks as follows:

tiidle = Cmax − tibusy (15)

The total energy consumption may be expressed in



the following way:

Etotal =

m∑
i=1

Cmax∫
0

PowCNi
(t)dt =

m∑
i=1

(P i
idle ∗ tiidle + P i

busy ∗ tibusy

(16)

These utility functions model the competition be-
tween two strategies that are usually contradictory:
that of the Scheduler, which tries to compute tasks
as fast as possible and that of the Central Energy-
efficiency Manager, which tries to apply the more opti-
mal power states to the CNs in order to maximize the
energy efficiency.

V. Experimental analysis of the Stackelberg
Game model

A. Simulation tool

The analysis of the described energy-efficiency strate-
gies in real-life large-scale data centers is not feasible
in such an immature stage. To overcome this lim-
itation, in this work we chose a simulation tool de-
signed to trustfully simulate energy-aware large-scale
data centers called SCORE [7], which provides us with
the means to reproduce realistic heterogeneous work-
loads and to easily implement various energy-efficiency
policies.

In this paper, we extended the SCORE simula-
tion tool in order to implement the Stackelberg Game
process, which dynamically switches between energy-
efficiency policies. The resulting architecture is shown
in Figure 3.
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Fig. 3: Simulation tool architecture

B. Simple example for Always and Never power-off
policies in SCORE simulator

In this experiment, we aim to empirically show a sim-
ple strategy where a dynamic change of Power-off pol-
icy could represent a significant improvement of energy-
efficiency.

We used the SCORE simulator [7] to perform a sim-
ple experiment that simulates seven days of operation
time of a data center composed of 1,000 heterogeneous
machines of 4 CPU cores and 8GB RAM and one cen-
tral monolithic scheduler. In this experiment, we chose

an heterogeneous day-night patterned mixed workload.
This workload uses 30% of the data center compu-
tational resources on average, with peak loads that
achieve 60% of utilization. This heterogeneous work-
load is composed of the following kind of jobs:

• Batch jobs perform a given amount of computational
work and then are completed. Thus, this kind of job has
a given start and end. In this experiment, Batch jobs
are composed of 50 homogeneous tasks which consume
0.3 CPU cores and 0.5 GB of memory, and last for 90
seconds on average.

• Service jobs represent long-running jobs which serve
end users. Due to this, this kind of job has an undeter-
mined finish time. In this experiment, Service jobs are
composed of 9 homogeneous tasks which consume 0.5
CPU cores and 1.2 GB of memory, and last for 2,000
seconds on average.

The Stackelberg process described previously is ap-
plied for every scheduling decision in the system. In
this experiment, the Shut-down decision policy used to
switch the Power-off policy is made based on cluster
available resources. Every time that the idle resources
exceed a given threshold, the Always power-off policy is
applied. On the other hand, when the amount of avail-
able resources is lower than that threshold, the Never
power-off policy is applied. The results of the applica-
tion of the Stackelberg game against the static energy
policies are presented in Tables II and III.

This experimentation shows that the Stackelberg ap-
proach applies almost no negative impact in terms of
queue times compared to the Always strategy at the
cost of approximately 9% of more energy consumption.
On the other hand, the Always strategy achieves an
approximately 10% lower final average makespan time
while achieving approximately 20% higher queue times.

C. Extended example in SCORE simulator

In this section, we extended the simple experimenta-
tion presented in Section V-B. In order to keep results
comparable, we reused all the configuration parame-
ters taken for the large-scale CC system shown in Sec-
tion the V-B. However, in this experiment the Cen-
tral Energy-efficiency Manager switches dynamically
between the Never and the Always power-off policies
by applying every Shut-down decision policy described
in Section III. The results obtained are shown in Table
IV and V.

In general, the Stackelberg process may apply a neg-
ative impact in terms of makespan due to that the
Power-off policy may suddenly change. This change
can impact on two consecutive scheduling processes of
a single job, which could apply a performance penalty if
there are no sufficient resources to immediately execute
the job tasks. This negative impact can be mitigated
by the scheduler when only one static Power-off policy
is applied. It should be borne in mind that only Batch
jobs would suffer from this negative impact since Ser-
vice jobs have no determined finish.

This experimentation shows that the results of the
Stackelberg approach depends directly on the Shut-



TABLE II: Energy-efficiency results for the simple Stackelberg experiment

Strategy
MWh MWh Savings # shut kWh saved Idle

consumed saved (%) downs per shut-down resources (%)
Never 58.53 0 0 0 N/A 69.94
Always 30.95 27.82 47.34 16,071 1.7314 3.52
Stackelberg 36.07 23.00 38.94 742 31.00 13.96

TABLE III: Performance results for the simple Stackelberg experiment

Strategy Workload
Queue time Queue time Scheduler Final Epoch 0

until all tasks until first task busy makespan makespan
scheduled (ms) scheduled (ms) time (h) avg. (s) avg. (s)

Never Batch 74.11 74.11 9.28 136.16 175.46
Never Service 73.72 73.72 0.66 N/A N/A
Always Batch 125.27 88.26 10.52 143.65 184.33
Always Service 126.12 88.99 0.70 N/A N/A
Stackelberg Batch 75.14 74.32 9.30 162.08 178.09
Stackelberg Service 78.31 74.40 0.66 N/A N/A

down decision policy. More conservative probabilistic
approaches, such as Gamma, achieve 26% faster queue
times than a Random approach by consuming approxi-
mately 7% more energy. On the other hand, strategies
that rely on leaving a security margin of free resources,
such as Margin, could achieve approximately 22% faster
queue times than a Random approach, and it would
only consume less than 5% more energy. It can be no-
ticed that conservative strategies such as Gamma apply
almost no stress to the hardware, performing less than
1,000 shut-downs in a week of operation time, which
represents a 10% of those performed by the Random
decision policy.

VI. SUMMARY

In this paper, we presented a method that focus
on the balance between two opposite needs of every
energy-efficient CC system: high performance through-
put and low energy consumption.

The proposed model is based on a non-zero sum
Stackelberg Game with the leader player, the Schedul-
ing Manager, which tries to minimize the makespan
with its scheduling decisions while the follower player,
the Energy-efficiency Manager, responds to the leader
player move with the application of energy-efficiency
policies that may shut-down the idle machines. These
strategies are represented by the independent utility
functions for each player. Our model enables the dy-
namic application of energy-efficiency strategies de-
pending on the current and predictable workload.

The results of our simple experimental evaluation
show that the proposed model perform better than the
application of only one energy-efficiency policy, both
in terms of energy-efficiency and performance. This
means that the Stackelberg Game model can balance
better between opposed needs (performance and energy
efficiency) and can adapt better to heterogeneous work-
loads.

It could be also observed in the experimental analy-
sis, that probabilistic decision strategies that try to pre-

dict the short-term future workload can balance better
between energy consumption and performance impact.

The presented model is just our first step towards
the development of the new scheduling and resource
allocation policies in order to optimize the energy uti-
lization in the whole cloud distributing system . The
model improvement plans include: a) exploration of
more advanced energy policies; b) introduction of mul-
tiple players in order to play several games simultane-
ously without any central energy manager; c) exami-
nation of more scheduling models, such as two-level or
shared-state models; and d) testing more complex and
dynamic scheduling strategies.
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TABLE IV: Energy-efficiency results for the extended Stackelberg experiment

Strategy
Switch MWh MWh Savings # shut kWh saved Idle
Policy consumed saved (%) downs per shut-down resources (%)
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Decision until all tasks until first task busy makespan makespan
Policy scheduled (ms) scheduled (ms) time (h) avg. (s) avg. (s)

Never Batch N/A 71.07 71.07 9.16 139.66 177.25
Never Service N/A 73.89 73.89 0.66 N/A N/A
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