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Abstract
Data centres have become the backbone of large Cloud services and 
applica-tions, providing virtually unlimited elastic and scalable computational 
and storage resources. The search for the efficiency and optimisation of resources 
is one of the current key aspects for large Cloud Service Providers and is 
becoming more and more challenging, since new computing paradigms such 
as Internet of Things, Cyber-Physical Systems and Edge Computing are 
spreading. One of the key aspects to achieve efficiency in data centres consists of 
the discovery and proper analysis of the data-centre behaviour. In this paper, we 
present a model to automatically retrieve execution workflows of existing data-
centre logs by employing process mining tech-niques. The discovered processes 
are characterised and analysed according to the understandability and 
complexity in terms of execution efficiency of data-centre jobs. We finally 
validate and demonstrate the usability of the proposal by applying the model in a 
real scenario, that is, the Google Cluster traces.

Keywords Cloud computing · Business process management · Scheduling · Process 
mining · Process discovery · High performance computing

 * Damián Fernández-Cerero
damiancerero@us.es

Ángel Jesús Varela-Vaca 
ajvarela@us.es

Alejandro Fernández-Montes
afdez@us.es

María Teresa Gómez-López
maytegomez@us.es

José Antonio Alvárez-Bermejo
joseantonio@ual.es

1 Department of Computer Languages and Systems, University of Seville, 41012 Seville, Seville, 
Spain

2 Department of Computer Science, University of Almería, 04120 Almería, Spain

http://orcid.org/0000-0002-9403-111X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02996-2&domain=pdf


1 3

1 Introduction

Data centres are the backbone of large Cloud services and applications, providing 
virtually unlimited elastic and scalable computational and storage resources. Such 
environments are constantly evolving, from traditional monolithic systems tightly 
coupled to the MapReduce workload under execution [10], to highly flexible infra-
structures which employ virtualisation and containerisation [13] to improve resource 
efficiency in Cloud-Computing scenarios.

Modern resource-managing and workload-scheduling models enable data-cen-
tre operators to share computing resources among heterogeneous applications and 
frameworks, such as MapReduce applications, frameworks for real-time analytics 
and on-demand Virtual Machines for Platform as a Service (PaaS) business models.

This search for the efficiency and optimisation of resources is one of the current 
key aspects for large Cloud Service Providers. Several strategies have been proposed 
to achieve this goal, including: (i)resource orchestration and managing models [21, 
24, 26, 37, 48, 53]; (ii) scheduling algorithms and consolidation models [5, 15, 16, 
18, 29]; and (iii) workload migration models [41, 58, 59].

The improvement in resource efficiency in data centres is becoming more and 
more challenging because centralised data centres present numerous limitations 
when new computing paradigms, such as Internet of Things [23], Edge Computing 
[50], cyber-physical systems [3] and Fog Computing [4], are under consideration.

The aforementioned models have something in common: to optimise their execu-
tion, it is necessary a deep knowledge about the system behaviour, actors and work-
loads involved. Such knowledge has been traditionally gathered through the human 
experience of data-centre operators and detailed log extraction and analysis [43], 
such as those presented in Fig. 1. Human-based analysis may lack objectivity and be 
error-prone.

Fig. 1  Detailed log analysis examples [7, 43]. It can be noticed that these analyses are complex and hard 
to apply directly to a decision-making system



In our approach, we propose to take a set of existing data-centre logs and to auto-
matically retrieve execution workflows in order to infer how the data-centre operation 
evolves. The adoption of the proposed model based on a real-time process mining 
engine employing new process metrics which may unveil useful information about the 
complexity and behaviour of the workload could be directly applied to develop new 
scheduling, workload consolidation, container migration and resource and energy 
efficiency algorithms. Compared to raw log analysis, process mining models provide 
richer information which may be though to discover through human analysis, ena-
bling more accurate decisions. In addition, such decisions require low computational 
resources, allowing fast operations in critical infrastructures, such as data centres. A 
data-centre log represents a set of executions (i.e. jobs and tasks) performed in the past 
sorted by time. Process mining [55] is a well-recognised discipline which utilises vari-
ous techniques to infer processes from execution traces [2]. The application of process 
mining in data-centre contexts facilitates the extraction of the evolution of the data-cen-
tre operation and resource planning. Nonetheless, the results provided by process min-
ing techniques (i.e. workflows) are not always easy to understand, and even to interpret 
depending on the case. Discovered processes might be unleashed into “spaghetti-like” 
models or “lasagna-like” processes [54, 57] derived from the diversity of the possible 
order execution of the tasks and its variety.

Spaghetti-like processes, which are related to unstructured processes, tend to appear 
in contexts where the tasks executed in each moment can vary according to the com-
plex decision behind, as occurs in a data-centre scenarios. Lasagna processes represent 
more structured processes. Figure 2 shows the result of the direct application of process 
mining techniques to a piece of the Google data-centre log [45]. We can observe cer-
tain well-structured zones of the process (cf., right hand); nonetheless, the vast majority 
of processes present a spaghetti-like scheme. Therefore, the understandability and com-
plexity of the process make the analysis almost unbearable for human beings.

Usually, processes are influenced by certain factors, including: i) time events and 
ii) social events, such as the Super Bowl. It is crucial to understand and identify these
factors for an optimal interpretation of the results of the mined processes. Therefore,
depending on the perspective, the characterisation and analysis of the mined pro-
cess can help to determine improvements such as detecting bottlenecks and misused
resources. Nevertheless, the simplification of lasagna and spaghetti processes is an
open problem in the process mining domain [8, 51].

In this first approach, we pursue the transformation of data-centre execution logs 
into event log traces to characterise the process and to determine the understandability 
and complexity of data-centre jobs in terms of execution efficiency. Derived from this 
context and the problems to be addressed, the aims of the paper are:

Fig. 2  Spaghetti process. This kind of process provides little usefulness to decision making



– OBJ1 Define a framework which may establish the cornerstone in the applica-
tion of process mining in the field of data centres and Cloud and Edge Comput-
ing.

– OBJ2 Study the usefulness and the applicability of process mining in the
enhancement of data-centre performance by analysing the processes generated
from data-centre execution logs.

– OBJ3 Analyse the behaviour and homogeneity of the extracted processes by
means of statistical tests.

– OBJ4 Validate the usability of the proposal by applying our approach to a real
scenario, that is, the Google Cluster traces presented in [45].

The rest of the paper is organised as follows: The related work is discussed in 
Sect. 2. Section 3 briefly presents the proposed framework. In Sect. 4, we discuss 
the raw input data utilised for the use cases. The Log Extractor and XES Generation 
cases and tools are presented in Sect. 5. In Sect. 6, we briefly illustrate the process 
mining and discovery models and how they are employed in this work. The results 
obtained in our evaluation are presented and analysed in Sect. 7. Finally, the paper is 
summarised, and the conclusions and future work are presented in Sect. 8.

2  Related work

Data-centre logs have been the source of information to gather knowledge on 
many aspects of data-centre operation, such as the behaviour of the scheduling and 
resource orchestration frameworks, workload classification and characterisation, 
detection of vulnerabilities, performance issues and anomalies.

Many authors [11, 12, 28, 35, 49] have focused on the analysis of Google data-
centre traces in order to properly characterise the workloads present in Cloud-Com-
puting environments. In [28], Liu et al. study: (a) the management of machines, per-
forming a deep analysis on the frequency and pattern of machine maintenance and 
(b) the cluster resource utilisation by performing an analysis on the life cycle of jobs 
and tasks. In [49], Sebastio et al. study the machine dynamic life cycle distributions 
to propose a data-driven model to enable the estimation of the expected number of 
available machines at any instant of time. Di et al. [11] analyse the resource utili-
sation per application and classify applications via a K-means clustering algorithm 
to show the underlying Pareto principle. Mishra et  al. [35] propose a fine-grained 
algorithm to classify the workload present in the traces and its application to the 
Google Cloud Backend. In [12], Di et al. perform a detailed statistical analysis on 
job submission, resource request and machine utilisation patterns in order to com-
pare Cloud-Computing workloads to those present in grid computing.

In addition, other authors [1, 14, 44] analyse Google traces with different 
objectives. In [14], El-Sayed et  al. analyse traces to precisely predict patterns 
of job termination and failures and provide strategies to mitigate such failures 
through task-cloning policies. Abdul-Raman et  al. [1] analyse the topology and 
resource request patterns of the workload to model the user behaviour through 
sessions. In [44], Reiss et  al. analyse the traces to show that heterogeneity is 



present at all levels, which imposes challenges in the development of effective 
cloud-based resource schedulers. Moreover, authors have been working with 
data-centre traces from various providers in order to apply scheduling optimisa-
tion strategies to improve performance and energy efficiency [17].

Process mining has been applied in several fields to properly discover the pro-
cesses followed by users or systems, by analysing event logs [25]. Depending on 
the field, different perspectives could be used to discover the processes, such as 
the activities executed, people involved, resources used and location where the 
actions occur. The versatility of process mining techniques has brought about 
their application to several scenarios [9], being health care [30, 40, 46] and IT 
[31, 38, 47] the most active areas. To the best of our knowledge, process mining 
has not been used before in data-centre contexts, whose characteristics make nec-
essary certain types of specific adaptations.

Process discovery groups a set of algorithms that facilitate the creation of a 
workflow process model that represents the traces observed [32]. Typically, the 
process discovery has been based on the tasks analysis, but during last years, 
other resources as the persons who execute them or even its location have been 
included [42].

Process mining is a relevant topic very well received by the enterprises, bring-
ing about the evolution of the research solution tools (e.g. ProM [56]) towards 
commercial solutions (e.g. Disco™and Celonis™); however, how to create the 
logs to be used in the tools is still a challenge.

3  Evaluation approach

Our approach aims to characterise the workflows of data centres from their raw 
execution logs. We propose the framework depicted in Fig.  3 to achieve this 
objective. The definition of the framework facilitates the applications of a meth-
odology that includes each step to discover business processes from data-centre 
behaviour, including the actors and the workloads involved. Derived from the 
complexity of these systems, it is necessary to provide a mechanism to adjust the 
process discovery for a better analysis.

Fig. 3  Framework overview. This framework extracts and adjusts information from raw data-centre logs 
to build rich process models, which indicators and metrics may be used to make data-centre operation 
decisions



First of all, the framework begins from a data-centre raw execution log (cf., Exe-
cution Raw Log in Fig. 3). We defined the most relevant terms used in process min-
ing area to define Log, Event Log, Event and Trace.

Definition 1 (Execution Raw Log) Let RL be a raw log which consists of a multi-
set of records, {r1, r2,… , rm}, in which ri is a tuple of attributes ⟨a1 ∶ t1, a2 ∶ t2,..., 
an ∶ tn⟩ where an attribute is identified by a name ( ai ) and described by a data type
( ti).

An event log for a process mining purposes is formed of multiset of traces:

Definition 2 (Event Log) Let L be an event log L = [�1,… , �m] as a multiset of 
traces �i.

A trace is composed of a tuple with an identifier and a sequence of events that 
occurred at a particular time t:

Definition 3 (Trace) Let � be a trace � = ⟨case_id, E⟩ which consists of a case_id
that identifies the case, and a sequence of events E = {�1,… , �n}, �i occurring at a 
time index i relative to the other events in E.

An event occurrence is a triple with an identifier of an activity that occurred at a 
particular time stamp which may have additional information:

Definition 4 (Event occurrence) Let � be an event occurrence � = ⟨activity_id, time 
stamps, others⟩ which is specified by the identity of an activity which produces it and
the related time stamps. � may store more information, such as states, labels and 
resources.

Data-centre logs are usually huge in size, which makes them hard to process in 
many cases. Due to this, in this work, we perform two analyses which vary in the 
size of the logs: the first one takes the whole log file as input, whilst in the second 
analysis, we perform a random sampling to reduce the complexity of the log files. 
In addition, this second analysis enables us to have enough samples to perform par-
titionability and statistical tests to check the homogeneity of the internal processes 
over time.

Therefore, the definition of transformations (cf., Log Extractor in Fig.  3) aims 
to extract an event log from data-centre raw execution logs. Depending on the pur-
pose of the analysis, the extraction should define which pieces of data in the raw 
log should be considered as case_id, activity_id, and event, respectively. The log 
extraction consists of the specification of a sequence of sentences, that are, recipes, 
on how to extract certain information from a raw log and how to align it to the defi-
nitions of case_id, activity_id and event occurrences.

Once the event logs have been obtained, these logs are introduced in a process 
discovery tool (cf., Process Mining–Process Discovery in Fig.  3) which retrieves 



the workflows. Subsequently, these workflows are analysed (cf., Process Analysis 
in Fig. 3), and as the result of such analysis, the process discovery model and/or log 
extraction may be adjusted (cf., Adjust discovery and Adjust extraction in Fig. 3). 
On one hand, the aforementioned adjustments may include deletion of irrelevant 
cases or activities. On the other hand, the discovered workflows can be enriched (cf., 
Enrich models in Fig. 3) with extra information to carry out other type of analysis.

4  Experiment data: execution raw log

In this work, we used the data-centre raw execution log presented in [45], in order to 
illustrate our approach in a real scenario. These raw logs represent 29 days of opera-
tion time in a Google cluster composed of approximately 12,500 servers. The trace 
includes hundreds of thousands of jobs, which are submitted by final users. In this 
context, a final user may be a data-centre operator, a final client or even an auto-scal-
ing software. Each job is composed of one to tens of thousands of tasks, which are 
the minimum workload unit to be deployed on an available server. These tasks are 
not gang scheduled [36], but are often processed in parallel. The information is pro-
vided in the form of timed events which may be grouped in the following categories:

– Machine events, such as a fail or addition of machines, and the attributes related
to those machines. Figure 4 shows an example of machine events.

– Job events, which represent the workload processing in the cluster. A job,
which is composed of tasks, may be submitted, scheduled, evicted, or killed, for
instance. Figure 5 shows an example of job events.

– Task events, which represent the minimum atomic workload to be executed by
a server and their requirements, such as CPU, RAM and architecture. Both jobs
and tasks have the same life cycle. Figure 6 shows an example of tasks events.

Fig. 4  Machine events log raw data example. This log consists on the following parameters: time, 
machine ID, event type, platform ID, machine CPU and memory



The raw 29-day log of 42GB is divided into hundreds of comma-separated value 
files, of 50 MB each. Task and job events trace files represent the vast majority of 
files. In this work, we consider five random files among those task events to study 
the behaviour and background processes of the data-centre operation and schedul-
ing. Furthermore, we gather four random samples of each log file to analyse the het-
erogeneity for several general, quality and partitionability metrics among samples.

5  Log extractor: XES generator

In general, we consider a data-centre raw execution log as input, and as output, a 
set of traces such as those shown in Fig. 7. The raw log files described in the pre-
vious section may be presented in a unstructured (NoSQL) or structured (SQL) 
fashion. Most of the current process mining tools accept XES [22] and MXML 

Fig. 5  Job events log raw data example. This log contains the following information: time, missing infor-
mation (if present), job ID, event type, user ID, scheduling class, job name and logical job name

Fig. 6  Task events log raw data example. This log is composed of the following attributes: time, missing 
information (if present), job ID, event type, task index, machine ID where the task event occurred, event 
type (in this work we only consider events representing task submission), user ID, scheduling class, pri-
ority, CPU, memory, and disk required, and whether the even happened in different machines



formats. We are able to define a set of recipes by using the ELE transformation 
language [52], to convert raw execution logs onto XES formatted files. In Fig. 7, 
two different extractions are depicted as the result of the obtention of various 
event logs (i.e., XES) for two different analysis purposes.

In Example  5.1, we provide a piece of code to illustrate the resulting log 
extraction, containing the information relative to machine_id, job_id and start_
date in XES format.

Example 5.1: Generated event log in XES format

<log xes.version="1.0"
xes.features="nested-attributes"
openxes.version="1.0RC7">
<trace>

<string key="concept:name" value="1436548633"/>
<event>

<string key="concept:name" value="6318248632"/>
<date key="time:timestamp"

value="2019-05-27T09:56:52.186+02:000"/>
</event>
[...]

</trace>
[...]

</log>

All the resources, thus, raw logs (i.e., json format), the XES files and the pro-
cesses discovered that are employed in this work are freely available at http://
www.idea.us.es/thejo urnal ofsup ercom putin g/.

Execution
Raw Logs 

Extraction
recipe

Event Log (XES)

Event Log (XES)

Fig. 7  Log extraction overview. The XES files are constructed from the execution raw logs following the 
recipes that are described in the following sections

http://www.idea.us.es/thejournalofsupercomputing/
http://www.idea.us.es/thejournalofsupercomputing/


5.1  Cases of log extraction

In this work, we propose three cases of log extraction to illustrate our approach:

– Case Simple, which analyses the processes of the users according to their
execution of jobs. This case is an illustrative case used as a minimum-com-
plexity comparison for the rest of cases.

– Case A, which studies the processes related to the machines in terms of their
execution of jobs.

– Case B, which evaluates the processes according to the deployment of tasks
onto machines.

For the complex cases (cases A and B), we performed a two-step analysis:

– Analysis without file sampling, where we process the entire log files. As a
result, we compare five individuals (i.e., identified by 150, 276, 311, 402 and
478) composed of a high number of events, as shown in Tables 2 and 3.

– Analysis with file sampling, where we gather four random samples of ∼ 5000
events from each log file. As a result, we compare five groups (i.e., identified
by 150, 276, 311, 402 and 478) composed of four samples each, which are,
in turn, composed of a lower number of events, as shown in Tables 2 and 3
(e.g. id. 150 sample 1,2,3,4). This deep analysis enables us to perform deep
sequentiality and homogeneity tests between samples.

In the Case Simple, we show the second step alone (Analysis with file sampling, 
as shown in Table  1), since the results obtained with the first analysis are too 
simple and self-contained in the second analysis.

5.1.1  Case simple: process of the users according to their execution of jobs

The workload executed in a data centre is composed of jobs, which are submit-
ted by users. These users can be real data-centre operators, final users and even 
automated processes, like auto-scaling frameworks. The event log employed in 
this case is structured as follows:

– case_id: user_id.
– activity_id: job_id.
– timestamp: start_date.

The XES logs extracted following this case for the samples of experiment are 
described in Table 1.



5.1.2  Case A: process of machines according to their execution of jobs

During the data-centre operation, the incoming jobs must be distributed among sev-
eral machines. In this test case, the processes can help to understand how machines 
are used according to the jobs deployed on them. Hence, the resulting event log has 
the next form:

– case_id: machine_id.
– activity_id: job_id.
– timestamp: start_date.

The start date of a job can be determined by the first task submitted within that par-
ticular job. To do this, the tasks are grouped by job_id. These grouped tasks are then 
ordered by start date, and finally, the first one is chosen. The XES logs extracted 

Table 1  Sample details for the 
Analysis with file sampling of 
the Case Simple 

It should be borne in mind that in this case, we only perform the 
deep analysis with log-file sampling

Id Sample Traces Events Size (MB)

150
1 69 300 1.3
2 98 291 1.3
3 94 422 1.3
4 81 364 1.3

276
1 79 219 1.3
2 40 121 1.3
3 69 202 1.3
4 69 233 1.3

311
1 61 123 1.3
2 75 159 1.3
3 60 140 1.3
4 59 279 1.3

402
1 34 68 1.3
2 30 60 1.3
3 27 54 1.3
4 53 86 1.3

478
1 37 110 1.3
2 30 71 1.3
3 58 138 1.3
4 50 186 1.3



in this case for the samples of experiment data given in Sect.  4 are described in 
Table 2.

5.1.3  Case B: process of the deployment of tasks onto machines

During the data-centre operation time, a set of tasks, which belong to jobs, are 
deployed. As a result, the tasks are distributed by the machines in the data centre 
according to the scheduling policies. In this test case, the processes may help to 
understand how tasks are executed depending on the chosen machines. Hence, the 
resulting event log has the next form:

– case_id: task_id.

Table 2  Id and sample details 
for the analysis of the Case A 

It can be noticed that the values for the whole files used in the first 
analysis without file log sampling (bold) are higher than those pro-
vided by the samples employed in the second analysis with file log 
sampling

Id Sample Traces Events Size (MB)

150 8437 21510 3.6
1 3526 4513 1.3
2 3533 4542 1.3
3 3166 4291 1.3
4 3276 4399 1.3

276 11678 74498 11.4
1 3813 4778 1.3
2 3880 4855 1.3
3 3956 4823 1.3
4 4156 4933 1.3

311 11126 65326 10.0
1 3948 4886 1.3
2 3286 4202 1.3
3 3827 4761 1.3
4 3761 4825 1.3

402 11708 79850 12.1
1 2253 3749 1.3
2 2325 3627 1.3
3 1929 3265 1.3
4 3579 4502 1.3

478 11660 59646 9.3
1 4119 4785 1.3
2 3665 4216 1.3
3 3819 4781 1.3
4 3938 4885 1.3



– activity_id: machine_id.
– timestamp: start_date.

In this case, the start date of a task_id is well determined in the raw execution log. 
Hence, the log extraction has only to align this date with the time stamp. The resulting 
XES logs, which represent the output of the application of the recipes described in this 
case taking as input the samples of experiment data presented in Sect. 4, are described 
in Table 3.

Table 3  File and sample details 
for the analysis of Case B 

It can be noticed that the high values of the parameters may indicate 
the complexity of this case compared to the rest of cases

File Sample Traces Events Size (MB)

150 18,929 25,034 4.9
1 4133 4960 1.3
2 4031 4970 1.3
3 3375 4928 1.3
4 3711 4926 1.3

276 70,106 80,265 16.4
1 4519 4990 1.3
2 4608 4990 1.3
3 4275 4991 1.3
4 4506 4999 1.3

311 62,184 71,070 14.5
1 4887 4982 1.3
2 4850 4979 1.3
3 4696 4971 1.3
4 4338 4992 1.3

402 69,217 126,677 22.9
1 2257 4991 1.3
2 2453 4992 1.3
3 1917 4987 1.3
4 4185 4998 1.3

478 61,072 68,324 14.1
1 4616 4998 1.3
2 4829 4998 1.3
3 4491 4994 1.3
4 4415 4995 1.3



6  Process mining: process discovery

Process mining has emerged as a new research area within business process man-
agement. Process mining provides a family of solutions that includes process dis-
covery, conformance checking, and process enhancement [55].

Process discovery provides multiple mechanisms of analysis of processes that 
are unknown or non-intrinsically defined by the organisation. Process discovery 
enables multi-perspective analysis of processes depending on the required needs. 
Even simulation may be a suitable tool to carry out performance analysis, which 
may help to develop various analysis, such as time analysis, resource analysis, 
and case analysis.

Nowadays, process discovery is a mature discipline which has been well received 
by the industry to discover complex processes [33]. Proof of this is the number of 
algorithms (e.g. Alpha algorithm, Inductive mining, Heuristic miner) and tools (e.g. 
ProM [56], Disco™and Celonis™) that have emerged during last years.

As aforementioned, process discovery aims to obtain a model that covers all 
the possible traces. In order to illustrate the process discovery, a tiny sample 
of XES event log is given in Table 4. In the example, Case id may represent a 
machine, Activity id may represent a task executed by the machine, and finally, 
Timestamp may denote the start date of the task. Figure 8 shows two possible out-
puts of the processes mined by ProM (cf., BPMN process in the left) and Disco 
tool suite (cf., process map in the right), which covers every trace in the table. 

Table 4  Tiny sample of event log

Case id (Traces) Activity Id (Events) Time stamp

1436548633 6318248632 2019 − 05 − 27T09 ∶ 56 ∶ 51.186 + 02 ∶ 00

1331701 6317902052 2019 − 05 − 27T09 ∶ 56 ∶ 52.186 + 02 ∶ 00

1331701 6318248632 2019 − 05 − 27T09 ∶ 56 ∶ 54.196 + 02 ∶ 00

38698668 6318447049 2019 − 05 − 27T09 ∶ 56 ∶ 52.186 + 02 ∶ 00

(a)

1

1

1 1

2

16318248632
2

6317902052
1

6318447049
1

(b)

Fig. 8  Process discovered by ProM and Disco tool. All the processes are fully contained. In Disco, the 
colour intensity represents the number of event occurrences



The best fitness values for activities have been employed to obtain both models. 
The fitness is the capacity of the discovered model to cover the traces of an event 
log.

Relevant information can be extracted from the process models. For instance, 
three tasks (cf., 6318248632, 6317902052 or 6318447049) are firstly deployed in 
all the cases, as well as a pattern consisting on the execution of the task 6318248632 
just after 6317902052 is recognised. In the figure, extra information might be shown, 
as the number of traces that are represented by each transition and the number of 
repetitions for each activity. Moreover, this extra information may help to infer other 
relevant operation-related events. For instance, in two of the cases, the last activity 
is 6318248632, but in the third case, the last activity is 6318447049. Another impor-
tant aspect to remark in the use of process mining techniques is the number of events 
maybe not the same as the number activities represented in the resulting process 
as shown in this example. The log has for events, and the process only shows three 
activities as the result of grouping the repetition of events (i.e., 6317902052). This 
is one of the advantages of using this type of techniques against the analysis of raw 
logs with a huge number of events making it difficult to correlate the behaviour of an 
event that occurs many times.

In our approach, ProM tool with inductive miner is employed and the fitness of 
activities value ranged from 0.00 to 0.20 to discover process models. ProM has been 
used to be a free tool with a wide set of algorithms available; moreover, it provides 
an easy way to be connected with other software components. Although the best fit-
ness is reached when the value is 0.00, this value does not provide results in several 
of our samples. For this reason, we increase the range of fitness to 0.20. A deeper 
analysis on the mined process models is described in the following sections.

7  Analysis of results

Typically, an analysis of soundness and correctness of process models should be 
carried out, but inductive process discovery techniques [19] ensure the soundness 
and correctness of the process models obtained [27]. Thus, the processes discovered 
are always complete, have a proper completion and have no dead transitions.

Since our approach aims is to characterise the data-centre workflows in terms of 
the understandability and complexity, we propose the usage of the following main 
set of metrics in order to correctly analyse the process:

– General metrics that enable the analysis in terms activities, gateways and transi-
tions of the model.

– Quality metrics that allow the analysis of models in terms of the complexity of
the models.

– Skewness metrics which enable the analysis of models in terms of similarity of
the models.

– Partitionability metrics enable the analysis of the process model in terms of the
relationships between sub-components in the whole process model.



Regarding the quality metrics, in the literature, several metrics are used to meas-
ure how “good” a design of a business process model is [6, 34, 39]. The next set 
of metrics is adapted to measure the understandability and the complexity, which, 
in turn, allows the objective comparison of the discovered processes:

– Density ( � ): the ratio of transitions divided by the maximum number of pos-
sible transitions. The lower the value of density, the higher the understandabil-
ity and the lower the complexity. All the metrics are computed based on the
control-flow graph G = (V ,E), where V and E represent the vertices (activi-
ties) and arcs (transitions), respectively. Therefore, we can denote the density
formally as follows:

– Cyclomatic number (CC): the number of paths needed to visit all activities.
The cyclomatic can be seen as a complexity metric; thus, the lower the value
of CC, the lower the level of complexity. CC can be defined as:

– Coefficient of connectivity (CNC): the ratio of transitions to activities. The
greater the value of CNC, the greater the complexity of configuration work-
flows. Notwithstanding, models with the same CNC value might differ in com-
plexity regarding this parameter [34]. CNC can be written as: 

 .
– Control-flow complexity (CFC) enables the measurement of the complexity

in terms of the potential transitions after a split, depending on its type. The
higher the value of the CFC, the higher the overall structural complexity of a
workflow. CFC may be denoted as follows:

where |cxor ∙ | and |cor ∙ | represent the output transitions of a XOR gateway and 
OR gateway, respectively.

– Sequentiality ( � ) denotes the ratio computed by dividing the number of arcs
between nodes without connectors by the total number of arcs. The lower the
value of sequentiality, the higher the structural complexity of a workflow is
expected. It may be formally described as:

where V × V  represent the set of transitions of two activities.

(1)�(G) =
|E|

|V| ⋅ (|V| − 1)

(2)CC(G) = |E| − |V| + 1

(3)CNC(G) =
|E|
|V|

(4)CFC(G) =
∑

c∈Sand

1 +
∑

c∈Sxor

|cxor ∙ | +
∑

c∈Sor

2|cor∙| − 1

(5)�(G) =
|E ∩ (V × V)|

|E|



We present the results for tiny sample in Table 5, as shown in Fig. 8, in order to 
illustrate the calculation of the quality and general metrics.

The skewness and partitionability analysis may help to provide extra data on the 
behaviour in terms of variability and similarity. The following statistical parameters 
are proposed to evaluate the understandability and complexity of the models for the 
general and quality metrics presented in both cases:

– Mean ( � ), Median ( ̃�  ), and Standard Deviation � =

�
1

n−1

∑n

i=1
(xi − �)2.

– Fisher skewness coefficient ( �1 ), which measures the skewness of the distribution
of a variable according to its mean: �1 =

�3

�
3∕2

2

=
�3

�3
.

– F, Fcritic and p value related to the one-way ANOVA tests [20]; we performed to
test whether the samples are statistically homogeneous over time or not.

In the next subsections, the resulting metrics for each case are analysed and 
compared.

7.1  Results for the case simple

In general, this type of process may help to understand which are the most repre-
sentative users in terms of the number of jobs submitted. A random sample is shown 
in Fig. 9 for illustration purposes. This process is obviously simpler and more under-
standable when compared with the spaghetti-like ones (cf., Fig. 2). Regarding the 
control-flow structure, the process is composed of two gateways (i.e., XOR-split and 
XOR-join). Multiple paths, each one representing the sequence of jobs executed by 
a user, can be observed. Although the process is composed of multiple paths, just 
one can be executed each time due to the XOR gateway. Looking at in depth, we 
can highlight that there are very significant users with a large number of jobs, whilst 
others only submitted one or two jobs. All the remaining discovered processes of the 
case have a similar structure.

Regarding the metrics, the results shown in Table  6 represent the general, 
quality, skewness and partitionability metrics obtained for the analysis of the 
Case Simple with log-file sampling. It should be borne in mind that one metric 
is homogeneous among samples when the F ratio is lesser than Fcritic . There-
fore, the results obtained for all metrics are statistically not homogeneous, which 
implies that the behaviour of inherent processes varies significantly over time. It 
can be noticed that the values for sequentiality � are 1 and 2 orders of magnitude 

Table 5  General and quality metrics

Sample Traces Events Act. Trans. Gate. � CC CNC CFC �

Tiny 4 4 3 8 2 1.33 6 2.67 3 0.125



superior to those of the Case A and B, respectively. Notwithstanding, the density 
levels ( � ) are comparable to those of the Case A.

On one hand, both the number of events and the number of traces between 
samples present huge differences: the values range from 54 to 422 and from 27 
to 98, respectively. Nonetheless, the standard variation of the number of events 
and transactions represents the ∼ 57% of the mean, and the standard variation of 
the number of traces reduces to ∼ 43% of its mean.

On the other hand, the number of gateways keeps stable due to the simplicity 
of the case of study. The low number of transitions and gateways highlights the 
extremely low complexity of the models due to the multiple options of execution 
paths introduced. As a general conclusion, we can confirm the low complexity 
and high understandability of the processes discovered in all the samples due to 
the low number of activities, transitions and gateways.

The ANOVA tests performed showed that the behaviour of the processes in 
terms of almost all metrics is heterogeneous between log files, which may indi-
cate that the complexity of the process is time dependent. This conclusion may 
help us to build a set of time-related metrics that could support decision making, 
especially in scheduling, migration, consolidation and efficiency tasks.

Fig. 9  Process discovered for sample 487-4. This process clearly presents the simplicity and the sequen-
tiality of the Case Simple 



7.2  Results for Case A

As aforementioned, this case can help to understand how machines are used 
according to the jobs deployed on them. Figure 10 shows the discovered process 
for the case from two perspectives: (a) without sampling and (b) with sampling. 
On one hand, the process obtained without sampling (cf., sub-figure a) is huge, 
very complex and non-understandable since we cannot easily analyse the struc-
ture. On the other hand, the sampled process (cf., sub-figure b) is less complex 
and much more understandable. Some conclusions can be drawn from it: some 
paths are composed of only one activity and others have a more complex path 
structure. The path with one activity may be the consequence of that particular 

Table 6  General, quality, skewness, partitionability and variance analysis results obtained for the Case 
Simple 

Id-Sample Traces Events Act. Trans. Gate. �(10−3) CC CNC CFC �(�0−1)

150-1 69 300 300 371 2 4.14 72 1.24 70 6.23
150-2 98 291 291 391 2 4.63 101 1.34 99 4.94
150-3 94 422 422 518 2 2.92 97 1.23 95 6.33
150-4 81 364 364 447 2 3.38 84 1.23 82 6.33
276-1 79 219 219 300 2 6.28 82 1.37 80 4.67
276-2 40 121 121 163 2 11.23 43 1.35 41 4.97
276-3 69 202 202 273 2 6.72 72 1.35 70 4.87
276-4 69 233 233 304 2 5.62 72 1.30 70 5.39
311-1 61 123 123 186 2 12.40 64 1.51 62 3.33
311-2 75 159 159 236 2 9.39 78 1.48 76 3.56
311-3 60 140 140 202 2 10.38 63 1.44 61 3.96
311-4 59 279 279 340 2 4.38 62 1.22 60 6.47
401-1 34 68 68 104 2 22.83 37 1.53 35 3.27
401-2 30 60 60 92 2 25.99 33 1.53 31 3.26
401-3 27 54 54 83 2 29.00 30 1.54 28 3.25
401-4 53 86 86 141 2 19.29 56 1.64 54 2.34
487-1 37 110 110 149 2 12.43 40 1.35 38 4.90
487-2 30 71 71 103 2 20.72 33 1.45 31 3.98
487-3 58 138 138 198 2 10.47 61 1.43 59 4.04
487-4 50 186 186 238 2 6.92 53 1.28 51 5.71
� 62.40 176.08 176.08 240.44 2.00 11.59 65.36 1.42 63.36 4.34
�̃ 60 157 157 225 2 9.51 63 1.43 61 4.04
� 27.11 100.56 100.56 121.81 0.00 7.47 26.97 0.12 26.97 1.51
�1 1.44 0.84 0.84 0.70 N/A 0.91 1.41 − 0.13 1.41 0.37
F 9.34 15.53 15.53 17.05 N/A 17.49 9.34 7.91 9.34 6.37
F
critic

3.06 3.06 3.06 3.06 N/A 3.06 3.06 3.06 3.06 3.06
p 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00



machine executing only one job. We can conclude that the analysis with sampling 
is much more useful than that without sampling.

Tables 7 and 8 present the general, quality, skewness and partitionability results 
provided by the analysis without and with log-file sampling for Case A, respectively.

Regarding general metrics in Table 7, although there is a big difference in the 
number of events between samples ranging from 59,646 and 21,510 events, the 
number of mapped activities keeps more homogeneous, thus, 1820 at maximum 
in the worst case and half of that in the best case. All the samples present the 
similar behaviour with regard to transitions and gateways. However, transitions 
represent the paths between activities within the model and gateways represent 

(a)

(b)

Fig. 10  Processes discovered by Case A. It can be noticed that the sampling reduced the complexity of 
the process, which enables a richer and more useful processing

Table 7  General, quality, skewness and partitionability results obtained for the Case A without log-file 
sampling

Id Traces Events Act. Trans. Gate. �(10−3) CC CNC CFC �(10−2)

150 8437 21510 1428 2271 93 1.11 844 1.59 1342 7.29
276 11678 74498 1601 3159 45 1.23 1559 1.97 1557 3.01
311 11126 65326 1597 3132 45 1.23 1536 1.96 1534 4.00
402 11708 79850 1820 3592 38 1.09 1773 1.97 1771 2.70
478 11660 59646 958 1807 40 1.97 850 1.89 848 8.47
� 10921.80 60166 1480 2792 52.2 1.33 1312 1.88 1410.40 5.05
�̃ 11660 62746 1597 3132 45 1.23 1536 1.96 1534 3.80
� 1409.86 22989.39 323.70 730.06 23.01 3.66 434.79 0.16 349.20 2.64
�1 − 2.08 − 1.61 − 1.24 − 0.53 2.14 2053 − 0.39 − 1.99 − 1.24 0.61



control-flow elements that enable the convergence and divergence of paths. A 
high number of transitions and gateways may increase considerably the complex-
ity of the models due to the multiple options of execution paths introduced. In 
summary, we can confirm the high complexity and low understandability of the 
processes discovered in all the log files without log-file sampling due to the high 
number of activities, transitions and gateways.

The best log file by considering activities, transitions and gateways is 478. 
However, observing the mean ( � ) and median ( ̃�  ) according to activities, the 
more representative log files are 150 and 311, whilst 150 and 311 are the most 
representative in terms of transitions, and with regard to gateways, 276, and 311. 
Therefore, we can conclude that the models of the log file 150 and 311 can be 

Table 8  General, quality, skewness, partitionability and variance analysis results obtained for the Case A 

It can be noticed that all metrics except sequentiality ( � ) are statistically heterogeneous

Id Traces Events Act. Trans. Gate. �(10−3) CC CNC CFC �(10−2)

150-1 3526 4513 300 621 40 6.92 322 2.07 320 4.99
150-2 3533 4542 291 593 28 7.03 303 2.04 301 6.07
150-3 3166 4291 422 832 45 4.68 411 1.97 409 10.46
150-4 3276 4399 364 723 36 5.47 360 1.99 358 8.99
276-1 3813 4778 219 470 35 9.84 252 2.15 250 5.74
276-2 3880 4855 121 255 16 17.56 135 2.11 133 3.92
276-3 3956 4823 202 406 17 10.00 205 2.01 203 5.42
276-4 4156 4933 233 469 24 8.68 237 2.01 235 8.74
311-1 3948 4886 123 267 21 17.79 145 2.17 143 3.37
311-2 3286 4202 159 337 24 13.41 179 2.12 177 3.86
311-3 3827 4761 140 300 22 15.42 161 2.14 159 3.00
311-4 3761 4825 279 580 46 7.48 302 2.08 300 10.00
402-1 2253 3749 68 153 14 33.58 86 2.25 84 1.31
402-2 2325 3627 60 136 14 38.42 77 2.27 75 2.94
402-3 1929 3265 54 118 10 41.23 65 2.19 63 1.69
402-4 3579 4502 86 184 11 25.17 99 2.14 97 1.63
487-1 4119 4785 110 221 11 18.43 112 2.01 110 10.86
487-2 3665 4216 71 152 10 30.58 82 2.14 80 2.63
487-3 3819 4781 138 290 19 15.34 153 2.10 151 5.17
487-4 3938 4885 186 367 18 10.67 182 1.97 180 7.90
� 3487.75 4480.90 181.30 373.70 23.05 16.91 193.40 2.10 191.40 5.08
�̃ 3665 4542 157 324 18 13.41 193.40 2.10 191.40 4.99
� 631.48 469.92 105.81 207.95 11.61 111.31 102.39 0.09 102.39 8.61
�1 − 1.45 − 1.35 0.78 0.71 0.80 1.03 0.64 0.26 0.64 0.46
F 9.71 7.18 15.53 16.17 7.07 14.93 16.59 6.37 16.59 1.40
F
critic

3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06 2.77
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27



taken as representative for the Case A since they can be considered as the most 
understandable and less complex in terms of general metrics.

By analysing �1 , the coefficient shows a negative skew with regard to activities 
and transitions but positive regarding gateways. Thus, the models present an asym-
metrical distribution when negative or positive coefficient are reached. Although 
the number of transitions is negative, it is relatively close to zero; thus, it almost 
achieves a symmetrical distribution. This coefficient has helped us to identify that 
the complexity and understandability of the models present non-homogeneous 
trends in terms of symmetry distribution according to the general metrics.

Regarding the quality metrics, the reference models are 402, 150 and 478. The 
log file 402 is the best case for density, whilst 150 excels for CC and CNC, and 478 
for CFC. Thus, these are the models that obtained the best score in terms of com-
plexity and understandability regarding quality metrics. Comparing the results with 
general metrics, the log file 311 has the second highest rate of density and CFC, and 
the worst CNC. However, the log file 150 has been also selected as the model refer-
ence. Although other samples may be considered as relevant, the log file 311 repre-
sents better the values for general metrics, and 402 and 478 represent the log files 
according to quality metrics.

We may conclude that the log file 150 is the most representative in terms of gen-
eral and quality metrics. Hence, it can be considered the most understandable and 
less complex model, taking into account the difficulty of treating processes like 
these.

Comparing the above results with those provided by the analysis with log-file 
sampling (cf., Table 8), the number of traces, events, activities, gateways and transi-
tions is drastically reduced since the sample covers only a part of the whole log file. 
Nevertheless, the reduction in the number of elements may help to reduce the com-
plexity and to improve the understandability of the case as remarked at the begin-
ning of the section. We can see how the density in all the samples is higher due to 
the ratio of activities versus transitions is lower than that provided by the analysis 
without sampling. It should be noticed that even though a higher density usually 
implies a worst complexity, in this case, these trends are not present. In terms of 
CC, CNC, CFC and � , we can conclude that in some cases, the log-file sampling 
increases the complexity. For instance, the values of CNC resulting of the analy-
sis with sampling are higher than those provided by the analysis without sampling. 
Nevertheless, the lower values of CC, CFC and the higher value of � indicate that 
the process models obtained with the analysis with sampling are less complex and 
more understandable than those provided by the analysis without sampling.

As a summary of the Case A, we may conclude that the analysis of the data-
centre workflows employing log-file sampling present a simpler behaviour than that 
without sampling.

7.3  Results for Case B

As previously mentioned, this case may help to understand how tasks are exe-
cuted depending on the chosen machines. We want to remark that the discovered 



process without sampling is impossible to depict due to the limitations of the 
modellers when importing, representing, and exporting these models. Nonethe-
less, Fig. 11 shows the discovered process obtained with the analysis with log-file 
sampling. In the process, the paths represent the machines where the tasks are 
executed. On one hand, in this particular case, there are paths with only one activ-
ity, which means that those particular tasks are only executed in one machine. On 
the other hand, there are paths where multiple machines are used to execute the 
tasks.

The results shown in Tables 9 and 10 represent the general, quality, skewness 
and partitionability metrics obtained with the analysis without and with log-file 
sampling, respectively, in Case B. Due to the complexity of the analysis without 
sampling, for log file 402, the � metric is not provided, since we were unable to 
compute it due to limitations of the tools employed. Such non-present values are 
denoted by a dash symbol in Table 9.

Regarding general metrics, there exist a huge number of traces and events with 
differences, multiplying by five the number of events in the worst cases. Notwith-
standing, the number of mapped activities keeps reasonably stable between 8433 
and 11, 702. In this case, it is necessary to emphasise the huge number of transitions 
and gateways. Such a trend demonstrates the enormous complexity related to the 
number of optional paths in the model. Similarly to the previous case, we confirm 
the high complexity and low understandability of the processes discovered in all the 
log files due to the high number of activities, transitions and gateways.

The best results are provided by log files 150 and 276 for activities; 276 for tran-
sitions; and 402 for gateways. The mean ( � ) and median ( ̃�  ) indicate that the most 
representative log files are 311, 402 and 276, according to activities, transitions and 
gateways, respectively. Therefore, we can conclude that the models of the log files 
276 and 402 can be taken as representative for the Case B, since they can be consid-
ered as the most understandable and less complex in terms of general metrics.

The models discovered in Case A seem less complex than those of Case B. 
However, the ratio between activities and transitions is similar in both cases. Fur-
thermore, in Case B, the number of gateways in the models is enormous com-
pared with that of Case A. In the same way, the selection of reference models in 
both cases according to general metrics is the result of different analyses. For this 
reason, the resulting reference models differ from those obtained for Case A.

Fig. 11  Process discovered for the first sample of 487 in Case B. It can be noticed the higher complexity 
of this case
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By analysing �1 , the coefficient shows a negative skew with regard to activities 
and transitions but positive regarding gateways. Although the skewness values are 
negative and positive in all cases, the values are moderately close to zero in five of 
eight metrics. Such values highlight a trend to a symmetrical distribution.

Moreover, the samples belonging to Case B have a more symmetrical distribution 
than those of Case A, since the skewness coefficient is closer to zero in most of the 
metrics.

Regarding the quality metrics, the log files 402 and 276 may be taken as the 
reference models. The log file 402 provides the best results for the density ( � ) 
parameter, CC and CNC, whilst the log file 276 provides the best results for CFC. 

Table 10  General, quality, skewness, partitionability and variance analysis results obtained for the Case 
B 

It can be noticed that in this case, both the results in terms of density ( � ) and sequentiality ( � ) are one 
order of magnitude inferior to those of the Case A. In this case, even the sequentiality is not homogene-
ous among samples

Id-Sample Traces Events Act. Trans. Gate. �(10−4) CC CNC CFC �(10−3)

150-1 4133 4960 3526 7094 67 5.71 3569 2.01 3576 5.07
150-2 4031 4970 3533 7198 122 5.77 3666 2.04 3664 3.61
150-3 3375 4928 3166 6427 106 6.41 3262 2.03 3260 5.76
150-4 3711 4926 3276 6643 89 6.19 3368 2.03 3366 1.96
276-1 4519 4990 3813 7685 82 5.29 3873 2.02 3871 5.07
276-2 4608 4990 3880 7787 43 5.17 3908 2.01 3906 3.08
276-3 4275 4991 3956 8018 136 5.12 4063 2.03 4061 10.23
276-4 4506 4999 4156 8413 151 4.87 4258 2.02 4256 10.10
311-1 4887 4982 3948 7961 43 5.11 4014 2.02 4012 3.01
311-2 4850 4979 3286 6653 54 6.16 3368 2.02 3366 1.95
311-3 4696 4971 3827 7675 19 5.24 3849 2.01 3847 0.52
311-4 4338 4992 3761 7541 54 5.33 3781 2.01 3779 6.63
402-1 2257 4991 2253 4553 14 8.97 2301 2.02 2299 0.66
402-2 2453 4992 2325 4670 21 8.64 2346 2.01 2344 1.71
402-3 1917 4987 1929 3868 10 10.40 1940 2.01 1938 0.78
402-4 4185 4998 3579 7252 78 5.66 3674 2.03 3672 0.83
487-1 4616 4998 4119 8431 182 4.97 4313 2.05 4311 4.27
487-2 4829 4998 3665 7391 63 5.50 3727 2.02 3725 3.11
487-3 4491 4994 3819 7803 162 5.35 3985 2.04 3983 3.33
487-4 4415 4995 3938 8046 171 5.19 4109 2.04 4107 4.23
� 4002.88 4980.32 3438.04 6944.56 70.60 6.15 3507.52 2.02 3505.88 3.22
�̃ 4338 4990 3665 7391 54 5.50 3727 2.02 3725 3.01
� 917.73 21.60 640.80 1306.97 55.39 1.54 667.00 0.01 667.04 2.79
�1 − 1.19 − 1.65 − 1.29 − 1.27 0.72 1.78 − 1.24 0.67 −1.24 1.21
F 10.95 13.83 9.71 9.60 5.94 8.52 9.47 3.47 9.46 4.21
F
critic

3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02



Consequently, these are the models that obtained the best score in terms of complex-
ity and understandability regarding quality metrics.

Comparing the results with general metrics, the quality metrics match with the 
models selected by general metrics; precisely, 276 and 402 have been also selected 
as representative. In conclusion, the log files 276 and 402 are chosen as representa-
tive models for the Case B.

As in Case A, similar conclusions can be obtained by comparing the aforemen-
tioned metric with those obtained with the analysis with log-file sampling (cf., 
Table 9) and with (cf., Table 10). The metrics � , CC and CNC are higher for the 
analysis with log-file sampling. Thus, the process models obtained without sam-
pling are less complex than those obtained with sampling. Nevertheless, CFC and � 
determine that the models obtained with sampling are less complex and more under-
standable than those obtained by the analysis without sampling.

Case A seems to have less quality in comparison with Case B according to �, CC 
and CNC. In contrast, Case B has worst quality than Case A in terms of CFC. In 
both cases, the chosen reference models differ, as shown in Fig. 12.

As summary, in the light of the visual and metrics analysis of the Case A and B, 
we can confirm the hypothesis that the analysis of the data-centre workflows with 
sampling is easier due to the lower complexity and higher understandably of the 
models obtained with log-file sampling.

8  Conclusions and future work

In this paper, we have coped with the problem of extracting the actual workflows 
present in data centres by performing several analyses of raw data-centre execution 
logs. We applied process mining strategies to discover the internal workflows. We 
presented a model that enables the obtention of the process models which cover all 
the traces of a raw event log.

In addition, we validated the usability of the proposal by applying our model in 
a real scenario, that is, the Google Cluster traces presented in [45]. The case study 
demonstrates the complexity of the workflows employed in data centres and the 

Fig. 12  Comparison in terms of CFC, Density(�), Sequentiality(�) between cases and log-file samples. 
In these figures, the high complexity of case B is clearly depicted, due to the high CFC, and the low 
Density(�) and Sequentiality(�)



ability of process mining to unleash information that could help to improve the data-
centre resource efficiency.

We learned the following important lessons:

1. The data-centre log complexity The complexity of the data-centre logs presents
a real challenge, since it has a non-unified form which requires a pre-transforma-
tion or a querying process previous to XES transformation.

2. The selection of case analysis Several cases have been explored before to select
the cases shown in the paper. The selection of wrong cases may lead to untreatable
event logs that cannot be handled by process mining tools.

3. The limitation of process mining tools One of the challenges, under constant
improvement, is the analysis of huge event logs, such as data-centre execution
logs used in the paper. It is especially apparent in non-commercial tools, although
it can also be found in commercial solutions. Consequently, such logs need to be
divided and preprocessed before the application of any process discovery tech-
nique

4. Insufficient metrics to represent complexity The metrics used in this work may
help in the understanding of the model complexity in terms of certain general
characteristics. However, more suited metrics should be developed to optimally
understand data-centre related processes.

As future work, this is the first step towards the development of a new research line 
based on the application of process mining modes to Cloud-Computing and Edge-
Computing environments. The next steps include:

– Development of novel metrics for the measurement of model quality to easily
represent the complexity of data-centre workloads and scheduling operations.

– A stronger statistical analysis on the presented scenarios;
– An analysis on the typical time window where process models keep homogene-

ous to support decision making;
– Application of new transformations to unveil hidden inefficiencies.
– Application of process mining to online scheduling processes as a tool to help

decision making.
– Application of process mining to those processes is carried out by data-centre

operators and any other human-related operations.
– Application of the presented models on other large-scale data-centre scenarios

and comparison between the obtained results.
– Perform efficiency analysis based on the results of process mining models to

improve resource and energy efficiency in data centres.
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