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a b s t r a c t

Data centres constitute the engine of the Internet, and run a major portion of large web and mobile
applications, content delivery and sharing platforms, and Cloud-computing business models. The high
performance of such infrastructures is therefore critical for their correct functioning. This work focuses
on the improvement of data-centre performance by dynamically switching the main data-centre
governance software system: the resource manager. Instead of focusing on the development of new
resource-managing models as soon as new workloads and patterns appear, we propose DISCERNER, a
decision-theory model that can learn from numerous data-centre execution logs to determine which
existing resource-managing model may optimise the overall performance for a given time period. Such
a decision-theory system employs a classic machine-learning classifier to make real-time decisions
based on past execution logs and on the current data-centre operational situation. A set of extensive
and industry-guided experiments has been simulated by a validated data-centre simulation tool. The
results obtained show that the values of key performance indicators may be improved by at least 20%
in realistic scenarios.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Data centres are considered the engine of the Internet. From
websites and services to mobile apps, everything is supported by
some kind of service hosted on these huge infrastructures. Thus,
data centres are required to be effective, reliable, efficient and
performant. Moreover, data centres are also used for performing
back-end and computing-intensive tasks that are requested from
stakeholders for various purposes.

Data centres are governed by software solutions that deal with
the management of their computing, storage and networking
resources. These software solutions are called resource managers,
which constitute the main agents responsible for the operation of
data centres. Resource-managing models can be grouped in terms
of their architecture: centralised, distributed, or hybrid solutions.

Nowadays, centralised solutions are the most popular and
widespread in the majority of data centres in production. These
centralised approaches propose a single point of decision-making
in order to decide which resources should be selected for the
deployment of tasks and services. Within centralised resource
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managers, however, there are three main alternatives: the
so-called monolithic model, the two-level model, and the
shared-state model. Each alternative is shown to be optimal for
one particular kind of workload, as explained in detail in [1].

However, the larger the data centre is, the more hetero-
geneous the data-centre resources and the workload require-
ments and patterns become [2]. In such environments of mixed-
workloads, current resource managers struggle to perform opti-
mally for each type of workload. Although, resource managers
have been proposed and developed in response to the new kinds
of workloads and requirements that data centres address, such
tightly coupled models are insufficiently flexible and suitable for
ever-evolving scenarios, such as those that are present in Cloud
Computing and run by hyper-scale data centres.

Therefore, it would undoubtedly be useful if data centres could
rely on any of the resource managers proposed in these dynamic
environments to date, since they are each useful for their specific
type of workload. In scenarios where the workload is heteroge-
neous and workload patterns and characteristics are mutating
during operation time, it appears logical to employ a decision-
support system that could apply such resource-managing models
depending on the characteristics of the incoming workload and
the data-centre situation, as an alternative to the development
of new fine-tuned specialised resource managers. Therefore, this
paper presents the following innovations:
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• A decision-support model for the dynamic switch of
data-centre resource-managing models at run-time that is
in accordance with the characteristics and purpose of the
incoming workload so that the data-centre performance is
improved.

• A classic machine-learning classifier for the detection of the
optimal resource-managing model to be applied based on
past workloads.

• An in depth and realistic analysis of the performance of
the proposed model through extensive simulation based
on industry environments, and comparison between the
proposed model and the most commonly used industry
solutions.

As a result, it is shown that the dynamic switching of resource
anagers may be provided by a model that significantly improves
oth the behaviour in terms of homogeneity and also the perfor-
ance compared to the isolated utilisation of the most popular

esource managers. Through the simulation of various realistic
orkloads of very unclear patterns, including extreme scenar-

os, we show that performance is improved by 20% at the very
east for average scenarios, according to the widely accepted key
erformance indicators, such as job queue times and makespan.
As a potential application of the proposed model, an inno-

ative type of resource management system, built on top of
he current systems, such as that used in Kubernetes, could be
eveloped to dynamically apply the optimal resource-managing
odel in accordance with the incoming workload.
The rest of the paper is organised as follows: the related

ork is described in Section 2. In Section 3, we propose the
heoretical decision-theory model to be employed as the founda-
ion of the implemented model. Section 4 presents the research
ethodology and experimentation framework. Empirical results
re presented and discussed in Section 5, where we consider 3
ncremental workloads and 3 workload-arrival patterns in order
o compare the performance results of the resource-managing
odels. Conclusions and future work are laid out in Section 6.

. Related work

Resource managers can be classified as centralised, distributed,
r hybrid [1,3]. The majority of the actual industry data centres
ely on centralised approaches, in particular:

1. Kubernetes and Docker swarm [4,5] as monolithic solu-
tions;

2. DC/OS (Mesos), YARN (which can also act as monolithic),
and Tupperware as two-level approaches [6–8];

3. Google Omega and Google Borg as a shared-state
approaches [9,10].

From these approaches, this work is based on the dynamic
witch of the most commonly used resource-managing models:
he two-level and shared-state models represented by Mesos and
mega, respectively. On one hand, the Mesos resource manager
ollows a pessimistic approach where the centralised coordinator
locks the whole cluster every time a scheduling decision is made
y any scheduler. This coordinator offers resources to the various
rameworks, such as Hadoop and MPI. Scheduling decisions may
herefore be suboptimal, since the total cluster state is not made
vailable to the framework scheduler involved; only the resources
ffered are made available.
On the other hand, the Omega scheduler follows an optimistic

pproach where the centralised coordinator manages several con-
urrent schedulers that are able to operate simultaneously. Each
cheduler makes scheduling decisions by using a stale copy of
he whole cluster state. These schedulers then commit atomic
191
scheduling transactions to the centralised cluster. If these trans-
actions result in a conflict, then the local copy of the cluster state
used by the scheduler is updated and the scheduling process is
retried.

With respect to the dynamic selection of schedulers, in this pa-
per, the use of a supervised machine-learning system is proposed
which builds a model intended to decide which type of scheduler
is the best with each job-arrival to the data centre. Nowadays,
there are a number of classification techniques, from the first
Naive Bayes [11] and Hidden Markov models [12] to more re-
cent approaches, such as Support Vector Machine [13], Random
Forest [14] and XGBoost [15]. These supervised algorithms take
a dataset of feature vectors as their input, each corresponding
to an instance or example and tagged with a category. These
algorithms then process each instance in order to build a model
capable of inferring the category of other new, unseen instances.
The performance of those algorithms depends on many factors,
such as the size and representativeness of the dataset, the type
of data of the features (quantitative, ordinal, or categorical), the
number of categories, and the quality of the feature set in relation
to the categories.

Regarding the problem at hand, once the data from past
workloads of previous simulations had been collected, we re-
alised that our system could benefit from the application of a
feature-selection algorithm in order to determine which features
are useful and which are noisy for our classification problem.
There are also a number of approaches to this problem, grouped
into two main groups [16,17]: filter methods, that strive to
maintain the most relevant features, and only addresses corre-
lations between the features and the class in the dataset; and
wrapper methods, which use an external classifier to evaluate
the goodness of the chosen features. In this work, the well-
known Correlation Feature-Selection method (CFS) [18] has been
applied, which is based on the assumption that ‘‘Good feature
subsets contain features highly correlated with the classification,
yet uncorrelated to each other’’.

In summary, in this work the current state of the art is ex-
tended by:

• Proposition of a model based on decision theory focused on
the dynamic selection of a resource manager depending on
the data-centre operation performance indicators and the
characteristics of the workload.

• Evaluation of multiple classic machine-learning models to
classify the optimal resource-managing model to be em-
ployed in a given time period.

• Deep and extensive analysis and comparison of the
proposed model against the most commonly used
resource-managing models for various realistic data-centre
scenarios and workloads.

3. Theoretical framework

This work is focused on the dynamic switch of the data-
centre resource-managing model whose choice depends on the
data centre and workload characteristics. The final goal involves
the minimisation of the performance impact of each approach
on inconvenient scenarios by utilising the best-fit selection. The
proposed model is superior to other proposals which implement
ad hoc algorithms to match a scheduling path with a given task.
Instead, in our approach, the dynamic resource-management
system learns from past executions and virtually any resource-
management model can be added to the catalogue of available
resource-management models. The first stage of the proposed
solution involves the formulation of the decision-theory models
that describe the problem under consideration. The second stage
includes selecting the variables that need to be simulated in order
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to find the numerical solution to the problem. The next step of
presented method involves performing necessary experiments
and processing the results in order to obtain the values that
cannot be calculated using analytical tools.

The main objective is the selection of one action from among a
inite set of known actions, whose consequences depend on some
nknown state of the external environment. The impact of the
xternal environment is represented by the incoming workload to
e processed by the data centre. Such a workload comprises a set
f jobs which has to be deployed and executed by the data-centre
esources [19]. Let us denote the single workload as W and the
set of all possible workloads as W. Each workload is composed of
a number of jobs W = {Jj}nj=1, and each job is composed of tasks

j = {tji}
nj
i=1.

Let A represent a set of actions, from which a single set item
is be chosen. Given a set of states of the data-centre and the

ncoming workloads, the main objective involves ascertaining
hich action is the most beneficial. The reason behind the se-

ection from among the set of actions is linked to their related
uantitative performance impact, measured by the regret loss
unction L. The consequences depend both on the unknown state
f the world, and the actions taken, therefore:

(W , a) = sup
a′(W )

u(a′(W )) − u(a(W )), (W , a) ∈ (W ⊗ A) (1)

where u represents the utility function, which depends on the
actions taken in the W state: a(W ) and a′(W ) ∈ A. The regret loss
function measures the inappropriateness of a given action a for a
state W , and it is non-negative.

In this paper, the two most commonly employed centralised
resource-management models are considered: two-level resource
managers, such as Mesos; and shared-state resource managers,
such as Google Omega. The decision to be made is whether
the data centre should switch between resource-management
models (a1 action) or not (a2 action). Such decisions may be
denoted as A = {a1, a2}. The workload is characterised by inter-
arrival times λW : W = ({Jj}nj=1, λW ). Jobs are composed of tasks
Tj = {tji}

nj
i=1, whose attributes are explained in Section 4.2. The

loss function, which represents the negative performance impact,
is modelled as follows:

• Let Rutil(W , a) denote the percentage of data-centre re-
sources utilised on average in state W under action a.
Therefore, ua(W ) = 100 − Rutil(W , a), and supa′(W ) u(a′(W ))
denote the best possible scenario in terms of efficiency of
data-centre utilisation. The L(W , a) describes the deteriora-
tion in the performance of the data-centre in the case of
choosing action a instead of the most beneficial action
a0 = argmaxa′(W )u(a′(W )).

• Let q1(W , a) represent the average job queue time until the
first task is scheduled. Therefore, u(a(W )) = 0 + q1((W , a))
and infa′(W ) q1((W , a′)) denote the best possible scenario,
which minimises the job queue time. L(W , a) is equal to
the deterioration in the performance of the data-centre in
the case of choosing action a instead of the most beneficial
action:
a0 = argmina′(W )u(a′(W )).

The main aim of the selection from among the possible actions
is to find the action that minimises the performance deterioration
given the known data-centre load W :

a0 = argminaL(W , a) (2)

The next task is to find the action that minimises the maximum
performance deterioration only:

a = argmin max L(W , a) (3)
M a W
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Subsequent to the application of the expected utility princi-
ple [20], the prior expected deterioration may be calculated as
follows:

LΠ (a) =

∫ W

L(W , a)Π (W )dW (4)

where Π (W ) is the prior probability of W , which indicates the
ensity if W is continuous. Function L described above does

not present an analytical form and needs to be found using
simulations.

Previous work demonstrates that the Batch workload can
achieve good performance levels in terms of scheduling even if
we rely on the expected task-processing time according to the
computational resources on which it is deployed (see [21–23]).
Due to the difficulty of performing the computation needed to
solve Eq. (4) in real time, which may be even more complex
if a multi-objective function is added to cover multiple work-
load types (e.g. Service jobs), the Random Forest (RF) supervised
machine-learning algorithm is therefore employed to predict the
values of a0 and aM , LΠ .

4. Experimental design

4.1. Methodology

In this work, a standard Design Science methodology [24] is
followed, as shown in Fig. 1, which is based on the research
question:

May data-centre performance be improved by dynamically
switching the resource-management model in heterogeneous
and extreme scenarios?

The research question may be formulated as:

L(W , a1) < L(W , a2), (5)

Given a chosen a1, a2 ∈ A, a1 represents the action of switching
the resource-management model whilst a2 denotes the opposite.
Such an experiment design enables us to find the form of the
optimised function L. Additionally, it enables us to determine
the solution of problems (1)–(4) by using the numerical opti-
misation methods and by providing the tool for the execution
of the comparison of function values. In order to answer the
research question, an innovative dynamic data-centre resource-
management model is proposed, which selects from among a set
of existing resource-managing models. The steps outlined below
have been followed in order to validate the proposed model:

1. Problem investigation is performed by clearly identifying
certain environments where the current resource man-
agers present serious limitations that influence in the over-
all data-centre performance, and that could be alleviated
by equipping the proposed dynamic resource-management
model.

2. A formal theoretical framework based on decision theory
is constructed to implement the decision-support system.

3. A strong dataset of data-centre execution logs is then built
as a knowledge base for the decision-support system.

4. The proposed dynamic data-centre resource-management
model is then implemented in an extensively validated
large-scale data-centre simulation tool.

5. An extensive set of experiments are then designed and
executed to test the proposed model.

6. The significance of the results are validated through a solid
statistical framework.

7. The results are analysed and conclusions drawn.
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.2. Generation of the training dataset

In this work, we created a synthetically-generated set of ex-
eriments in order to empirically analyse the KPIs for a vast range
f heterogeneous workloads.
Jobs are modelled by the following attributes:

• Inter-arrival time λW represents the average time between
two consecutive jobs Jj and Jj−1 for a given workload. There-
fore, it also influences the amount of jobs executed in a
specific time window. The inter-arrival time between two
Batch jobs is usually shorter than that of two Service jobs.
According to the queue theory, the inter-arrival time usu-
ally follows an exponential distribution. In this work, we
employ the Exponential distribution to generate the training
dataset, whilst more realistic parameterised Weibull distri-
butions [25] with α values of α = 0.3, α = 0.5, and α = 0.7
are employed in order to add realistic unclear patterns and
extreme behaviour depending on the value of α (the lower
the value, the more extreme the behaviour).

• Number of tasks nj ∼ Exp(λt ) represents the number of
tasks that comprise a job. The number of tasks of a particular
job Jj is generated by following an Exponential distribution
with a given mean value of 1/λt .

• Job duration dj ∼ Exp(λd) represents the period of time a
given job Jj consumes resources in the data centre. The dura-
tion of all tasks of a particular job Jj is generated by means of
the Exponential distribution with the given expected value
1/λd.

• Resource usage uj is the amount of CPU KCPU and RAM
KRAM that all the tasks of each particular job in a workload
consumes.

Due to the large number of parameters involved in the gener-
ation of the workload, we decided to employ a range of values in
two key workload-generation parameters to create the workload
set:

• Inter-arrival time λW : A range of average inter-arrival
times of [2000–10] s in steps of 50 s was employed as
λB for the Batch workload to simulate various data-centre
utilisation rates. The inter-arrival time for Service workload
λS is approximately ten times that of the Batch workload.

• Operation time To: A set of operation simulation times of 6
and 12 h, as well as 1, 3, 5, 7, 10, and 15 days, are executed
to create the training set, in order to weigh the impact of
the accumulative workload on the performance behaviour
of the data centre.

The above set of parameters results in formulating the follow-
ng theoretical model:

= {Jj(dj, uj), λW }
n
j=1 (6)

Tj = {tji}
nj
i=1 (7)

All the workloads used in this work follow a day/night pattern.
Fig. 2 shows the day/night pattern in terms of resource consumed
193
by the workloads, whose inter-arrival time is generated by means
of λW ∼ Weibull α = 0.7, λW ∼ Weibull α = 0.5, and λW ∼

eibull α = 0.3 distributions, respectively.
The remaining workload parameters are kept constant for the

sake of clarity of the results and conclusions. Such workload
parameterisation is then used to generate the workload to be
submitted to the simulated data centre, composed of 1000 ho-
mogeneous machines, each of which equips four batch-scheduler
agents and one services-scheduler agent. The performance results
of such experimentation constitute the core of the training set
with which the decision-support classifier learns.

4.3. Experimentation framework

In this work, the previously developed SCORE tool [21] is em-
ployed, which has been used in various studies in the literature [1,
22,23,25–29], and is able to simulate large-scale infrastructures,
often composed of thousands of servers.

In order to evaluate the performance results, a set of in-
dicators for each resource manager is shown. The two main
performance-related results deserve special attention:

• Queue times: How long jobs Jj, composed of nj tasks, are
waiting in the queue until their first task q(1)j and their last
task q(nj)j are deployed.

• Makespan: How long it takes from the submission of the
job until its completion. The makespan of job Jj may be
described as Cj = q(nj)j + dj.

For a full comprehension of the behaviour of each resource
anager, other key performance indicators in the following tables
re presented. The table headings use the following abbrevia-
ions:

• λB denotes the average inter-arrival mean between Batch
jobs. The Batch workload represents almost 90% of sched-
uled jobs, as our workload is modelled on industry pat-
terns [30,31]. Due to the main impact of the Batch workload
in terms of scheduling and for the sake of clarity, only these
results are presented in the tables. The results for the Service
workload can be found as supplementary material. Rutil
denotes the percentage of data-centre resources utilised on
average. J to is the number of jobs that could not be executed
due to the scheduling process timing out, which means
1000 consecutive tasks or 100 consecutive unsuccessful job
scheduling attempts. q1B represents the (Batch) job queue
time until the first task is scheduled (the lower, the better
the user experience), while qnB denotes the (Batch) job
queue time until the last task is scheduled (the lower, the
better the user experience). Both the average and the 90
percentile results are shown. CB is the (Batch) job makespan
(the lower, the better the user experience). Both the average
and the 90 percentile results are shown.

• Both the Two-level and Dynamic resource manager model
results employ the previous abbreviations plus: R lock , which
denotes the percentage of resources that are blocked due
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Fig. 2. Evolution of the utilisation of the two possible resource-managing strategies of the dynamic resource-managing model according to the inter-arrival job
time (λW ) of the recent past. Red segments represent the periods where the two-level strategy (Mesos) is employed, while blue segments represent those periods
where the shared-state (Omega) approach is employed. It can be seen that the shared-state strategy (Omega) is usually preferred when the inter-arrival time (λB)
is shorter than 150 s. However, it becomes evident that the unpredictability of the generated workload inherent to the Weibull distribution behaviour blurs the
decision pattern. This can be stated if the decision pattern shown in 2(a) is compared to those of 2(b) and 2(c), which progressively present a less clear pattern.
to the pessimistic-blocking strategy of the Two-level re-
source managers; Sret refers to the number of scheduling
operations retried due to lack of resources in the copy of
the cluster state (the lower, the better to avoid scheduling
bottlenecks).

• Both the Shared-state and Dynamic resource manager re-
sults employ the previous abbreviations, plus: J conf T conf ,
which represent the total number of job conflicts and of
tasks, respectively (the lower, the better for the overall
performance).

All the experiment configurations are simulated for 15 days of
operation time with a data-centre composed of 1000 machines.
Each experiment configuration is run 20 times. Tables 4, 5, and
6 show the average results. The following statistical tests were
performed in SPSS in order to check the statistical significance at
α = 0.05 of the results based on the queue times:

1. Iglewicz and Hoaglin’s robust test for multiple outliers
(two-sided test) with Z = 3.5.

2. One-way ANOVA Levene test to check the non-homogen-
eity of variances with a significance level of α = 0.05.

3. Multiple post-hoc tests, such as the Tamhane, Dunnett
T3, Games-Howell, and Dunnett C tests, to analyse the
difference between pairs of resource schedulers with a sig-
nificance level of α = 0.05, thereby proving the statistical
significance of the results presented.
194
The results of the SPSS statistical tests confirmed their statistical
significance and they are provided as supplementary material.

4.4. Classification algorithms and feature selection

The proposal for the dynamic switch of resource-managing
models in accordance with the data-centre workload and status
relies on a supervised classifier, which, whenever a new job
arrives to the data centre, decides whether it is better to switch
to another scheduler or not.

To this end, a training dataset has been built from the job at-
tributes explained in Section 4.2 by evaluating the total workload
executed as a whole, and the data has also been disaggregated by
workload (Batch and Service). This results in a dataset composed
of 11 columns, in addition to the class column corresponding
to the scheduler that achieved the best performance for those
workloads according to the aspects explained in Section 4.3.

It should be borne in mind that, in order to avoid train-
ing bias, the inter-arrival time of all workloads used for the
training dataset is generated by means of the Exponential distri-
bution, whilst the inter-arrival time of the workloads generated
for the evaluation of the proposal follow extreme-value Weibull
distributions. The raw dataset can be found as supplementary
material.

Once the training dataset is built, the next step in our proposal
is the execution of a feature-selection algorithm in order to retain
only those features of the dataset that are relevant to our prob-
lem. In this case, we have opted for the use of the implementation
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Table 1
Accuracy of classifiers, using a 10-fold cross validation with the refined 4-column
dataset.
Naive Bayes Linear SVC XGBoost Random Forest

0.45 0.74 0.73 0.76

Table 2
Mean, standard deviation, mode and median values of the results obtained from
the execution of the Random-Forest-based classification algorithm ∼500 times.
µ (ms.) σ (ms.) Mo (ms.) µ̃ (ms.)

8.60 2.68 6.52 7.73

Table 3
Time complexity of the training and classification phases for each classification
algorithm. n is the number of training samples, c is the number of classes (in
ur case, c = 2), d is the number of features considered (in our case, d = 4), k

is the number of vectors, and t is the number of trees (t = 100 by default in
the implementations tested).
Algorithm Training complexity Runtime complexity

Naive Bayes O(n · d) O(c · d)
Linear SVC O(n2) O(k · d)
Random Forests O(t · d · n · log(n)) O(d · t)
XGBoost O(t · d · n · log(n)) O(d · t)

of the CFS algorithm [18] included in Weka [32], since it is a
well-known and widely-used workbench for machine learning.
The output of this algorithm is a subset of features formed by the
resource utilisation, Rutil, inter-arrival (Batch), λB , the number of
ervice tasks, nj ∼ Exp(λt ), and the memory task (Service), KRAM .
This refined dataset with four columns (five including the

lass) has been passed as input to four different classification
lgorithms: Naive Bayes [11], LinearSVC as an SVM [13] imple-
entation, Random Forest [14], and XGBoost [15]. These are

ecent implementations of a number of the most representative
lgorithms in supervised statistical machine-learning classifica-
ion (Bayesian networks, support vector machines, and decision
rees).

In our preliminary experimentation (a 10-fold cross validation
ith the same training dataset and the default values for all
he parameters of the methods), the algorithm that achieved the
est accuracy results was Random Forest, as can be observed in
able 1, which is the method integrated in our proposal for the
ynamic selection of the scheduler. However, the design of our
xperimentation framework enables various classification models
o be easily evaluated in future works.

The performance of the selected classification algorithm was
easured on the machine employed to run the simulation ex-
eriments (Macbook Pro 13", 2,3 GHz Intel Core i5, 16 GB 2133
Hz LPDDR3 and 256GB of SSD HD) in order to evaluate its
uitability for real-time scenarios. We executed approximately
00 classification runs. The results are shown in Table 2 and the
aw data can be found as supplementary material.

Regarding the cost effectiveness of these algorithms on the
verall performance of the data centre, it is worth noting that
he training phase (usually the most time-consuming task) is
xecuted off-line, just once, in order to generate each classifi-
ation model beforehand. In this way, the only addition to the
ormal behaviour of a resource manager is the classification of
ach job arriving to the data centre, which is a very economical
ask in terms of time. However, in Table 3, the time complexity
f training and classification for each of the methods discussed in
his section is shown.

We can see that the complexity of the most critical task in
ur case, the run-time classification of new jobs, in all the cases
s O(1), and it should therefore inflict no significant harm on the

erformance of the resource manager. 2
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5. Evaluation

This section discusses the behaviour of the dynamic,
two-level and shared-state resource managers when executing
three realistic workloads, each of which has a higher level of
extreme peaks and unpredictable patterns, to check the utility
of the proposed model. Such extreme behaviour of the arrival
of jobs can easily be seen in Fig. 2, where the dynamic be-
haviour of the Dynamic resource manager is depicted according
to the arrival of jobs. Red periods represent the time where the
two-level model is employed, and blue periods represent the time
where the shared-state model is used. It should borne in mind
that a relatively stable day/night pattern can be seen for λW ∼

eibull α = 0.7 in Fig. 2(a). This clear pattern gradually fades
away, and ends up in the unclear pattern and frequent job-arrival
peaks for λW ∼ Weibull α = 0.3 (very extreme) in Fig. 2(c).
An intermediate state may be found for Weibull λW ∼ Weibull
α = 0.5 (extreme) in Fig. 2(b).

A second insight shown in Fig. 2 involves the coherency in
the decision-making process of the decision-support model of
the Dynamic resource manager proposed, which leads to a pre-
dictable pattern of utilisation according to the arrival of jobs, even
for the extreme workloads generated by means of the Weibull
distribution with λW ∼ Weibull α = 0.3.

Tables 4, 5, and 6 present the performance results for three
resource mangers: our proposal (DISCERNER); two-level (Mesos);
and shared-state (Omega). Each table also presents three work-
loads: λW ∼ Weibull α = 0.3 (very extreme); λW ∼ Weibull α =

0.5 (extreme); and λW ∼ Weibull α = 0.7 (slightly extreme),
together with three utilisation rates, represented by the average
job inter-arrival time: λB =∼100 s (lesser utilisation); λB =∼85
s (medium utilisation); and λB =∼70 s (high utilisation), in order
to evaluate the impact in terms of performance of both the job
arrival pattern and the number of executed jobs.

A first glance at the data-centre utilisation rate (Rutil) unveils
the main pattern present in these results: DISCERNER, the Dy-
namic resource manager, will match the results of the other
resource-managing models (or even impose a low deterioration
due to classification and forecast errors) in low-pressure scenar-
ios, improving (especially if compared to the two-level resource-
managing model) gradually as the workload pattern becomes
more extreme and the arrival rate increases. That is exactly what
(Rutil) results show: the three resource-managing models provide
he same utilisation results for slightly extreme (λW ∼ Weibull

= 0.7) patterns and low arrival rates (λB =∼100 s), until a
very extreme pattern arrives (λW ∼ Weibull α = 0.3), where
the Dynamic model (Table 4) significantly outperforms (∼10%)
the two-level results (Table 5), thereby preventing the drop-out
of jobs (Jto) experienced by the two-level model. It should also
be borne in mind that the same improvement is achieved for
extreme workloads (λW ∼ Weibull α = 0.5) when the arrival
rate is high (λB =∼70 s). A direct correlation with the rate of
esource that is locked due to the pessimistic approach of the
wo-level model (Rlock) becomes clear: the greater the difference
between the dynamic and two-level models in terms of Rlock, the
higher the difference in terms of resource utilisation. In this par-
ticular indicator, the Dynamic resource-managing model achieves
similar results compared to those provided by the shared-state
model (Table 6).

In terms of the key performance indicators, q1B , qnB , and CB ,
all three follow the aforementioned pattern. Hence, a detailed
explanation is now given of the results of q1B as representative
or all these indicators in order to avoid redundant explanations.
n one hand, q1 shows a lesser improvement (∼20%, 27.77 s
s. 35.84 s) and an even lesser deterioration (∼10%, 27.77 s vs.
4.49 s) for low-arrival-rate (λ =∼ 100 s) and slightly-extreme
B
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Table 4
Performance results of DISCERNER (the Dynamic resource-managing model) for Batch Workloads.

λB Rutil Jto Sret Rlock Jconf Tconf q1B q1−90%B qnB qn90%B CB C∃′%B
(s) (%) (%) (s) (s) (s) (s) (s) (s)

λW ∼ Weibull α = 0.3

109.43 28.51 0 393 10.87 1081 41821 97.56 267.53 173.09 448.89 250.76 579.14
89.64 29.19 0 971 12.60 1426 52586 117.30 312.63 229.50 574.35 305.78 724.09
70.74 29.84 0 2297 16.15 1914 69623 164.25 425.59 396.90 971.80 450.13 1095

λW ∼ Weibull α = 0.5

105.23 28.65 0 223 12.5 961 38844 42.00 134.29 64.91 187.48 165.04 382.27
87.23 29.24 0 319 13.79 1335 53114 53.89 164.20 90.33 249.20 188.78 434.92
68.88 30.15 0 693 15.64 1966 74234 74.77 220.11 143.26 387.00 236.61 566.73

λW ∼ Weibull α = 0.7

102.59 28.72 0 190 12.91 878 35241 27.77 95.14 42.01 128.24 150.14 347.76
85.16 29.32 0 286 13.92 1314 50983 37.86 124.02 65.31 184.51 171.59 396.67
68.15 30.24 0 534 15.59 1979 77125 59.22 184.48 114.91 315.13 216.96 504.49
Table 5
Performance results of the two-level resource-managing model for Batch Workloads.

λB Rutil Jto Sret Rlock q1B q1−90%B qnB qn90%B CB C∃′%B
(s) (%) (%) (s) (s) (s) (s) (s) (s)

λW ∼ Weibull α = 0.3

110.96 26.78 2 6814 52.63 7960 27799 79275 362614 638481 1296000
88.09 26.12 486 96521 68.64 31176 102823 232980 695903 1129181 1296000
71.52 26.03 0 1729 71.13 35875 131479 264077 831729 1162026 1296000

λW ∼ Weibull α = 0.5

105.30 28.63 0 57 19.64 55.03 162.98 60.77 179.39 146.99 329.38
86.91 29.18 0 184 23.27 62.21 180.24 71.55 206.22 156.14 349.27
68.53 26.67 0 2443 64.41 19108 58021 108044 386205 754762 1296000

λW ∼ Weibull α = 0.7

103.14 28.67 0 18 20.88 35.84 111.64 38.51 120.55 135.53 305.45
85.46 29.25 0 43 24.04 41.98 128.24 46.18 140.85 140.15 315.93
68.14 30.14 0 186 28.17 50.15 149.40 58.47 174.01 150.65 337.96
Table 6
Performance results of the shared-state resource-managing model for Batch Workloads.

λB Rutil Jto Jconf Tconf q1B q1−90%B qnB qn90%B CB C∃′%B
(s) (%) (s) (s) (s) (s) (s) (s)

λW ∼ Weibull α = 0.3

110.36 28.56 0 2551 121274 115.76 358.11 275.75 723.60 322.22 787.15
91.51 28.99 0 3229 154765 177.18 547.43 413.16 1072.18 405.13 1014.22
73.06 29.84 0 4423 210212 305.70 917.42 722.48 1800.01 595.39 1518.74

λW ∼ Weibull α = 0.5

105.25 28.61 0 2034 92566 36.75 124.52 84.90 236.77 191.93 446.21
87.11 29.22 0 2733 125856 69.14 235.85 161.06 426.48 242.69 558.19
69.09 30.09 0 4083 186690 167.24 546.20 395.18 1019.65 398.18 929.41

λW ∼ Weibull α = 0.7

102.74 28.69 0 1729 79219 24.49 82.95 54.68 152.53 164.21 373.18
85.67 29.31 0 2523 113377 54.87 189.44 123.25 333.56 215.42 473.66
67.78 30.24 0 3885 175264 145.56 477.91 336.85 884.21 356.95 812.66
W
t
a
m

workloads (λW ∼ Weibull α = 0.7) compared to the two-level
nd shared-state models, respectively. On the other hand, once
he arrival pattern becomes more extreme (λW ∼ Weibull α =

.5) and the amount of processed workload increases (λB =∼

5 s) then the benefits of the application of the Dynamic model
ecome clearer, and q1B is reduced by ∼20% (53.89 s vs. 62.21
) and 30% (53.89 s vs. 69.14 s) compared to the two-level and
hared-state models, respectively. This pattern is also confirmed
n Fig. 3, where it is shown that, the lower the arrival rate
nd the more extreme the workload, the better the results for
he Dynamic model. Furthermore, an even better performance
ehaviour is shown in this figure: the dynamic model is the
 3

196
only resource-managing model that remains stable even for very
extreme workloads and low arrival rates (high-pressure work-
loads), especially when compared with the two-level model,
which faces a performance bottleneck due to its pessimistic
blocking approach. This behaviour is confirmed by the results
presented in Tables 4, 5, and 6 for very extreme workloads (λW ∼

eibull α = 0.7) and low arrival rates (λB =∼ 70 s), where the
wo-level model is unable to process the incoming workload,
s shown in Fig. 3, and reduces the queue time by approxi-
ately half as compared to the shared-state model (164.25 s vs.
05.70 s).
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Fig. 3. Comparison of the evolution of job queue time until their first task is scheduled (q1B) over time between shared-state, two-level, and the proposed dynamic
odel. In Fig. 3(a), it is shown that the two-level approach (Mesos) hits its scheduling-processing limit on day 3 due to extremity and a low inter-arrival period. If
e compare the aforementioned queue times with those shown in Fig. 3(c), it becomes clear that the number of incoming jobs is more decisive in achieving good
erformance results than the extremity of the arrival pattern. In contrast, both Omega (shared-state) and the proposed Dynamic model are able to continue serving
ncoming jobs. However, it should be borne in mind that the proposed Dynamic resource-managing model shows a more stable scheduling behaviour when facing
he majority of peak loads as repeatedly shown in Fig. 3(a), and more in detail, as can be seen between days 10 and 11, and at the end of day 11 in Fig. 3(b).
.1. Summary of results

From the analysis of the results presented herein, the ad-
antages and limitations of the proposed resource manager al-
ernative, DISCERNER can be summarised. The main advantages
nclude:

• DISCERNER improves performance of the most popular re-
source managers, especially in that it decreases queue times
and maintains a more homogeneous behaviour by reducing
peaks in waiting times, which are present in the other
alternatives (Mesos and Omega).

• The percentage of resource utilisation (Rutil) for DISCERNER
is similar to those of Mesos and Omega: DISCERNER even
presents a slight improvement therein.

Main limitations of the presented alternative includes:

• In the case of stable, well-known, and non-changing work-
loads (i.e., workloads that do not follow patterns such as
day/night patterns), DISCERNER may not be very useful, as
fine-tuning strategies could provide better results. How-
ever, current data centres are executing workloads that are
more and more heterogeneous, and DISCERNER could prove
highly useful in these cases.
197
• As technical limitations, the implementation of a dynamic
resource manager could be a challenge in the real world. It
is not trivial to include this kind of resource managers in
a production data centre, and it is as even more complex
challenge if the dynamic selection of resource managers in-
clude resource managers from different strategies (e.g., from
centralised to distributed). The complexity of this imple-
mentation underlies the fact that certain decisions have to
be made in relation to:

– the moment of exchange of the resource manager.
There could be several alternatives that include: a dae-
mon that queries whether the swap has to be made
periodically (e.g., every 5 min of runtime, which is
the alternative selected in the experiments run in this
work) or whether this is performed only when certain
events arise (e.g., when a new job arrives).

– the queue management. The queues where new jobs
are waiting to be scheduled could be shared by re-
source managers, and therefore a hot-swap could be
made. Another alternative would be to have indepen-
dent queues for each type of resource manager, so that
when a switch is ordered, new jobs arrive in the new
queue, and the swap is not effective until the queue of
last resource manager used becomes empty.
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• The performance of the classification methods, which is
crucial in our proposal, should be improved, mainly because
once they are trained they cannot adapt well with new
workload patterns. The fact that DISCERNER outperforms
other resource managers, in spite of the accuracy of the
classifiers, encourages us to further our work in this direc-
tion, and to include schemes of reinforcement learning, for
example, in order to enable DISCERNER to adapt to highly
varying situations.

6. Conclusions and future work

In this work we proposed a new decision-support model
or data-centre resource managing, which, by means of a
achine-learning classifier, dynamically switches between ex-

sting resource-managing models according to the data-centre
perational situation and incoming workload.
The presented model is based on a theoretical decision theory

ramework supported by the experiments to find the form of
he optimised function. Such an approach is applied due to the
act that the considered function does not have an analytical
orm in Cloud Computing scenarios, where numerous hetero-
eneous workloads are executed on the same hardware, which
eads to higher utilisation rates and unpredictable and extreme
atterns. The selected theoretical framework was chosen due to
ts simplicity over other alternatives, such as strategic game-
ased solutions, usage of rationality principles, and advanced
rtificial intelligence methods. The considered problem needs to
e solved on demand for a highly dynamic Cloud environment
ithout unnecessary delays. In order to accelerate the time taken
o find solutions, the system may run dedicated simulations in
dvance.
It has been shown that this new model presents a great oppor-

unity in terms of performance. In addition, since new resource-
anaging models could be included, it provides a flexible model

hat could easily adapt to the ever-evolving environment of Cloud
omputing.
On one hand, in the worst scenarios with moderate work-

oads and predictable patterns, this new model achieves minor
erformance gains, and even may cause a low negative impact
epending on the scenario. This is mainly due to the errors inher-
nt to the classification and forecasting models employed, which
an be reduced or even avoided if classification and forecasting
odels of a more complex nature are considered. On the other
and, major performance gains in the range of [20%–50%] in
erms of queue times and makespan can be achieved in more
ealistic and extreme scenarios.

As future work, we intend to improve this model through
everal actions:

• Extension of the proposed model for the dynamic utilisation
of various resource managers in parallel, as well as dynamic
combinations thereof to serve different groups of workloads
depending on their characteristics and requirements.

• Modification of the simulation tool to provide real-time job
performance results instead of temporal aggregations.

• Improvement of the classification and forecasting models by
employing artificial neural networks.

• Performance of a deep comparative analysis against other
resource-managing models seldom employed in industry,
such as parallel and hybrid models.

• Validation of the results by modifying existing data-centre
resource managers and applying them to real data centres
in production.
198
CRediT authorship contribution statement

Damián Fernández-Cerero: Conceptualization, Methodology,
nvestigation, Formal analysis, Data curation, Software, Writing -
riginal draft, Resources, Validation, Writing - review & editing.
. Javier Ortega: Project administration, Investigation, Data cura-

tion, Writing - original draft, Writing - review & editing, Funding
acquisition. Agnieszka Jakóbik: Conceptualization, Investigation,
Formal analysis, Writing - original draft. Alejandro Fernández-
Montes: Project administration, Writing - original draft, Writing
- review & editing, Validation, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

Project RTI2018-098062-A-I00, funded by FEDER/Spanish Min-
istry of Science and Innovation — National Research Agency.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.future.2020.10.031.

References

[1] D. Fernández-Cerero, A. Fernández-Montes, J. Kolodziej, L. Lefèvre, Quality
of cloud services determined by the dynamic management of scheduling
models for complex heterogeneous workloads, in: 2018 11th International
Conference on the Quality of Information and Communications Technology,
QUATIC, IEEE, 2018, pp. 210–219.

[2] M. Tirmazi, A. Barker, N. Deng, M.E. Haque, Z.G. Qin, S. Hand, M. Harchol-
Balter, J. Wilkes, Borg: the next generation, in: Proceedings of the Fifteenth
European Conference on Computer Systems, 2020, pp. 1–4.

[3] I. Kilanioti, A. Fernández-Montes, D. Fernández-Cerero, A. Karageorgos,
C. Mettouris, V. Nejkovic, N. Albanis, R. Bashroush, G.A. Papadopoulos,
Towards efficient and scalable data-intensive content delivery: State-
of-the-art, issues and challenges, in: High-Performance Modelling and
Simulation for Big Data Applications, Springer, 2019, pp. 88–137.

[4] B. Burns, J. Beda, K. Hightower, Kubernetes, Dpunkt, 2018.
[5] J. Turnbull, The Docker Book: Containerization is the New Virtualization,

James Turnbull, 2014.
[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.

Shenker, I. Stoica, Mesos: A platform for fine-grained resource sharing in
the data center, in: NSDI, Vol. 11, 2011, p. 22.

[7] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, et al., Apache hadoop yarn: Yet another
resource negotiator, in: Proceedings of the 4th Annual Symposium on
Cloud Computing, ACM, 2013, p. 5.

[8] A. Narayanan, Tupperware: Containerized Deployment at Facebook,
DockerCon, 2014.

[9] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: flexible,
scalable schedulers for large compute clusters, in: Proceedings of the 8th
ACM European Conference on Computer Systems, ACM, 2013, pp. 351–364.

[10] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes,
Large-scale cluster management at google with borg, in: Proceedings of
the Tenth European Conference on Computer Systems, ACM, 2015, p. 18.

[11] M.E. Maron, Automatic indexing: an experimental inquiry, J. ACM 8 (3)
(1961) 404–417.

[12] L.E. Baum, T. Petrie, Statistical inference for probabilistic functions of finite
state Markov chains, Ann Math. Statist. 37 (6) (1966) 1554–1563.

[13] C. Cortes, V. Vapnik, Support-vector networks, in: Machine Learning, 1995,
pp. 273–297.

[14] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32, http://dx.
doi.org/10.1023/A:1010933404324.

https://doi.org/10.1016/j.future.2020.10.031
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb1
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb3
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb4
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb5
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb5
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb5
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb7
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb8
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb8
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb8
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb9
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb9
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb9
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb9
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb9
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb10
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb10
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb10
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb10
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb10
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb11
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb11
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb11
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb12
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb12
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb12
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb13
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb13
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb13
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324


D. Fernández-Cerero, F.J. Ortega, A. Jakóbik et al. Future Generation Computer Systems 116 (2021) 190–199
[15] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Pro-
ceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[16] A survey on feature selection methods, Comput. Electr. Eng. 40 (1) (2014)
16–28.

[17] A. Jović, K. Brkić, N. Bogunović, A review of feature selection methods with
applications, in: 38th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics, MIPRO, 2015, pp.
1200–1205.

[18] M.A. Hall, Correlation-based Feature Subset Selection for Machine Learning,
University of Waikato, Hamilton, New Zealand, 1998.

[19] D. Fernández-Cerero, A. Fernández-Montes, A. Jakóbik, Limiting global
warming by improving data-centre software, IEEE Access 8 (2020)
44048–44062.

[20] G. Parmigiani, L. Inoue, Decision Theory: Principles and Approaches, Vol.
812, John Wiley & Sons, 2009.

[21] D. Fernández-Cerero, A. Fernández-Montes, A. Jakóbik, J. Kołodziej, M.
Toro, SCORE: Simulator for cloud optimization of resources and energy
consumption, Simul. Model. Pract. Theory 82 (2018) 160–173.

[22] D. Fernández-Cerero, A. Fernández-Montes, A. Jakobik, J. Kolodziej, Stack-
elberg game-based models in energy-aware cloud scheduling, in: ECMS,
2018, pp. 460–467.

[23] D. Fernández-Cerero, A. Jakobik, A. Fernández-Montes, J. Kołodziej, GAME-
SCORE: Game-based energy-aware cloud scheduler and simulator for
computational clouds, Simul. Model. Pract. Theory 93 (2019) 3–20.

[24] R.J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering, Springer, 2014.

[25] D. Fernández-Cerero, F.J. Ortega-Irizo, A. Fernández-Montes, F. Velasco-
Morente, Bullfighting extreme scenarios in efficient hyper-scale cluster
computing, Cluster Comput. (2020) 1–17.

[26] D. Fernández-Cerero, A. Fernández-Montes, J.A. Ortega, Energy policies for
data-center monolithic schedulers, Expert Syst. Appl. 110 (2018) 170–181.

[27] D. Fernández-Cerero, A. Fernández-Montes, F. Velasco, Productive
efficiency of energy-aware data centers, Energies 11 (8) (2018) 2053.

[28] D. Fernández-Cerero, A. Fernández-Montes, F.J. Ortega, A. Jakóbik, A.
Widlak, Sphere: Simulator of edge infrastructures for the optimization
of performance and resources energy consumption, Simul. Model. Pract.
Theory 101 (2020) 101966.

[29] D. Fernández-Cerero, A. Fernández-Montes, A. Jakóbik, Limiting global
warming by improving data-centre software, IEEE Access 8 (2020)
44048–44062.

[30] M. Tirmazi, A. Barker, N. Deng, M.E. Haque, Z.G. Qin, S. Hand, M. Harchol-
Balter, J. Wilkes, Borg: the Next Generation, in: EuroSys’20, Heraklion,
Crete, 2020.

[31] C. Lu, K. Ye, G. Xu, C. Xu, T. Bai, Imbalance in the cloud: An analysis on
Alibaba cluster trace, in: 2017 IEEE International Conference on Big Data,
Big Data, 2017, pp. 2884–2892.

[32] M.A.H. Eibe Frank, I.H. Witten, The WEKA Workbench. Online Appendix for
‘‘Data Mining: Practical Machine Learning Tools and Techniques’’, Morgan
Kaufmann, 2016.
199
Damián Fernández-Cerero received the B.E. degree
and the M.Tech. degrees in Computer Science from the
University of Sevilla. In 2014, he joined the Department
of Computer Languages and Systems, University of
Seville, as a PhD. Student. During his Ph.D. period he
established European collaborations in France, Poland,
Italy, and Ireland through several research stays. After
the obtention of his Ph.D, he was granted with a Marie
Curie post-doctoral position at Dublin City University.
Currently he both lectures and conducts research at
University of Sevilla. He has worked on several research

projects supported by the Spanish government and the European Union. His
research interests include performance and energy optimisation models for cloud
and edge-computing systems.

F. Javier Ortega is a Ph.D. in Computer Science from
the University of Seville. His research is focused on
machine learning and graph-based algorithms and its
application to Social Network analysis and Natural
Language Processing. His most recent works are related
to opinion mining, social network analysis, web spam
detection and trust and reputation analysis.

Agnieszka Jakóbik (Krok) received her M.Sc. in the
field of Stochastic Processes at the Jagiellonian Uni-
versity, Poland and a Ph.D. degree in Artificial Neural
Networks at the Tadeusz Kosciuszko Cracow University
of Technology, Poland. Since 2009 she is an Assistant
Professor at the Tadeusz Kosciuszko Cracow University
of Technology. Her e- mail address is: ajakobik@pk.edu.
pl.

Alejandro Fernández-Montes received the B.E. degree
in computer science and the M.Tech. and international
Ph.D. degrees in software engineering from the Univer-
sity of Seville, Spain. In 2006, he joined the Department
of Computer Languages and Systems, University of
Seville, as an Intern, and he became a Lecturer and
an Assistant Professor, in 2013. In 2018, he became an
Associate Professor (Professor Titular de Universidad).
In 2008 and 2009, he was invited to work with the
École Normale Supérieure de Lyon (ENS de Lyon) in
saving energy solutions for Grid’5000 infrastructure. In

2012, he was invited to work at the Universitat Politécnica de Barcelona to
share experiences in saving energy and doctoral methodologies. In 2016, he
was invited to work with Shanghai Jiao Tong University, China, to initiate
collaborations in distributed computing. He currently teaches and conducts
research with the University of Seville, where he is also the Principal Investigator
of several projects. His research interests include energy efficiency in distributed
computing, applying prediction models to balance load, and applying on–off
policies to the Internet data centres.

http://refhub.elsevier.com/S0167-739X(20)33015-6/sb16
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb16
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb16
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb18
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb18
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb18
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb19
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb19
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb19
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb19
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb19
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb20
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb20
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb20
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb21
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb21
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb21
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb21
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb21
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb23
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb23
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb23
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb23
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb23
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb24
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb24
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb24
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb25
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb25
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb25
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb25
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb25
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb26
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb26
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb26
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb27
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb27
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb27
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb28
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb29
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb29
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb29
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb29
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb29
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb32
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb32
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb32
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb32
http://refhub.elsevier.com/S0167-739X(20)33015-6/sb32
mailto:ajakobik@pk.edu.pl
mailto:ajakobik@pk.edu.pl
mailto:ajakobik@pk.edu.pl

	DISCERNER: Dynamic selection of resource manager in hyper-scale cloud-computing data centres
	Introduction
	Related work
	Theoretical framework
	Experimental design
	Methodology
	Generation of the training dataset
	Experimentation framework
	Classification algorithms and feature selection

	Evaluation
	Summary of results

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A. Supplementary data
	References


