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Abstract –The response of dissipative systems to multi-chromatic fields exhibits generic prop-
erties which follow from the discrete time-translation symmetry of each driving component. We
derive these properties and illustrate them with paradigmatic examples of classical and quantum
dissipative systems. In addition, some computational aspects, in particular a matrix continued-
fraction method, are discussed. Moreover, we propose possible implementations with quantum
optical settings.

Introduction. – The dynamics of strongly driven
systems may be rather complex, in particular when the
driving consists of various components with different fre-
quencies. A particular and well-studied case is a higher
harmonic added to the driving with a fundamental fre-
quency. This type of bichromatic driving can be used to
control spatio-temporal symmetries via the relative phase
between the two monochromatic fields [1–5]. It allows one
to induce directed motion by the action of an oscillating
field with zero mean, giving rise to the celebrated ratchet
effect [6, 7]. Moreover, one may use bichromatic driving
for quantum state preparation [8, 9].

By contrast, there exists considerably less work on driv-
ing forces with two incommensurable frequencies, i.e., fre-
quencies whose proportion is an irrational number. An
intriguing feature of such drivings is that while each of
its components is time-periodic, the system as a whole
lacks discrete time-translation symmetry. In spite of this,
the response may have higher symmetry than in the com-
mensurable case [5, 10]. The reason for this is that, in
the incommensurable case, the long-time average is equiv-
alent to the average over the relative phases among the
driving components [11,12]. In Ref. [10] the difference be-
tween commensurable and incommensurable drivings has
been demonstrated both theoretically and experimentally
for the electron transport through a double quantum dot.

At first sight, the distinction between drivings with com-
mensurable and incommensurable frequencies seems sur-
prising, since irrational numbers can be approximated to

any degree of accuracy by rational numbers. This appar-
ent paradox has motivated several studies of the response
of multi-chromatically driven systems—both dissipative
[11–14] and Hamiltonian ones [15, 16]—as a function of
one driving frequency while keeping the others constant.

In this perspective, we shed light on how the dis-
crete time translation symmetries of each periodic driv-
ing component provides resonance peaks with a generic
shape. These results are illustrated with some paradig-
matic examples of classical and quantum dissipative sys-
tems. Moreover, we demonstrate that the phase-average
of the long-time response can be computed with a matrix
continued-fraction method originally developed for incom-
mensurable frequencies [10]. Possible implementations in
quantum optical systems are also suggested together with
an outlook for further studies.

Some general theoretical results. – We are inter-
ested in systems whose dynamical equations depend on
time through N time-periodic functions of the form

fj(t) = εj cos (Ωjt+ ϕj) , (1)

where j = 1, . . . , N , and εj , Ωj , and ϕj denote, respec-
tively, the amplitude, the angular frequency, and the ini-
tial phase of fj(t). The state of the system at time t will be
denoted as S (t). Depending on the case, S may represent
the values of a finite number of state variables character-
izing a classical deterministic system, the density operator
of a quantum system, the one-time probability density of
a classical stochastic system, etc.

p-1



M. L. Olivera-Atencio et al.

We focus on generic properties that do not depend on
the precise nature of the functions fj(t) and the specific
details of the underlying dynamics. Our only assumption
is that there exists a unique steady state, S st(t), to which
the system converges in the long-time limit—an assump-
tion that holds for a wide class of dissipative systems. In
general, the steady state will depend on the specific val-
ues taken by the parameters appearing in the functions
fj(t). When necessary, this dependence will be made ex-
plicit by the notation S st(t, ε,Ω,ϕ), where ε, Ω, and ϕ
are N -dimensional vectors with components εj , Ωj , and
ϕj , respectively.

Since we are assuming a unique steady state, its time
evolution must be uniquely determined by the dynamical
equations. Hence, the steady state shares the symmetry
properties of the dynamical equations. To be specific, the
set of functions in Eq. (1) is invariant under the N + 1
transformations

T (j) : {t, ε,Ω,ϕ} 7→ {t, ε(j),Ω,ϕ+ πu(j)}, (2)

T : {t, ε,Ω,ϕ} 7→ {t+ τ, ε,Ω,ϕ− τΩ}, (3)

where ε(j) is the vector of amplitudes with the sign of
component j inverted, while u(j) is the jth canonical basis
vector. More formally, ε

(j)
k = (1− 2δj,k)εk and u

(j)
k = δj,k,

with δj,k being the Kronecker delta. Since the only explicit
dependence of the dynamical equations on t, ε, Ω, and ϕ
comes from the functions fj(t), the steady state will also
be invariant under these N + 1 transformations, i.e.,

S st(t, ε,Ω,ϕ) = S st(t, ε(j),Ω,ϕ+ πu(j)) (4)

= S st(t+ τ, ε,Ω,ϕ− τΩ). (5)

Generic shape of the resonance peaks. – Let
Q = Q(S ) represent a certain (physical) quantity that
depends on the state of the system. In particular,
in the steady state, the dependence of Q on t, ε, Ω,
and ϕ is Qst(t, ε,Ω,ϕ) ≡ Q[S st(t, ε,Ω,ϕ)]. By apply-
ing Eq. (4) twice, it follows that Qst(t, ε,Ω,ϕ) is 2π-
periodic in all the components of the vector ϕ, i.e.,
Qst(t, ε,Ω,ϕ+ 2πu(j)) = Qst(t, ε,Ω,ϕ) for j = 1, . . . , N .
In addition, taking in Eq. (5) τ = −t, one obtains that
Qst(t, ε,Ω,ϕ) = Qst(0, ε,Ω,ϕ+ Ωt), i.e., the time evolu-
tion of Qst(t, ε,Ω,ϕ) admits a description in terms of a
time-dependent phase vector of the form ϕ+ Ωt. Taking
into account these two properties and performing a Fourier
expansion in ϕ, it is easy to see that the time average of
Qst from 0 to T reads

QT (ε,Ω,ϕ) =
∑
k∈ZN

qk(ε,Ω)eik·(ϕ+ΩT/2)sinc

(
k ·ΩT

2

)
,

(6)
where sinc(x) ≡ sin(x)/x denotes the unnormalized sinus
cardinalis, while the centered dot denotes the usual scalar
product of N -dimensional vectors, and

qk(ε,Ω) =

∫ π

−π
· · ·
∫ π

−π
e−ik·ϕQst(0, ε,Ω,ϕ)

N∏
j=1

dϕj
2π

. (7)

Note that, according to Eqs. (4) and (5), the Fourier co-
efficients qk satisfy the symmetry property qk(ε(j),Ω) =
(−1)kjqk(ε,Ω) and, hence, can be written in the form

qk(ε,Ω) ≡ γk(ε,Ω)

N∏
j=1

ε
|kj |
j , (8)

where the functions γk(ε,Ω) are even in each of the argu-
ments εj . Under quite general conditions, it can be shown
that the functions γk(ε,Ω) admit a Taylor expansion in
the amplitudes εj [11]. In practice, for sufficiently small
values of the amplitudes εj expressed in suitable dimen-
sionless units, this expansion can be truncated after a few
terms [11]. The dependence of the Fourier coefficients on
the amplitudes in Eq. (8) can also be obtained by a func-
tional expansion on the driving [17,18].

In the limit T → ∞, the sinc functions appearing in
Eq. (6) vanish unless the resonance condition k ·Ω = 0 is
fulfilled. Therefore, Eq. (6) leads to

Q∞(ε,Ω,ϕ) =
∑
k∈S⊥

Ω

qk(ε,Ω)eik·ϕ, (9)

where S⊥Ω is the set of vectors k that have integer com-
ponents and are orthogonal to Ω. In practice, the limit
T → ∞ can be calculated only approximately by taking
a sufficiently large value of T . If we consider the vicinity
of a resonance at a fixed frequency vector Ω0 and focus
on driving frequencies Ω = Ω0 + δω, with δω of the same
order of magnitude as T−1, then the asymptotic behavior
of Eq. (6) for T →∞ is given by [12]

QT (ε,Ω0 + δω,ϕ) ∼
∑
k∈S⊥

Ω0

qk(ε,Ω0)eik·(ϕ+δωT/2)

× sinc

(
k · δωT

2

)
.

(10)

Rather importantly, owing to the orthogonality condition
k ·Ω0 = 0, the only dependence on Ω0 is contained in the
Fourier coefficients qk.

A non-trivial solution of the equation k · Ω = 0 re-
quires that the N components of Ω are commensurable,
i.e., that one of the frequencies can be expressed as a lin-
ear combination of the others with rational coefficients.
Otherwise, the set S⊥Ω reduces to the trivial solution
k = 0, and q0(ε,Ω) is the only non-vanishing term in
Q∞(ε,Ω,ϕ). Since q0(ε,Ω) is independent of the phases
in ϕ, it provides a smooth background for sinc-shaped
peaks in QT (ε,Ω,ϕ). Interestingly, this background van-
ishes if the dynamical equations are invariant under a map-
ping that involves the phases ϕ and inverts the sign of the
observable Q. Then, QT (ε,Ω,ϕ) = −QT (ε,Ω, ϕ̃), which
links the response for the phase ϕ and the transformed
phase ϕ̃. If, in addition, the Jacobian of the phase trans-
formation is unity (which is fulfilled for any phase inver-
sion and phase shift), one can conclude from Eq. (7) that
q0(ε,Ω) = −q0(ε,Ω) = 0.
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Equivalent phases. – Equation (9) contains a phase
factor eik·ϕ which is invariant under a phase shift ϕ →
ϕ+ δϕ provided that

k · δϕ = 2π (11)

(or any other multiple of 2π) for all the vectors k orthog-
onal to Ω and with integer components. In the case that
the N components of Ω are pairwise commensurable (i.e.,
if there exist a frequency Ω0 and an N -dimensional vector
n with positive integer components such that Ω = Ω0n),
the orthogonality condition k ·Ω = 0 becomes equivalent
to the Diophantine equation k · n = 0. This Diophantine
equation together with Eq. (11) implies invariance of the
response under non-trivial phase shifts δϕj < 2π.

While for multi-chromatic driving, the general solution
of the Diophantine equation k ·n = 0 may be complicated
(see, e.g., Refs. [11, 12, 19, 20]), for bichromatic driving, it
can be derived explicitly. Setting Ω = (q, p)Ω0 with p and
q coprime, the general solution is (p,−q)`, with ` being
any integer. Therefore, only terms with k being integer
multiples of (p,−q) contribute to Q∞ as discussed above.
Then, condition (11) becomes pδϕ1 − qδϕ2 = 2π. Since
only relative phases of the drivings fj(t) matter, we can
set one phase to zero, such that we can conclude invariance
of the response Q∞ for the phase shifts [5, 12,13]

ϕ1 → ϕ1 + 2π/p, (12)

ϕ2 → ϕ2 + 2π/q. (13)

Notice that this is a kind of cross relation, since the inte-
ger q or p that defines the frequency of one of the driv-
ings appears in the phase invariance of the other driving.
In Ref. [12], it has been demonstrated numerically that
the equivalence of these phases holds (approximately) in
a whole vicinity of a (q, p)-resonance.

Examples for the bichromatic case. – To illus-
trate the features discussed so far, we provide explicit nu-
merical results for a classical random walk and a dissipa-
tive quantum mechanical two-level system.

Classical system. Several classical models have been
considered in the literature to analyze generic properties of
dissipative dynamical systems under multi-frequency driv-
ings. For example, a one-dimensional model consisting of
a Brownian particle, moving in a periodic potential, un-
der the influence of a biharmonic force has been used to
study some general asymptotic properties of driven non-
linear dissipative systems in the long-time limit [13]. This
same model has also been considered to elucidate the con-
nection between irrationality and quasiperiodicity in these
kinds of systems [14]. The generality of these results has
been revealed by replacing the periodic potential with a
double-well potential (see the supplemental material in
Ref. [14]). In Ref. [12], the generic shape of the reso-
nance peaks in the vicinity of commensurable frequencies
has been illustrated using a classical random walk model.
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Fig. 1: Emergence of the (q, p) = (4, 1) resonance peak with
increasing averaging time T for ϕ1 = 0 and the equivalent
phases ϕ2 = 0, π/2, π, 3π/2. As expected from the theoretical
analysis, with increasing averaging time, all curves converge to
the asymptotic behavior in Eq. (10).

Given the simplicity of this latter model, it will be the one
considered here.

As an example for a classical stochastic process, we thus
employ an infinite one-dimensional chain with thermal
nearest-neighbor hopping with the forward and backward
rates

r±(t) = r0e
−β[E0±∆E(t)], (14)

where β denotes the inverse thermal energy 1/kBT [12].
The energy difference between two adjacent sites with
distance a contains a static contribution E0 and a time-
dependent one, ∆E(t) = f(t)/β with

f(t) = A1 cos(Ω1t+ ϕ1) +A1 cos(Ω2t+ ϕ2). (15)

It can be shown that the stationary state of the corre-
sponding master equation reads

v(t) = a[r+(t)− r−(t)] = v0 sinh[f(t)] (16)

with v0 = 2ar0 exp(−βE0). For details of the calculation,
see Ref. [12].

To evaluate the long-time average of the velocity, it is
convenient to decompose v(t) into a Taylor series in the
amplitudes Ai. Then the time integration of each term
can be evaluated analytically, while for the summation of
the resulting terms, we resort to numerics [12]. The result
for Ω2 in the vicinity of Ω1/4, i.e., close to the (4,1) res-
onance, is depicted in Fig. 1. It nicely shows that while
the response for equivalent phases defined in the previ-
ous section may be different for small averaging times, all
the curves become indistinguishable for sufficiently large
T . Moreover, once convergence is practically reached, the
curves exhibit the sinc shape proposed for their enveloping
function.
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Fig. 2: (a) Expectation value 〈σz〉T averaged over a time
T = 1000/Ω1 for all possible phases ϕ2 and various driving
amplitudes (gray) for θ = π/4 and damping rate Γ = 0.05.
The red lines mark the result of the two-color Floquet the-
ory with MCF which corresponds to the phase average. For
graphical reasons, the curves for A = ∆ and A = 1.5∆ are
vertically shifted by 0.5 and 1, respectively. (b) Enlargement
of the resonance at Ω2 = Ω1/2 for A = 1.5∆ and averaging
times T = 500, 1000, 1500 for 25 randomly chosen relative
phases, which visualizes the buildup of the sinc-shaped peak
with increasing T .

Dissipative two-level system. In Ref. [12], the shape of
the resonance peaks has been investigated also for the two-
level Hamiltonian as an example for dissipative quantum
systems. Here, we consider a quantum mechanical system
defined by the Hamiltonian

H(t) =
∆

2
(σz cos θ + σx sin θ)

+A1σx cos(Ω1t) +A2σz cos(Ω2t+ ϕ)
(17)

with the Pauli matrices σx,z and the angle θ which al-
lows the control of the symmetry, as we will see below.
Dissipation is provided by a Lindblad form such that the
quantum master equation for the density operator reads

ρ̇ = − i
~

[H(t), ρ] + Γ(2σ↓ρσ↑ − σ↑σ↓ρ− ρσ↑σ↓), (18)

with the dissipation rate Γ and the Lindblad operator σ↓ ≡
|φ0〉〈φ1| = σ†↑, which is the projector to the ground state
|φ0〉 for given angle θ.

Figure 2(a) depicts the behavior of the long-time solu-
tion for which we predicted the result in Eq. (6). The
grey lines show the long-time average 〈σz〉T for various
initial phases. They are computed via straightforward nu-
merical propagation of the Lindblad master equation (18).
The curves possess resonance peaks at rational values of
Ω1/Ω2. Their enveloping function clearly exhibits the

shape of a sinc function, which implies that the series
in Eq. (6) is governed by a single coefficient with in-
dex k 6= 0. The smooth background corresponds to the
only coefficient for which the sinc becomes equal to unity,
namely q0(Ω). Figure 2(b) visualizes how the shape of
the enveloping function of the response for different phases
emerges. For sufficiently large T , firstly the sinc-shape is
assumed. Then with T increasing further, the sinc be-
comes ever narrower and eventually shrinks to a single
discontinuity located at Ω2 = (p/q)Ω1.

As a consequence of spatio-temporal symmetries, the
background may vanish. For example, when θ = π/2 the
Hamiltonian H(t) is invariant under unitary transforma-
tion with σx accompanied by a phase shift ϕ → ϕ + π,
while our observable σz acquires a minus sign. Moreover,
since the Lindblad dissipator is defined via the eigenstates
of the time-independent part of the Hamiltonian, it is in-
variant under this transformation as well. Since for in-
commensurable frequencies, the phase is irrelevant in the
limit T → ∞, the time-averaged response is equal to its
negative value and, hence, must be zero.

Computation of the phase-averaged response. –
An established technique for treating periodically driven
systems is Floquet theory. It is based on the discrete time
translation by the period of the driving T . Under this
symmetry, linear differential equations ψ̇ = L(t)ψ possess
a complete set of solutions of the form ψ(t) = e−iµtφ(t),
where φ(t) = φ(t + T ) shares the time periodicity of the
driving [21]. Then the Floquet function φ(t) is an eigen
solution of L(t) − ∂t in a Hilbert space extended by a
periodic time coordinate [22,23].

For bichromatic driving with incommensurable frequen-
cies, the discrete time translation symmetry gets lost.
Nevertheless, one can employ a Floquet ansatz extended
by a further Fourier index that reflects the periodicity of
the second driving. Hence the solutions are still of the
form ψ(t) = e−iµtφ(t), but now with the modified Floquet
function [24,25]

φ(t) =
∑
k

e−ik·Ωtφk(Ω), (19)

where k = (k1, k2). It corresponds to a two-dimensional
Fourier ansatz which for very strong driving may be nu-
merically expensive. Notice that in contrast to the ansatz
for the long-time solution (6), the general solution of the
dynamical system, ψ(t), contains an exponential prefac-
tor.

For dissipative equations of motion, an efficient numer-
ical method has been developed in Ref. [10]. It starts
from the observation that the Floquet index µ of the long-
time solution must vanish. Then one readily obtains a set
of coupled homogeneous equations for the Fourier coeffi-
cients φk(Ω). The idea is now to derive for one Fourier
index, say k2, a recurrence equation which can be solved
with matrix continued-fraction (MCF) with a numerical
effort that grows only linearly with the size of the cutoff
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index. Finally, this provides the Fourier coefficient φ0(Ω)
which contains all information about the time-averaged
long-time solution. Hence, it is equivalent to the compo-
nent q0(Ω) of the long-time solution (6).

While the ansatz (19) looks rather natural, it has to be
handled with care, because for commensurable frequen-
cies, it is overcomplete. Technically this may lead to di-
vergences in the MCF iteration. In practice, dissipation
generally cures this problem, but its emergence cannot be
ruled out.

Hence, for commensurable frequencies, the MCF algo-
rithm provides the phase-average of the long-time average
(6). In Fig. 2, we verify this numerically for the case of
the two-level system defined in Eq. (17). The red curve is
computed with the MCF iteration and indeed provides the
smooth background of the resonance peaks. A further test
may be performed with the mixing angle θ = π/2 for which
the symmetry considerations above predict 〈σz〉T = 0.

Proposal for an implementation with trapped
ions. – The dissipative dynamics of Eq. (18) can be
carried out straightforwardly with a trapped ion quantum
platform, as has been demonstrated both theoretically [26]
and experimentally [27]. We consider a two-ion system,
where the first ion will encode the two-level system under
study, and the second ion will be an ancillary qubit that
will provide the dissipative part. The unitary part given
by H(t) amounts to a single-qubit time dependent oper-
ation, which can always be decomposed onto single-qubit
drivings with appropriate laser intensities and frequen-
cies [28]. With respect to the dissipative, Lindblad-form
term of Eq. (18), one can couple the previous two-level
system of the first ion with a second two-level system of
the ancillary ion, and perform a digital decomposition of
the Lindblad dynamics, as described in Ref. [26]. In each
digital step, one would implement the Kraus operators,
of the form (considering only the dissipative part for sim-
plicity, while the unitary part would be carried out with a
subsequent digital step)

ρ(t) = E0ρ(0)E†0 + E1ρ(0)E†1, (20)

where

E0 =

(√
1− γ′ 0

0 1

)
, E1 =

(
0 0√
γ′ 0

)
(21)

are 2×2 matrices acting on the two-level subspace of the
considered system with exponentially decaying 1 − γ′ =
exp(−2Γt). These Kraus operators correspond to the dis-
sipative channel in the basis |φ0〉, |φ1〉, providing, in each
small time step, the Lindblad part of the dynamics of
Eq. (18) [29]. To carry out these operations in a digi-
tal quantum simulator with the two-ion system, for each
digital step, one would initialize the ancilla qubit in state
|0〉 and apply a two-qubit gate U2 such that 〈0|U2|0〉 = E0

and 〈1|U2|0〉 = E1 are the required matrix elements in the
ancillary qubit basis (corresponding to single-qubit gates

in the system qubit). A U2 fulfilling these requirements
can always be obtained via at most three CNOT gates
combined with single-qubit gates [29]. Subsequently, as
described in Refs. [26,27], one would apply optical pump-
ing to the ancillary qubit, to map it to state |0〉, providing
the entropy increase that realizes the dissipation. Finally,
one would carry out the unitary part of H(t). The com-
plete master equation dynamics would be provided by the
subsequent iteration of this digital step for n total steps.
The long term solution would be obtained for sufficiently
large n, and the measurement 〈σz〉T can be straightfor-
wardly carried out with the trapped ion system via reso-
nance fluorescence [28].

Conclusions and future perspectives. – In this
article we have reviewed the generic behavior of multi-
chromatically driven dissipative systems in the classical
as well as in the quantum mechanical dynamics. Most
prominently, in the time-averaged signal as a function
of one driving frequency, one observes phase-dependent
peaks with a sinc-shaped envelope on top of a smooth
phase-independent background. The width of the peaks
diminishes with the averaging time. By contrast, the
background does not depend on the phases and converges
rather rapidly to its asymptotic value. Symmetries may
suppress the background, while features of the peaks re-
main. It is worth mentioning that the width of these peaks
is generally smaller than the one predicted by the Fourier
inequality [30], where the difference can be expressed as a
factor determined by the driving frequencies [13]. There-
fore, our results may have a direct and practical applica-
tion for the identification of dissipative systems displaying
sub-Fourier resonances [13,14,30].

To observe these peaks, one has to leave the linear re-
sponse limit and enter the regime of harmonic mixing.
Then with an increasing amplitude an increasing number
of resonances emerges, but “simple resonances” such as
1/1, 1/2, or 2/3 dominate the overall behavior. A chal-
lenging open problem is the question whether there is any
rule for the relative magnitude of the peaks as a function
of the “simplicity” of the frequency ratio.

For the computation of the numerical examples, we have
used simple propagation schemes which, however, may be
rather time consuming. For the phase-averaged response,
it turned out that a two-frequency Floquet theory provides
reliable results for practically all frequency ratios, despite
that its convergence is guaranteed only for incommensu-
rable frequencies. This allows one to employ a computa-
tional method based on matrix continued-fractions, which
is numerically rather efficient.

Finally, future explorations of the magnitudes of the res-
onances for further systems may deepen our understand-
ing of multi-chromatically driven systems and may open
perspectives in science, technology, and industry.
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