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Abstract 
Monitoring the properties of biological samples (BS) is expensive in terms of time 

consumption and cost in resources and human effort. There are monitoring methods 

using different techniques, depending on the type of biological sample (cells, tissues, 

blood, etc.). In this thesis, we improve the accuracy of the ECIS (electrical cell-substrate 

impedance spectroscopy) technique of bioimpedance (BI) measurement of a monolayer 

cell-culture (CC), which measures the electrical response of a CC when an alternating 

current is applied to it at several frequencies. Specifically, this dissertation is focused on 

the modeling of the cell-electrode (CE) block, and the real-time monitoring and 

acquisition of the cell concentration in a CC assay experiment. In addition, using as a 

database the CE model obtained in the modeling stage, a toolbox has been built to 

perform efficient electrical real-time simulations with Ngspice, launching these 

simulations from Matlab. 

Herein, the BI measurement is applied indirectly. Instead of injecting a signal, the CE 

block is connected to an electronic oscillator, which fulfills the Barkhausen Stability 

Criterion (BSC) to ensure that self-maintained and self-sustained oscillations are 

generated. The technique is known as Oscillation Based Test (OBT) [1]. Instead of 

measuring the changes between the output and input signal, the oscillation frequency 

and amplitude are acquired and, using the BSC, the parameters of the CE model used 

can be obtained on the fly. As can be seen, this technique is much more powerful than 

injecting a signal, since instead of obtaining the BI for a given frequency, the whole CE 

electrical model of the CE block is obtained. 

The CE model used is based on previous work, but some improvements are 

introduced to increase its accuracy. The data base for this work are real measurements 

made by the research group in CC assays with three different cell lines using an OBT 

circuit. From these data, the parameters of the CE model block are successfully obtained. 

The modeling technique is tested on some variations of the CE model, reaching better 

results by increasing its complexity, making the model closer to reality or introducing 

Fractional Oden (FO) elements.  

Data from real experiments, and the best variants of the electrical model are used to 

build a simulator of a CC assay experiment. The simulator calculates model parameters 

and cell concentration in real-time (without taking into account future measurements) 

using the minimization of a cost function (CF). The minimization of an appropriate CF 

ensures that the oscillation requirements are satisfied and that the obtained CE model 

parameter values are consistent with the theoretical values. The acquired results are very 

satisfactory since the simulation of a real-time experiment demonstrates that the 

technique of minimizing a CF can be used to obtain the cell concentration in real-time. 

As a result, cell concentration data are attained whose trend and values present a 

relatively low error when compared to the cell concentration achived by traditional 

optical cell counting methods. 

Electrical simulations of an electronic circuit are very useful during the design and 

testing process prior to the build of the circuit. The model parameters obtained during 
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the simulation of a CC assay experiment, in addition to showing the feasibility of the 

technique, can be used in electrical simulations of the OBT circuit. For future 

improvements of the OBT measurement circuit, which are discussed at the end of this 

dissertation, electrical simulations must be performed with realistic data to ensure that 

the measurement circuit will work robustly. To perform such simulations, a toolbox has 

been built in Matlab, which performs electrical simulations using Ngspice (open-source 

Spice simulator) in an efficient way. This toolbox is applied to the oscillator circuit 

simulation successfully, being able to perform multiple simulations, varying the CE 

model automatically, in an efficient way. In addition, it can be applied to any electronic 

circuit to launch electrical simulations from Matlab. 
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Chapter 1 Introduction 

Throughout history, humanity has tried to understand everything that is around it. 

It started with relatively simple-to-understand elements until today, where it is possible 

to treat complex diseases, design and fabricate electronic circuits, etc. The study of 

nature, and all the microorganisms that reside in it, is a subject that, although great 

progress has been achieved, is still in the process of research. Biologists from all over the 

world are currently involved in the study of cells, tissues, blood studies, etc. Many tools 

used in this kind of research have progressed a lot, such as electron microscopes, 

incubators, and other tools that are used today. However, there are still processes such 

as optical cell counting, cell differentiation analysis, disease detection, etc. that are still 

too "rudimentary" compared to the enormous advances seen in other research areas. In 

the area of cell biology, specifically in Cell Culture (CC) assays studies, CC monitoring 

methods require a very large amount of time and resources. All tasks and experiments 

performed with CC require one or more people to monitor the status of the culture every 

time. This means, for example, that the researcher must count the number of cells 1 by 1 

in each culture (the traditional method of counting is explained in detail later), check 

their morphology, size, etc. This is done, for evident reasons, using a microscope. In 

order to observe a cell under a microscope, it must be dead and have been stained with 

a colorant. Once the cells are killed and stained, this culture can no longer be monitored 

since, as mentioned above, the cells (the CC) have died. Researchers, in order to know 

the state of a CC assay, must perform a complex and expensive process. To take a single 

measurement of the cell concentration present in a well, they must take a CC assay, kill 

and stain the cells, and then perform an optical count through a microscope. The optical 

(or traditional) counting with the microscope is statistical, several samples (or zones) of 

the culture are counted and extrapolated to the whole CC using the mean of the taken 

measurements. This process is long and, moreover, is expensive, since for each 

measurement that biologist want to perform, they must "waste" a CC assay. Considering 

the present level of technology, it is coherent to think that it is possible to develop an 

easier and more efficient method to perform all these tasks. 

In recent years, some methods to solve this problem have emerged, such as image 

processing to calculate the number of cells in a CC assay [2], [3], flow cytometry (a 

sophisticated instrument measuring multiple physical characteristics of a single cell) [4], 

or bioimpedance (BI) measurement [5], [6]. The BI is the resistance to the current flow 

produced by any biological sample (BS). There are many studies on BI, its modeling and 

applications, but there are also many unsolved problems, such as the translation of BI 

into useful parameters for the field of biology, such as cell concentration, differentiation 

level, composition of a cell, etc. This work focuses on the use of BI to try to solve or go a 

step further in solving this problem these points. Concretely, the main goal is to find a 

method to measure the cell concentration of a CC assay using the BI. 
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The structure of the present document begins with Chapter 1, which contains an 

introduction, where the current state of the art of the agents with which it has been 

working (CC assays, BI modeling methods, measurement circuits, data acquisition and 

processing, and simulation) will be explained. The current state of the art of BS and its 

electrical modeling is reviewed. After that, the challenges of BS modeling is presented. 

The fourth point is to choose and compare the different ways of data acquisition when 

taking electrical measurements of biological samples. This is a very complex field, 

because there are many types of sensors and acquisition methods. Finally, the starting 

point and objectives of this thesis are presented. 

In Chapter 2, the model of the chosen measurement circuit and the possible models 

that can be used to predict the behavior of a CC assay are studied. Details are given about 

how the chosen measurement circuit, an oscillator, works. On the other hand, different 

ways of processing the data (bode diagrams, Barkhausen criterion, etc.) are studied. 

Finally, the parameters of three variants of the same model are fitted using data from a 

CC growth experiment, and the results are compared with each other and with data 

obtained in the traditional experimental way (optical counting with microscope). 

Then, in Chapter 3, two types of simulations applicable to BI measurement are 

presented and tested. The first one is the simulation of a cell growth experiment in which 

the cell concentration is estimated in real-time. To perform real-time estimation electric 

models of the CC must be used, which is the reason why these models have been studied 

in Chapter 2. The second one is the electrical simulation (ES) and its use for the design 

of BI measurement circuits, exposing an efficient method to perform electrical 

simulations applied to this work. In the future, these electrical simulations will be very 

useful when an improvement of the measurement circuit is required, since the real-time 

simulation data is used to predict the behavior of the circuit. 

Finally, Chapter 4 presents the conclusions reached in this study and possible future 

work that might be derived from it. 

1.1 Biological samples 

A BS is a sample of biological material from humans, animals or plants, such as 

blood, cells, tissue, DNA, etc. Each type of sample has its own composition, morphology 

and size, which can be measured in different ways, which are defined as properties of a 

BS. The present work focuses on the study of CC assays, which possess properties of 

their own that can be quantified. For example, cell differentiation is a process by which 

cells are transformed into more complex cell types or even tissues. The differentiation 

level is a fundamental property of a CC assay when performing a cell differentiation 

study [7] and there are many techniques for sensing and acting on tissues [8]. Another 

property, and one of the targets of this thesis, is the growth of a CC assay. The growth 

or proliferation of a cell culture is the process by which the number of cells and / or the 

size of cells in a CC assay grows. This process can be of the cell division type, in which 

a cell divides into two smaller ones; cell growth, which occurs when a cell increases in 
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size; growth and cell division, in which the cell increases its size to then divide into two 

cells of the same size as the original cell. There are many works devoted to the study of 

cell proliferation, such as [9], which details the process of cell counting by optical density 

(a less accurate technique than direct counting). 

Fig. 1.1 shows the growth curve of a CC, which has been reproduced from [9], which 

also details the six different zones (labeled with numbers in the figure) of the CC growth. 

1. Lag phase: The cells adapt to the new culture medium and the new 

environmental conditions. 

2. Acceleration phase: Some structural components of the cells increase 

sequentially and the cell concentration in the well begins to increase. 

3. Exponential phase: The growth rate reaches its maximum and the cell 

concentration increases quickly. 

4. Deceleration phase: the cells face fewer growth factors that enhance growth, 

so the growth rate of the concentration decreases. 

5. Steady-state phase: The birth rate is equal to the mortality rate, so the growth 

rate of the CC concentration is negligible. 

6. Apoptosis (death phase): The mortality rate exceeds the birth rate, so the 

growth rate is negative. This means that the cell concentration decreases. 

As previously explained, cell counting by traditional methods (or direct counting) is 

very laborious and expensive in terms of time and cost. The researchers must spend time 

preparing several CCs in order to count, for example, each day, the number of cells in 

1 2 3 4 5 6

Time

ln
 (

x)

 

Fig. 1.1 Growth curve of a CC. There are six different zones which are labeled in the 

figure. Variable x is the cell concentration on each moment. 
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that CC. If a fairly accurate growth curve is required (Fig. 1.1), it is necessary to kill, stain 

and count cells from several similar CC cell cultures (seeded at the same time) on the 

same day. Even then there may be errors with respect to what would be a growth curve 

measured each day on the same CC assay, since the counting is based on obtaining 

measurements from several CC and obtaining the statistical mean. As can be deduced, 

this process is not optimal, since it requires the expenditure of many materials (cells, 

petri dishes, etc...), and a lot of time performing the whole process. 

1.2 Electrical modeling and applications 

As mentioned, this work focuses, among other topics, on the measurement of BI, a 

property that all BS exhibit. The BI property is based on the electrical properties reported 

in [10] in 1957 by Schwan, the dielectric constant (ε) and the conductivity (σ). These two 

properties are frequency dependent as shown in Fig. 1.2 (obtained from [10]) and three 

frequency dependent dispersion zones are observed: α, β and γ.  

Each BS, depending on its morphology and composition, has a different BI. The BI 

can be translated into one of the properties of the BS, thus making an indirect 

measurement of the desired property. For example, in [11], the measurement of BI, 

specifically conductivity, is used to determine the blood glucose level. The study [12] 

describes a method to estimate interstitial fluid volume and peripheral blood volume in 

hemodialysis patients using whole body and calf bioimpedance spectroscopy 

techniques. On the other hand, for CC assays there are a lot of researches that study the 

 

Fig. 1.2 Dielectric constant (ε) and the conductivity (σ) change depends on 

frequency. There are three different dispersion zones related to the frequency 

( α, β and γ). Figure from [10]. 
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relationship of CC BI and some of its properties. In [13] the BI of some CCs is tracked to 

find relationships between BI and cell differentiation. There are also many studies 

focused on research for a robust, reliable and accurate non-invasive technique to study 

and estimate cell growth in a CC [5], [14]–[17]. In addition, cell number quantification 

has also been targeted for various research purposes and techniques, such as toxicity 

assays [18], cancer characterization experiments [19], [20], biochemical [21], immune-

assays [22], stem cell differentiation protocols [23], etc. All of these studies have at least 

one thing in common, they all seek to use the BI to indirectly quantify one or more 

properties of a BS. 

To translate the BI into the desired property, electrical models are used. Electrical 

models predict the behavior of a given material or object in the presence of electric 

current, i.e., they indicate how the material or object will react against the flow of current. 

Furthermore, depending on the complexity level of the model, they will be composed of 

a certain number of parameters. These parameters are usually linked to some property 

of the material or object, such as its density, size, shape, etc. In the case of BS, the same 

applies. When the electric current flows through a BS, it faces an impedance, which 

depends on the type of BS (blood, cells, tissue, etc.) and its properties and characteristics 

(size, shape, composition, concentration of some chemical substance, etc.). These 

parameters are the key to obtain and quantify, indirectly, the properties of a BS. 

The Bioimpedance-based measurement approach, also called ECIS (electrical cell-

substrate impedance spectroscopy) measures the response of a CC when an alternating 

current is applied to it at several frequencies. Impedance spectroscopy or ECIS technique  

is used because it is a reliable and robust non-invasive technique to estimate and study 

cell growth on cell-culture assays. This technique requires robust electrical models of the 

cell-electrode (CE) block and accurate electronic circuits to extract the signals to be 

measured [24]. Note that this technique is based on the idea that in a CC assay, cells are 

seeded in a well filled with culture medium and adhere to the bottom of the well, thus 

forming the CE block through which the electric current flows. 

BI monitoring and modeling has been previously studied in several works [5], [17], 

[25], [26], [27]. In [5] and [27] the authors solve the electrical equations that model the 

electrical behavior of the BS under study. Research of  [25], [26] use Finite-Element 

simulations of the whole system (cell-electrode-culture medium system) to extract the 

relationships between the conductivity, morphology and electrical behavior of the 

system. Many of the studies mentioned above are the base for this paper, in particular 

the works [17], [25], [28]. In [17] the model of an electrode immersed in a saline solution 

(without the presence of cells or other BS) is studied and derived. In [28] a motility 

experiment is performed with mammalian cells and determines the impedance of a cell-

covered electrode and a non-cell-covered electrode. The work [25] performs finite 

element simulation to find the value of some elements of the electrical models used by 

the previously described works and, in addition, introduces a new parameter. 
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1.3 Challenges of cell-culture assay modeling 

The CE model used in this work is based on the model of an electrode immersed in 

a saline solution (culture medium) [17], including in the model the presence of cells [19]. 

About this model, promising test have been reported, due to the good results obtained 

in the cited works.  

 In [17] it is explained how to calculate some of the parameters of the model (Fig. 1.3), 

which is shown in 2.1.2. The diffusion-related elements (Rw and Cw, named Warburg 

resistance) are calculated theoretically by [29]. These elements, for the frequencies used 

in this study, are removed because their effect on the model is negligible. The charge 

transfer resistance (Rct) depends on exchange current density (J0) and the thermal voltage 

(Vt), which are parameters that can vary easily, because their theoretical determination 

depends on the properties of the electrode and the saline solution, as well as temperature 

and other variables. In the computation of Rct there can be errors due to the number of 

parameters and their variability, and the same occurs in the calculation of the interfacial 

capacitance (Cdl), because it depends on much more parameters with similar or greater 

variability. Finally, as for the spreading resistance (Rs), its estimation is relatively more 

accurate and easier than the previous parameters, since it depends on the electrode 

geometry and its resistivity. However, when cells are involved, Rs is more complex to 

estimate and can even change, as reported in [25] and [30]. The model of an electrode 

immersed in a saline solution is very complex and presents a high variability. The 

calculation of the parameters (2.1.2), although relatively accurate, is complex, since there 

are many variables that can deviate the value of any of them. One of the main challenges 

of the present work is to find experimental values, or ranges of values, of these 

Cdl
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Rct
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Fig. 1.3 Model of an electrode immersed in an saline solution, reported by [17]. Cdl is 

the interfacial capacitance, Rct is the charge transfer resistance, Rs represent 

the solution (or spreading resistance) and Cw and Rw are  the Warburg 

elements which are related to diffusion effects. 
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parameters. The theoretically estimated parameters are used as a starting point to know 

the approximate behavior of the model and design the experiments accordingly. 

An effect not included in [17], is the gap resistance (Rgap), which is found by [25] using 

Finite-Element simulations. The model, included cells and its effects, like Rgap, is shown 

in Fig. 1.4, where these effects are shown. Z(ω) is the impedance of the electrode 

immersed in a saline solution, ω is the angular frequency, Ae is the area of the electrode 

and Acell is the area of the cells. Z(ω) is divided in two parts, the covered by cells and the 

uncovered one. In addition, the Rgap effect is added after the impedance of the cell 

covered electrode. Rgap represents the effect of the current flowing between the cells 

attached to the bottom of the well and the well itself, and is highly dependent on the 

space (gap) between cell and well, which can takes values of 15-150 nm as explored in 

[25], [31]. In [25] Rgap values of 105 Ω are considered, while in [31], the resistance assumes 

values of 90 kΩ. 

The model of Fig. 1.4 contains the theoretical behavior of an electrode covered by 

cells and immersed in a saline solution when an electric current is flowing through it. 

This model is composed of different parameters that model each of the parts of the 

system, except for one. Cells are considered to be an infinite resistance, i.e., no electric 

current flows through them. In other works, the cell impedance is considered as a 

capacitor [32], or as a capacitor and a resistor [33]. In the present work it has not been 

considered since the impedance division model of the electrode immersed in a saline 

solution, combined with Rgap and Rs, seems to predict well the behavior of the system. 

The parameters of the model are difficult to estimate theoretically, due to the fact that 

the size and composition of the elements that are part of the system are complex to 

accurately calculate. In addition, the model contains a considerable number of variables, 

which must be computed and fitted to the data of a real experiment. Finally, biological 

elements usually exhibit nonlinear behavior, i.e., they cannot be fully modeled using 

conventional passive elements. There are techniques, such as the fractional-order (FO) 

models, which can be applied to the BS modeling. In [34], FO models are used to 

Rs

RgapZ(ω)/Acell

Z(ω)/(Ae-Acell)

 

Fig. 1.4 Model of an electrode immersed in a saline solution covered by cells. Z(ω) is 

the impedance of the electrode immersed in a saline solution, ω is the 

angular frequency, Ae is the electrode area, and Acell is the area covered by 

cells. 
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characterize vegetable tissue. It is also widely applied in animal tissue modeling [35], 

and, therefore, is a technique to be considered herein. 

1.4 Data Acquisition solutions 

To measure BI, two main decisions must be done: the choice of the type of circuit, 

and the type and number of electrodes. These questions should be discussed considering 

the type of BS to be monitored, i.e., its theoretical electric model. which predicts the 

electrical behavior, or BI, of the BS. The fundamental BI measurement circuit is shown 

in Fig. 1.5. Current is introduced through the BS and the voltage difference between the 

input and output of the BS is measured. Using Ohm's law, the BI of the BS is calculated. 

Reality is always more complex, so complex circuits are needed to perform such 

measurements. 

The electrodes influence the electrical behavior of the circuit their electrical model 

must be considered, since they are vital elements to perform the measurement of the BI. 

For example, in the works [36]–[40] the electrical behavior of electrodes made of different 

materials immersed in ionic liquids is studied. The algorithm for extracting the real and 

imaginary parts is important when measuring BI. In [41] coherent demodulation 

principle is used, while in [42] synchronous sampling is applied. These methods require 

an external excitation, i.e., a current (or voltage) source to provide the input signal to the 

BS. Feedback measurement techniques do not require external excitation, such as the 

oscillation-based test (OBT) technique [43] which is based on a self-sustained oscillator 

circuit, where the oscillation amplitude and frequency are used to indirectly acquire the 

BS impedance. 

The electrode number also influences the measurement. The most commonly used 

are the two-wires ones, which modify the electrical behavior of the BS, and the four-

wires ones, which minimize and even make negligible the electrical effect of the 

electrodes on the BS. Work [44] compares both electrode measurement strategies. In 

addition, there are other electrode configurations, as in [45], which test two and three 

electrode configurations in a glucose measurement sensor. 

Biological
Sample

V2V1 i

Z(ω) = (V2-V1)/i

 

Fig. 1.5 Basic BI measurement circuit. Current flow through the BS, voltage between 

the edges of the BS is measured, and the Ohm`s Law is used to calculate the 

BI or  Z(ω) . 
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For this study, the OBT measurement technique was chosen, using two-wire 

configuration for the measurements. Therefore, it is important to know the electrical 

model of the electrode, since its effects are included in the measurements. A source is 

not necessary to generate the electrical signal, since the OBT circuit produces the 

oscillation signal by itself. In this case, an indirect measurement is made by monitoring 

the signal oscillation amplitude and frequency, instead of observing the output signal 

for a given input signal. The advantage of measuring the frequency and amplitude of 

oscillation, as discussed below, is that the entire electrical model of the CE block can be 

obtained from these parameters, and not only its BI at a specific frequency. 

1.5 Objectives 

Currently cell counting techniques are slow and very expensive. The main and most 

widely used is the optical microscope counting method, for which a lot of resources in 

terms of time and cost in resources and human effort must be invested. Today's 

technology must advance to improve this kind of task and save these important 

resources (for example [4]). Therefore, the main goal of this work has been to research, 

design and build a system that allows the monitoring of a cell culture, showing in real-

time the cell concentration. 

 On the other hand, the project developed in this thesis has the objective of finding a 

method to estimate the cellular concentration of a CC through BI data. The diagram of 

the method is shown in Fig. 1.6. The CC is placed, with culture medium, in wells with 

electrodes [46]. These electrodes are the connection between the CC and an oscillator 

circuit (OBT). The OBT is a circuit that oscillates permanently with a frequency (fosc) and 

amplitude (aosc) determined by the components of the circuit itself, within which are the 

electrodes and the CC. Depending on the cell concentration, the BI changes, so the OBT 

will oscillate at different aosc and fosc. The oscillator circuit collects the fosc and aosc every 

hour and these parameters are used to estimate the cell concentration in real-time. To 

calculate the cell concentration, the relationship between the cell concentration and the 

oscillation parameters must be identified. For this purpose, electrical models of an 

electrode immersed in a saline solution and covered with cells are used. 

There are some details to consider: 

• Wells are of commercial origin, manufactured by Applied Biophysics [46], 

and are used to perform CC electrical measurements using a two-electrode 

technique. 

• Experiments have been performed with various different cell lines to test and 

in order to validate the performance of the circuit and the cell concentration 

estimation method. 
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• The OBT circuit produces self-sustained oscillations, but to ensure that the 

oscillations are in the desired frequency range, and to decrease the settling 

time of the oscillations, a start-up circuit was implemented. 

• To calculate the cell concentration, the electrical behavior of the electrode-cell 

block (CE) must be known. The electrical model used is only a starting model, 

and some more complex variants will be studied and tested. 

• The electrical model is essential for the estimation of the cell concentration, 

since it is based on the oscillation condition established by Barkhausen [1]. 

Therefore, the electrical model of all circuit elements must be known. 

• The measurement prototype, in addition to the included OBT circuit, has 

other circuits to obtain the data, analyze it, and send it to a database. All 

details were reported in the thesis [47]. 

Therefore, the two main objectives are: 

1. To find and explain a way to fit the experimental data to the electrical model 

(Chapter 2). In that way, variations of the used electrical model and fitting 

techniques are considered and tested. 
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Fig. 1.6 Cell concentration estimation project. A CC is connected as a load to an OBT 

circuit. The changes in the oscillation parameters (fosc and aosc) are used by an 

algorithm to estimate the cell concentration of the CC at each moment. 
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2. To define and simulate a protocol for real-time monitoring of a CC assay 

experiment (Chapter 3). This objective must consider from the prototype 

design to the algorithm for estimating the cell concentration in a real-time CC, 

including the optimal time between measurements (sampling time). 
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Chapter 2 Electrical modeling of 

biological samples 

Bioimpedance (BI) measurement is a non-invasive, cheap and fast method to 

estimate the state of the biological sample (BS) under test. If one tries to use the measured 

impedance to obtain the state of a BS (cell, tissue, blood, etc.), it is needed to know the 

meaning of each impedance value, i.e., translating the BI value to another variable which 

gives information about the biological material. That is, the sensor doesn’t provide the 

BI value, the designer has to measure the variation of voltage or current, calculating the 

impedance and then, using the mathematical model of the sensor, obtains value of the 

BS property. In that way, mathematical or electrical models can be used to translate BI 

measures to a biological variable. 

BI is a key property of any BS, which value can be converted or interpreted into 

another property. Depending on the property to be measured, the model to translate the 

value of BI to that property will be chosen. Fig. 2.1 shows, for the sake of illustration, 

some properties of a cell-culture (CC) assay. In that way, if the main goal is to know the 

mean size of the cells in a CC and BI is the parameter (property) known, a mathematical 

model (chemical, electrical, etc.)  and an adequate assay could be used to find the mean 

cell size. 

Mathematical models are used to understand the relationship between some 

variables of a system. Usually, it is a relationship between an input (u) and an output (y). 

These variables can be measured directly or indirectly. Models contain the relationships 

between system variables, and allow to get some variables from another variable. This 

“translation” can be done by several kind of models: 

• Gain model: It is a proportional relationship between two parameters 

(mathematical formulas). 

 y K u=   (2.1) 

where K is the constant gain ratio between u and y. 

• Transfer function (TF): It is a linear relationship between u and y. Usually, 

there is a time-dependent dynamic. This model is usually expressed in the 

Laplace frequency domain [48] obtained from a differential equation (DE) by 

Laplace Transform. 

 ( ) ( ) ( )Y s H s U s=   (2.2) 

where s is the Laplace variable (s = σ + jω, since σ is the real part of s, j is the 

complex variable and ω is the angular frequency) and H(s) is the TF. 
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• Differential equation (DE): A DE is a mathematical equation that relates a 

function to its derivatives. If one focused on the solution of a time-dependent 

DE, the relation between u and y can be gotten. A DE could be linear or non-

linear. If it is linear, it can be solved by Laplace transform, i.e., transforming 

it in a TF. If it is non-linear, there is some solving methods like linearizing in 

a working point, numerical solving, etc. 

In this work an electronic oscillator is proposed to monitoring the growth of a CC 

assay. The CC assay is connected as a load to the oscillator, which produces changes in 

oscillation frequency and amplitude. The oscillation frequency and amplitude are used, 

in combination with electrical models of the CC, to predict the growth of the CC assay. 

This chapter describes the oscillator circuit and the electrical model of the CC assay on 

which this work is based, as well as all the modifications of the model, which will be 

tested throughout the chapter. Finally, the model parameters will be fitted to real 

experimental data performed with three different cell lines and the results achieved will 

be discussed. 

2.1 Cell-culture assay modeling 

In recent years, a lot of research has been focused on growth monitoring of a cell-

culture assay for the development of a non-invasive, cheap and robust technique [5], 

[14]–[17]. Biomedical setups such as toxicology assays [18], cancer characterization 

experiments [19], [20], biochemical [21], immune-assays [22], stem cells differentiation 

protocols [23], etc., seek to quantify the number of cells for characterizing a diversity of 

research objectives and techniques. As was previously introduced, the modeling of a BS 

allows to know its electrical behavior and several useful parameters. 

Cell-culture Properties

• Cell number
• Bioimpedance
• Duplication rate
• Electrical Model
• Size
• Shape
•  .

 

Fig. 2.1 Each CC property can be used to know other ones, since some mathematical 

relation could exist. 
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 ECIS (electrical cell-substrate impedance sensing) technique senses the electrical 

response generated on a BS ([28], [49]), the CC, when it is excited with an alternating 

current (AC) electrical source, voltage, or current, at several frequencies, as consequence 

of its conductivity properties. Since the current applied to the BI must be very low, the 

ECIS technique requires precise and robust electronics [24]. Usually, the CC is immersed 

in an ionic solution, the culture medium, and the cells of the CC settle on the substrate 

of the culture well, where the electrodes are placed. The ideal use of this technique would 

be to inject a signal whose amplitude and frequency are set at their optimum values, i.e., 

the values most sensitive to a change in BS. The current-voltage relationship, or Ohm's 

law, returns an impedance value with a real part and an imaginary part, the so-called BI, 

which is defined as: 

 
BI BI BIZ R j X= +   (2.3) 

In this way, the value of the BI is obtained, but to understand its value, a model of 

the electrical behavior of an electrode immersed in an ionic solution must be used. There 

are some works focused on modeling BI by solve electrical system equations [5], [17] or 

performing finite elements (FE) simulations [25], [26] of the whole system, which 

comprises CC and electrodes. Then, the main goal is to obtain a cell-electrode (CE) model 

which throws up information about the current state of the CC, i.e., about the CC growth. 

2.1.1 Cell-culture assay growth 

CC assay tests are the best way to known the behavior of cells in specific situations. 

These tests give data about the response of cells in any isolated scenario, i.e., CC assay 

tests allow to isolate the effect of a certain situation in cells without the effects of another 

situation. These "situations" could be cell differentiation scenario, toxicology test, 

unusual cell behavior characterization, etc. For example, in a cell differentiation test, 

differentiation data could be obtained without the "perturbation" of another effects in 

cells. In that way, the cell growth is a basic parameter to characterize a CC. 

CC tests must be performing in a controlled environment, i.e., the environmental 

conditions (EC) must be properly set for cell proliferation. Tests are held in a CC reactor, 

or "incubator", in which the researcher can chose the EC. Concretely, the data used in 

this work are obtained from CC assay experiment whose EC are a temperature of 37 °C 

and 5 % CO2 in a very humid atmosphere (90 %). 

CC assay is placed in a Petri dish or in another well type. Cells take some hours 

(number of hours varies depending on cell line) to adhere to the substrate in the bottom 

of the Petri dish [9]. Each certain time period, cells are detached from the bottom and 

rise to perform cell division (mitosis phase), i.e., cell divides into two identical cells and 

identical to the cell that originated them. In that way, when there are enough cells, the 

CC builds a layer over the bottom of the Petri dish. Cell division is repeated until all the 

bottom is covered by cells, obtaining a monolayer. 
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2.1.2 Cell-electrode model 

ECIS technique is based on the Double-layer interphase explored in [5], [17], [25], 

[47], among others, and also in the behavior of a CC assay. An electrode immersed in an 

ionic solution generates an electric-field on the electrode surface. For this purpose, 

Applied Biophysics [46] commercial electrodes are used. The employed electrodes 

(model 8W10E PET) contain eight separated wells with ten circular biocompatible gold 

microelectrodes of 250 μm diameter (Fig. 2.2), which are labeled in Fig. 2.2. Each well 

also contains a reference electrode (reference electrodes of each well are connected to 

each other) which has an area approximately 400 larger than each circular electrode. 

Reference [17] models the electrochemical behavior of an electrode immersed in an 

ionic solution. This idea is displayed in Fig. 2.3; the electrical model of the impedance of 

an electrode immersed in an ionic solution (CC medium). That is, the electrical behavior 

of an electrode immersed in an ionic solution is modeled as a resistance (Rct) in parallel 

with a capacitor (Cdl), whose total impedance is Ze.  In [17], [47] the physical meaning of 

each component of the electrical model (Fig. 2.3) is explained in detail, so in this work 

each parameter will be explained and its theoretical estimation: 

• Charge transfer resistance (Rct) 

Rct, depends on exchange current density (J0) and the thermal voltage (Vt). J0 

is the absolute value of current per area in the electrode, and it depends on the 

electrode properties and ionic solution. According to [36], referenced by [17] and 

[47], for a gold micro-electrode immersed in a saline solution, the value is J0 = 

3.98·10-6 A/cm2. 

Thermal voltage is estimated by: 

 26.71 t

k T
V mV

q


= =  (2.4) 

Reference 
Electrode

Sensing 
Electrodes

8
7
6
5

Reference
1
2
3
4

 

Fig. 2.2 8W10E PET Applied BioPhysics electrodes. Eight separated wells with ten 

circular biocompatible gold microelectrodes of 250 μm diameter, and a large 

reference electrode with an area approximately 400 larger than each circular 

microelectrode. 
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where T is the temperature in kelvin (K) set at 310.15 K (37 °C), q is the electron 

charge and it is set to 1.60218·10-19 C, and k is the Boltzmann’s constant that has a 

value of 1.38·10-23 J/K. 

The charge transfer resistance per area is calculated by (2.5). Then, the 

expression to estimate Rct of a gold microelectrode of area Ae immersed in an ionic 

solution is (2.6). 

 ' 2

0

671.21 t
ct

V
R G m

J
= =    (2.5) 

 
'

  [ ]ct
ct

e

R
R

A
=    (2.6) 

• Double layer capacitance (Cdl) 

Over the electrode immersed in an ionic solution, a charged capacitive layer 

is created. This layer was modeled by Stern [50], basis in works of Helmholtz [51], 

and Gouy [52] and Chapman [53]. Helmholtz capacitance (CH) in terms of 

capacity per unit area is defined by: 

 20   [ / ]r
H

OHP

C F m
d

 
=  (2.7) 

where 𝜀0 is the vacuum permittivity (8.85419·10-12 F/m), εr is the relative 

permittivity of the solution  (value of 6.8), and dOHP is the distance between 

electrode surface and Outer Helmholtz Plane (OHP) ([17], [54]) whose value is 

8.25·10-10 m. For these values, CH is 0.073 F/m2. 

The second capacitance included in that model is the Gouy capacitor (CG), and 

can be estimated[17] by: 

 20 cosh( )  [ / ]
2

r o
G

D t

z V
C F m

L V

  
= 


 (2.8) 

Cdl

Rct

Rs

Ze

 

Fig. 2.3 Electrical model of an electrode immersed in an ionic solution impedance 

without the presence of cells. 
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where z is the valence of the ions present in the reaction of creation of the double 

layer (z = 1), Vo is the maximum electrode potential (provided by [46]) whose 

value is 100 mV [47], and LD is the Debye Length, models the drop in potential 

along its length [17]. LD is defined by: 

 0

0 2
  [ ]

2

r t
D

V
L m

n z q

  
=

  
 (2.9) 

 n0 is the concentration of ions in the electrolyte whose value, for a saline solution, 

is n0 = 140 mol/m3 [47]. q is the electron charge, q = 1.60218·10-19 C. Then, using this 

data LD has a value of 2.44·10-10 m and CG = 0.821 F/m2. 

 The total capacitance per unit area (𝐶𝑑𝑙
′ ) is the series of Helmholtz capacitance 

(CH) and Gouy-Chapman capacitance (CG). Cdl of a gold microelectrode of area Ae 

immersed in an ionic solution can be calculated by (2.11). 

 ' 2

'

1 1 1
      0.067 /dl

dl H G

C F m
C C C

= + → =  (2.10) 

 '  [ ]dl dl eC C A F=   (2.11) 

• Spreading resistance (Rs) 

Spreading resistance is the opposition to current flow through saline solution 

in contact with electrode. This resistance is generally determined by (2.12), but 

(2.13) is the equation to calculate Rs for a circular electrode [17]. 

   [ ]s

L
R

A

 
=   (2.12) 

 =   [ ]
4 4

s

e e

R
r A

  
= 

 
 (2.13) 

where ρ is the electrolyte resistivity, whose value for a saline solution of NaCl is 

5·105 Ω·μm, L is the length, A is the cross-sectional area (cm2) of the solution 

through which the current passes and re is the electrode radius (re = 125 μm). The 

theoretical value of Rs for a circular electrode of radius re is 1 kΩ. 

• Gap resistance (Rgap) 

The last parameter of the basis electrical CE model is Rgap, which is shown in 

Fig. 2.5. This resistor models the resistive gap region through which the current 

flows laterally, and it was modeled in [25] using finite elements simulations. Rgap 

depends on adhesion distance of the cell to the electrode, which varies between 

15 nm and 150 nm   [31]. In this reference, a value for Rgap of 75 kΩ is considered, 

but in [30], [55] values near to 1 kΩ was obtained. In the present work, Rgap is 

estimated from real experimental data 

When CC growths, it covers the electrode as a cell layer. The cell layer, act as an 

impedance whose effects is added to the effect of the electrode. In that way, the real 
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electrical behavior of the CE system has been reported in [30], [55]–[58]. Fig. 2.4 and Fig. 

2.5 shows the model of CE covered by cells. First shows the layout of the electrical model 

components in a real CC, while in the second figure illustrates the schematic of the 

electrical model as seen from above the CC. The electrical model presents the division of 

Rct and Cdl in two parallel branches, modeling the electrode area covered by cells (AC) 

and not covered (Ae - Ac) by cells, equation (2.14). That division is shaped by two 

impedances. 

                
( )

e e
C nC

C e C

Z Z
Z Z

A A A
= =

−
 (2.14) 

where ZC is the impedance of the circuit covered by cells and ZnC is the impedance of the 

circuit non-covered by cells. Since cell growth is the main parameter to measure, the 

electrical model must include a parameter that informs as an indicator of cell growth. 

This parameter is the fill-factor (ff), which is the percentage of electrode area covered by 

cells in %1, i.e., if AC = Ae the value of ff is 1, but if AC = 0 the value of ff is 0. In that way 

R1, C1, R2 and C2 are defined by next equations: 

 1 1                (1 )
1

ct
ct dl dl

R
R C C ff

ff
= =  −

−
 (2.15) 

 2 2                ct
ct dl dl

R
R C C ff

ff
= =   (2.16) 

where Rct1 and Cdl1 are the contribution of Rct and Cdl in the area not covered by the cells, 

and Rct2 and Cdl2 are the contribution of Rct and Cdl in the area covered by the cells. 

The TF which models the CE impedance is obtained by solving the circuit of Fig. 2.5. 

Equation (2.17) shows the BI TF, which has two poles and two zeros. Poles and zeros are 

directly dependent on ff (among other things), which means that the number of cells 

covering the electrode influences the BI model. Equation (2.17) has been parameterized 

because the equation is too big. 

Electrode

Double Layer

Cell

Cdl1 Rct1 Cdl2 Rct2
Rgap

Rs
Reference
Electrode

Culture 
medium

 

Fig. 2.4 Double-layer interphase diagram, where double layer effect is divided in 

two terms: electrode covered by cells and electrode non-covered by cells. 
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where k2, k1, k0, ωn and Q are the model parameters. These parameters are defined below 

as: 
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Rct1 Rs

Cdl2
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ZC
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Electrode
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ICE

ICE

V1 V2

ΔV = V1-V2

 

Fig. 2.5 Double-layer interphase model. a) CE diagram seen from the top, which 

shows the electrode area covered by cells (ZC), the electrode area not covered 

by cells (ZnC), the reference electrode and the current flow lines flowing 

through electrode and cells to reference electrode. This is a diagram for 

illustration purpose, electrodes have not the real size seen at Fig. 2.2. b) 

Equivalent electrical circuit that models the electrical behavior of the CE 

system. 
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The described model (Fig. 2.5) is the main model proposed in this work, but in next 

sections will be discussed and improved, for the sake of completeness. 

2.1.3 Measurement circuit theory 

Traditionally, the BI measurement is performed by applying AC current signals of 

different frequencies [31]. Depending on the frequency and the cell type, each impedance 

measure is different. By applying a signal, a complex measured impedance is obtained. 

The impedance value, without a model to translate it to another property, can only be 

used during the experiment to see the trend of a certain property which is known to vary 

when impedance changes. In that way, when experiment is over, if the relationship 

between impedance and the property to be measured is unknown, the typical 

approximation between the two properties is to find the relationship between the 

property to be measured and the relative impedance, for example, based on the full 

range of the observed impedance along the experiment or its initial value. Equations 

(2.23) show these examples. Where i is the time index of the experiment and its range is 

1 ≤ 𝑖 ≤ 𝑘 (where k is the i value where impedance is maximum), 𝑟𝑍(𝑖) is the relative 

impedance in the i moment, Z(i) is the impedance in i moment, Z(1) is  the first 

impedance measurement, and Z(k) is  the maximum and last impedance measurement. 

These equations show the typical relative impedances used to obtain information from 

a BS under test: 

 
( ) (1) ( ) (1)

( )                 ( )
(1) ( ) (1)

Z Z

Z i Z Z i Z
r i r i

Z Z k Z

− −
= =

−
 (2.23) 

Due to ECIS technique is used to perform an estimation of change in one or more 

properties of a BS, and this change is related to an impedance change, it is hard to find a 

relationship between an absolute property value of a CC assay (for example, the cell 

growth in a CC assay) and a relative property value of a CC assay, the impedance 

relative variation. By known the impedance in a certain frequency, the model parameters 

cannot be obtained (the only available parameter is the impedance at this frequency). If 

the model parameters are not estimated, a lot of information could be ignored or lost. 

To obtain the value of each model parameter, the measured data must be more than 

the impedance at a certain frequency. The Oscillation-based test is a good option for this 

purpose. This measurement technique applied to ECIS is based on an indirect 

measurement of the BI collecting data of the oscillation parameters, i. e., amplitude (aosc) 

and frequency (fosc). If the BI is connected to an oscillator, as a load, aosc and fosc depends 

on the BI features. If BI changes during an experiment the oscillation parameters will 

change as well. 
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2.1.3.1 Oscillation-based test   

A non-linear system could produce oscillations of constant amplitude and frequency 

under some conditions, which are called self-excited oscillations or limit cycles. Van der 

Pol oscillator proposed one of the first equations to analyze these systems. 

A self–starting and self-sustained oscillator is a circuit which has two main parts (Fig. 

2.6), linear part and non-linear part, and it has to meet some requirements: 

1. There is only one non-linear element. 

2. Non-linear element is time invariant. 

3. Non-linear element is symmetrical. 

4. Linear part must have a low-pass filter behavior. 

If these conditions are met by the circuit, there would exist oscillations at a constant 

amplitude (aosc) and frequency (fosc). Oscillation parameters (aosc and fosc) depend on linear 

and non-linear parts of the entire system. These parameters could be estimated by the 

Barkhausen stability criterion (BSC) [1] (it will be explained later), but to apply it, the 

non-linear element must be linearized. The Descriptive Function (DF) method is 

employed to obtain the linearized response of a periodic non-linear component from the 

truncated Fourier Transform. The model of the system added to these two tools is the 

way to know the behavior of a non-linear oscillator. 

2.1.3.1.1 Describing function method 

The DF is a method based on the frequency response of the system which ignores the 

higher harmonics. DF method replaces the non-linear system by the first component of 

the Fourier series. As mentioned above, if the linear part of the system behaves as a low-

y(t)

u(t)

x(t)

ν(t)

Non-linear

Linear

 

Fig. 2.6 Basic block diagram of a self-sustained oscillator. 
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pass filter or a band pass-filter, the decision to truncate the Fourier series is a reasonable 

approach. First, it is considered that the input of non-linear element is a sine of amplitude 

aosc and angular frequency of ω. By making the variable change 𝜃 = 𝜔 · 𝑡, where t is the 

time variable, the input of non-linear element is  𝑦(𝑎𝑜𝑠𝑐 , 𝜃) = 𝑎𝑜𝑠𝑐 · sin 𝜃. Fig. 2.7 shows 

the non-linear feedback system block diagram, where m is defined by: 

 ( ) ( ( , ))oscm t f y a =  (2.24) 

The non-linear element DF, N, can be presented by using the Fourier coefficients, in 

complex notation, as: 

 
1 2( ) ( ) ( )osc osc oscN a f a j f a= +   (2.25) 

The next steps and considerations to estimate the DF are based on section 2.2 of [59]. 

Since the non-linear component is symmetric, the offset Fourier component is equal to 

0. f1(aosc) and f2(aosc) coefficients are the normalized Fourier coefficients. 

 1 1
1 2( )      ( )osc osc
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a b
f a f a

a a
= =  (2.26) 

where a1 and b1 are the Fourier coefficients. Then the normalized coefficients could be 

estimated by  
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The DF estimation can be applied to the non-linear component of the OBT circuit of 

this work, an inverter comparator with hysteresis. Fig. 2.8 presents the comparator 

hysteresis in a), the comparator output in b) and the comparator input in c). These figures 

show that there are four different zones in terms of θ. The comparator output takes the 

value M or -M depending on θ, where M is the comparator output according to the input. 

These regions are defined in the expression (2.30). The angle θ1 has a value of: 

 1 1
1

( )
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
 −  
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 (2.29) 
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Fig. 2.7 Non-linear linear feedback system where there are two different parts, the 

linear (𝐺(𝑗 · 𝜔𝑜𝑠𝑐)) and the non-linear part ( 𝑁(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐)). 
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There are two clearly differentiated regions, when m(t) is M and when m(t) is -M. 

Since the value of m(t) is used to estimate the coefficients f1(aosc) and f2(aosc) integrals can 

be easily solved: 
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Fig. 2.8 Comparator hysteresis (a), comparator output (b) and comparator input (c). 
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Then, by substituting in (2.25), DF of the inverter comparator with hysteresis is: 

 ( )1 1

4
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
= − +  (2.33)

  

where θ1 can be estimated by (2.29). 

2.1.3.1.2 Barkhausen stability criterion 

The BSC is the mathematical condition that the closed-loop feedback system must 

fulfill to obtain sustained oscillations. Fig. 2.7 shows the linear block 𝐺(𝑗 · 𝜔𝑜𝑠𝑐)), which 

is a TF where 𝑠 = 𝑗 · 𝜔𝑜𝑠𝑐. The angular frequency oscillation is directly related to fosc by 

the expression 𝜔𝑜𝑠𝑐 = 2𝜋𝑓𝑜𝑠𝑐. Depending of the non-linearity type, N could depend on 

only aosc or only fosc, or both parameters. As previously mentioned, the oscillation 

parameters aosc and fosc can be estimated by the BSC. The condition the circuit must meet 

is: 

 ( , ) 1 ( ) ( , ) 0osc osc osc osc oscf a f G s j N a f + =  =  (2.34) 

where 𝑓(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) is the oscillation condition function (OCF). This function can be 

rewritten as: 

 
1 2( , ) ( , ) ( , )osc osc osc osc osc oscf a f h a f j h a f= +   (2.35) 

where h1 and h2 are de real and imaginary parts respectively of the OCF.  

The main goal of using BSC is obtaining the oscillation parameters. Then, since OCF 

must be equal to 0, in phasorial form, the condition is: 
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where h and φ are, respectively, the module and angle of 𝑓(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) and must be equal 

to 0 and 0° to meet this condition. 
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2.1.4 OBT measurement circuit 

 In this work, cell growth measurement has been performed by connecting the CE 

system, as a load, to an OBT system. The self-sustained oscillator reaches an oscillation 

amplitude and an oscillation frequency which depend on the whole system. This means 

that, in addition to the linear and non-linear parts of the OBT, aosc and fosc depend on the 

impedance of the CE system. The block diagram of the prototype used to perform the 

measures on this work is shown in Fig. 2.9. OBT system consists of a band-pass filter 

(HBP), a comparator, a current source and the BI connected as a load. In the next sub-

sections, all the elements of the OBT system will be explained in detail. 

2.1.4.1 Band-pass filter  

The main purpose of the band-pass filter (BPF) is to reject the high-frequency 

harmonics of the comparator output signal (square signal). Therefore, the output of the 

comparator is connected to the input of the filter. A BPF is used instead of a low-pass 

filter to choose the oscillator operating point. Using the resonant frequency of the filter, 

it is ensured that the oscillation frequency will be in the desired frequency range. Fig. 

2.10 shows the used topology to implement the BPF, which has been used due to the 

simplicity of choosing the different filter parameters: gain (KBP), resonant frequency (ω0BP 

in rad/s or f0BP in Hz) and quality factor (QBP). 

The BPF is implemented using four operational amplifiers. It is designed to have a 

KBP of -1 V/V, a f0BP of 1 kHz and a QBP of 10. QBP is set to 10 to set the oscillation frequency 

range. f0BP is set to 1 kHz due to the frequency characteristics of the CE system. The values 

of these parameters have been chosen considering the frequency response of the CE 

system. 

After the analysis of the circuit, the transfer function of the BPF is obtained: 

ZCE(s)

Bioimpedance

HBP(s)

Band-pass filter

Comparator

KZ

ECZI

Current source

Pre-amplifier stage

 

Fig. 2.9 Block diagram of the OBT prototype. The oscillator consists of the linear part: 

a band-pass filter (HBP) and a current source; and a non-linear part: the 

comparator. CE system (ZCE) is connected as a load to the current source. 
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where KBP is the filter gain, 𝜔0𝐵𝑃 is the resonant central frequency in rad/s and QBP is the 

filter quality factor. These parameters can be estimated from the circuit analysis: 
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 Firstly, the filter gain is defined with the resistor Rk. After that, the resistors Rf1 and 

Rf2 must be chosen to select the resonance frequency (𝜔0𝐵𝑃). Finally, with the resistor Rq 

the filter quality factor QBP is fixed, which adjusts the filter bandwidth (BWBP) to 100 Hz, 

that is defined as: 

 0BP
BP

BP

f
BW

Q
=  (2.39) 

 The BPF is an active filter, implemented with OPA4227UA operational amplifiers. 

To compare the accuracy of the model, the band pass filter bode diagram (BD) has been 

obtained in Matlab® [60] using the TF and in Spice using Ngspice [61] (more details of 

the Spice simulation in section 3.2). Both BDs are shown in Fig. 2.11.  The only difference 

appears at high frequencies, where high frequency effects in electrical simulation (Spice) 

can be observed. 
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Fig. 2.10 Band-pass filter implemented by using operational amplifiers OPA4227UA. 

Each filter parameter can be independently fixed. 
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2.1.4.2 Comparator 

The comparator block is composed of the comparator and the pre-amplifier stage. 

The pre-amplifier stage ensures that the signal that reaches the comparator input is 

filtered (avoiding high and low frequencies) and has an adequate amplitude. 

2.1.4.2.1 Pre-amplifier stage 

As was said, the first part of pre-amplifier stage is composed by two op-amps. A non-

inverting amplifier, and an inverting amplifier (Fig. 2.12). Gain and inverse stages are 

independent of each other so that they can be configured separately. Through simple 

mathematical calculations the TF can be obtained: 

 22 11 12

21 11

( )o
K

i

V R R R
H

V R R

− +
= =  (2.40) 

The second and the most important part of the pre-amplifier stage is the filter part. It 

is composed by a high-pass filter (HPF) and a low-pass filter (LPF).  In Fig. 2.13 is shown 

the whole circuit composed by HPF and LPF. By operating on the electrical equations of 

the filters, their TFs (HHPF and HLPF) can be obtained: 

10
1

10
2

10
3

10
4

10
5

10
6

0.2

0.4

0.6

0.8

1

M
a
g

n
it

u
d

e
 [
V

/V
] Matlab

Spice

10
1

10
2

10
3

10
4

10
5

10
6

Frequency [Hz]

-300

-250

-200

-150

-100

P
h

a
s
e

 [
º]

 

Fig. 2.11 Bode diagram of band-pass filter. Comparison between the bode diagram 

obtained from TF (Matlab®) and electrical simulation (Spice). 
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The cut frequencies (𝜔𝐻𝑃𝐹 and 𝜔𝐿𝑃𝐹) of each filter, its gains (KHPF and KLPF) and its 

quality factors (QHPF and QLPF): 
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The filters cut frequencies (𝑓𝐻𝑃𝐹 = 2𝜋𝜔𝐻𝑃𝐹 and 𝑓𝐿𝑃𝐹 = 2𝜋𝜔𝐿𝑃𝐹), in Hz, are defined by 

using the filters parameters:  

 50      15.2 HPF LPFf Hz f kHz= =  (2.43) 
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Fig. 2.12 First part of the pre-amplifier stage. The first op-amp is a non-inverting 

circuit to amplifier the signal, and the second op-amp is an inverting circuit 

to invert the signal. Gain and inverse stages are independent of each other 

so that they can be configured separately. 
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Fig. 2.13 High-pass filter and low-pass filter previous to comparator. 
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As BPF filters of pre-amplifier stage circuits are implemented using OPA4227UA op-

amps. TF of the two filters in series is obtained to analyze the entire system in Matlab® 

[60] to compare the accuracy of the model with the Spice filters [61]. In Fig. 2.14 are 

presented the BDs of the filter union. The mathematical model is very accurate since it 

has a low error compared to Spice electrical simulation. 

2.1.4.2.2 Comparator stage 

 The comparator stage includes the comparator, the hysteresis passive elements and 

the diodes to limit the output amplitude. Fig. 2.15 shows the comparator stage. Compa-

rator is implemented in the circuit using an integrated circuit LMC7211 [62]. The 

comparator has a response time of 4 μs (at 5 V of supply voltage). Ro is the output resistor. 

Resistors RH and RF, and capacitor CF compose the hysteresis circuit, which set the 

thresholds to 20 mV . The last part of the comparator stage is the diode net, where D1 

and D2 limit the negative output voltage and D3 and D4 limit the positive output voltage. 
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Fig. 2.14 High-pass filter and low-pass filter BD. Blue line represents Matlab® 

simulation, and the red line represents the electrical simulation in Ngspice. 
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Fig. 2.15 Comparator stage, which includes hysteresis and voltage limit diodes. 
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The Spice transient simulation of the circuit in Fig. 2.15 can be compared with the 

expected signals (Fig. 2.8). For this purpose, in Fig. 2.16, the output versus input of the 

comparator is shown. The comparator has a response time of 6 s  (near of expected in 

datasheet from LMC7211), and its thresholds voltages are near to ±20 mV (observed in 

simulations). There is a small difference between the positive and negative threshold, so 

the response of the comparator is somewhat asymmetrical. Considering the work 

frequencies of the oscillator (10 Hz to 100 kHz), this is not a significant limit. 

2.1.4.3 Current source 

Current source is responsible for ensuring that the current supplied to the CE system 

is adequate. If the current is too large it could burn the cells and electrodes and, on the 

other hand, if it is too low, the measurements could be wrong as well. For that reason, a 

current source independent of the load has been used. The current will be not dependent 

on the impedance changes due to cell growth. Fig. 2.17 shows the current source input.  

Taking into account the relationships R3=R1/2 and R4=R2/2, by analyzing the circuit, 

the current expression in CE is obtained: 
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1 5

CE i

R
I V

R R

−
=  (2.44) 

where ICE is the current that flows through BI. From this expression, the voltage gain of 

the circuit (gain between Vi and Vo) can be obtained: 
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Resistor values are chosen to obtain a gain current of ICE = -5·10-6Vi, which means that 

the current in CE system is in the order of ICE = 7 μA (safe value for cells). 
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Fig. 2.16 Comparator output presented against input (comparator negative pin). 
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2.1.5 Empirical cell-electrode model 

In this section the CE model is obtained the from empirical data. 𝑍𝐶𝐸(𝑠) (2.17) 

parameters are estimated using experimental data obtained from the test performed 

with some cell lines for the sake of illustration [55], [63]. In next subsections, cell lines 

specifications and the method to obtain the empirical models are shown.  

2.1.5.1 Cell lines specifications 

For this work, three cell lines have been used. The origin of cells, the culture medium, 

the growth environment conditions and the number of cells seeded is explained below. 

The first biological Sample Under Test (SUT) is formed by Chinese hamster ovarian 

fibroblasts: This cell line is identified as AA8 (American Type Culture Collection). This 

sample is immersed in McCoy’s medium supplemented with 10 % (v/v) foetal calf serum; 

2 mM L-glutamine, 50 μg/ml streptomycin and 50 U/ml penicillin.  

The second and third biological samples under test are two Mouse neuroblastoma 

cell lines. The N2a cell line and its cell line stably expressing wildtype human amyloid 

precursor protein, N2a-APP. Cells were cultured in medium consisting of 50% DMEM 

High glucose (Biowest) and 50% Opti-MEM (Gibco) supplemented with 10% (v/v) foetal 

bovine serum (FBS) (Gibco), 2 mM L-glutamine, 50 μg/ml streptomycin and 50 U/ml 

penicillin (Sigma-Aldrich). N2a-APP was also supplemented with 0.4% Geneticin 

(Gibco). 

All cell lines were maintained at 37° C in a humidified atmosphere with 5% CO2 and 

they were routinely subcultured. Different initial number of cells (Nini) was seeded for 

our experiments: 2500, 5000 and 10000 cells. The AA8 experiments start with a Nini of 
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Fig. 2.17 Current source with CE connected as load. Current in CE system is 

independent of BI. 
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2500 cells in wells 1 and 3, 5000 cells in wells 4 and 5, and 10000 cells in wells 7 and 8. 

On the other hand, the N2a and N2aAPP experiments start with a Nini of 2500 cells in 

wells 2 and 6, 5000 cells in wells 3 and 7, and 10000 cells in wells 4 and 8. Numbers of 

the wells were defined in Fig. 2.2. 

2.1.5.2 Single-electrode well model 

Single-electrode well (SEW) model is referred to estimate the empirical model by 

considering that the cells are on top of a single large electrode, and the effect of the 

reference electrode (grounded) is negligible. 

The first step to understand the changes in the model when the CC assay growth is 

to know to position of the poles and zeros fo the system in the important points of the 

experiments. These ones are when the experiment is started (𝑓𝑓 → 0) and when the well 

is full (𝑓𝑓 → 1). Poles (2.45), zeros (2.46) and gain (2.47) of the biological system can be 

obtained from (2.17), and are: 
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As can be observed the expressions are very large, but if ff is set to 0 or 1, poles, zeros 

and gain are greatly reduced: 
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Poles and zeros for 𝑓𝑓 → 0 and 𝑓𝑓 → 1 provide key information since the model 

changes from a two-pole two-zero model to a one-pole one-zero model when the well is 

empty and full. The limit models, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1, are defined by (2.48) and (2.49) 

respectively. The limit models are obtained applying the limit when ff tends to 0 and 

when tends to 1: 
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In the next sections, two different fitting methods using the experimental BD and the 

oscillation parameters will be detailed. 

2.1.5.2.1 Bode fitting method 

 The first proposed fitting method is to use an experimental bode analysis. For that 

method, AA8 cells in the amounts indicated in section 2.1.5.1. Cells were seeded in 

8W10E PET Applied BioPhysics electrodes. Two wells per initial cell concentration were 

seeded, i.e., 2x5000 cells (wells 1 and 3) and 2x10000 cells (wells 7 and 8).  CC was 

growing for 6 days. Each day at the same time a frequency analysis was performed using 

a network analyzer (NA), the HP 3589A Spectrum Network Analyzer , to estimate the 

BD of each well. The measurement circuit is shown in Fig. 2.18. Vi is connected to the NA 

output and Vo is connected to the NA input. 

Fig. 2.19 displays the BD of the wells 7 and 8 (10000 cells at the beginning of the 

experiment) the first day of the experiment and the day when ff is near to 1 (day 5). From 

the BDs the cut frequency of the pole and the zero can be obtained: 
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Fig. 2.18 Measurement circuit used to obtain the real BD of the CE system in the 

network analyzer. 
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Due to poles when 𝑓𝑓 → 0 and 𝑓𝑓 → 1 have similar expressions ((2.48)  and (2.49)) 

and its values are very close to each other, the value of 𝑝𝑓𝑓→0 is taken to the estimation. 

At this point there are 3 equations (𝑝𝑓𝑓→0, 𝑧𝑓𝑓→0 and 𝑧𝑓𝑓→1) and 4 variables (Rct, Cdl, Rs 

and Rgap). But the limit of the TFs (2.50) and (2.51) when the frequency (𝑠 = 𝑗 · 𝜔) tends 

to 0 and ∞ can be used to estimate some parameters and provide the following equations: 
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Fig. 2.19 BDs of wells 7 and 8. a) Data of the first day of the experiment ( 𝑓𝑓 → 0). b) 

Data of the fifth day of experiment ( 𝑓𝑓 → 1)  
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Note that 𝑍𝐶𝐸
𝑓𝑓→0

(𝑠 → 0) is the gain 𝑘𝐶𝐸
𝑓𝑓→0

 and 𝑍𝐶𝐸
𝑓𝑓→1

(𝑠 → 0) is the gain 𝑘𝐶𝐸
𝑓𝑓→1

. If the 

measurement circuit is taken into account (Fig. 2.18), and the magnitude values at the 

limit frequencies of the BDs are obtained, the resulting expressions are: 
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Using equations (2.48) and 𝑍𝐶𝐸
𝑓𝑓→0

(𝑠 → ∞) in (2.55), model parameters can be obtained 

for 𝑓𝑓 → 0: 

 0 0 0382.14             17.31             488.53 ff ff ff

ct dl sR k C nF R→ → →=  = =   (2.57) 

Note that it is not required to estimate 𝑅𝑔𝑎𝑝
𝑓𝑓→0

 because it does not affect 𝑍𝐶𝐸
𝑓𝑓→0

(𝑠). This 

is an important point, Rgap has no influence when 𝑓𝑓 → 0, and in following sections it will 

be seen that it has a low effect for low ff values. Fig. 2.20 shows the comparison between 

the BD of empirical model with 𝑓𝑓 → 0 and the BD of the real CE system. The biggest 

errors appear for low and high frequencies, in the extremes. 
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Fig. 2.20 BD of empirical model (blue) when 𝑓𝑓 → 0. It is compared to the BD of the 

real CE system (red). 
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On the other hand, using equations (2.49) and 𝑍𝐶𝐸
𝑓𝑓→1

(𝑠 → ∞) in (2.56), models 

parameters can be obtained for 𝑓𝑓 → 1: 
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1 1
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488.53               R 14.26 

ff ff

ct dl

ff ff
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R k C nF

R

→ →

→ →

=  =
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  (2.58) 

𝑅𝑠
𝑓𝑓→0

 has also been used for 𝑓𝑓 → 1 because there is no way to obtain values of 

𝑅𝑠
𝑓𝑓→1

, 𝑅𝑐𝑡
𝑓𝑓→1

 and 𝑅𝑔𝑎𝑝
𝑓𝑓→1

 greater than 0. Then, 𝑍𝐶𝐸
𝑓𝑓→1

(𝑠 → ∞) from (2.56) has been used 

to estimate 𝑅𝑔𝑎𝑝
𝑓𝑓→1

. The value of 𝑅𝑔𝑎𝑝
𝑓𝑓→1

 seems wrong, since [25], [55] reported higher Rgap 

values. Fig. 2.21 shows the BD of the model when 𝑓𝑓 → 1. As expected, model cannot 

establish the gain and phase value because in that point of the experiment, the CE system 

is highly non-linear. Another type of model or fitting method can improve the accuracy 

of this model. 

2.1.5.2.2 Empirical fitting method using oscillation parameters 

 OBT circuit oscillates at a frequency and an amplitude which depend on the load 

𝑍𝐶𝐸(𝑠) (Fig. 2.9). The amplitude used to calculate the DF (aosc) in the circuit is the 

amplitude of the signal VLo in Fig. 2.13, but the amplitude that will be measured to 

characterize the CE system is the amplitude of the signal VCE from Fig. 2.17, from now 

called 𝑎𝐶𝐸. Both amplitudes, 𝑎𝐶𝐸 and aosc, are related each other by the gains of the 

preamplifier stage of the comparator (2.1.4.2.1). 

Therefore, in this section, oscillation amplitude and frequency (oscillation 

parameters) are employed to estimate the 𝑍𝐶𝐸(𝑠) parameters. Oscillation parameters are 

obtained from real experiments where CE system is connected to OBT circuit as a load 

(Fig. 2.9). These experiments are performed by seeded an initial number of cells (Nini) in 

wells of Fig. 2.2 (different Nini on each well). CC assay grows for a week, from seeding to 
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Fig. 2.21 BD of empirical model (blue) when 𝑓𝑓 → 1. It is compared to the BD of the 

real CE system (red). 
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confluence, in which the circuit takes a measurement of the oscillation parameters every 

hour. Oscillation frequency (𝑓𝐶𝐸) and amplitude (𝑎𝐶𝐸) are used in an algorithm to 

estimate the 𝑍𝐶𝐸(𝑠) parameters. 

BSC can be applied to OBT circuit to obtain the oscillation parameters. In this case, 

there is the inverse problem, oscillation parameters are known and can be used to 

calculate 𝑍𝐶𝐸(𝑠) model parameters. Equations (2.48) and (2.49) describe the position of 

the poles and zeros when 𝑓𝑓 → 0 and 𝑓𝑓 → 1. Since Rct >> Rs and Rct >> Rgap, the zeros 

equations can be approximated as: 
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BSC applied to the OBT system gets the following equation (where Laplace variable 

is 𝑠 = 𝑗𝜔𝑜𝑠𝑐): 

 ( , ) 1 ( ) ( ) ( ) ( ) ( , )osc osc BP K HPF LPF CS osc osch a f H s H H s H s H s N a f +       (2.60) 

The expression in equation (2.60) must be equal to zero in both module and phase. 

Then, two equations can be derived from BSC: 

 1

2

( , ) ( ( , )) 0

( , ) ( ( , )) 0

osc osc osc osc

osc osc osc osc

h a f real h a f

h a f imag h a f

= =

= =
 (2.61) 

where real and imag are the real and imaginary part of  ℎ(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐). The algorithm used 

to estimate oscillation parameters is simple, and it is divided in two steps: 

1. Initial estimation. Frequency and amplitude values and equations (2.61) are 

used to find the initial parameters. The main goal of this step is to obtain 

𝑅𝑐𝑡
𝑓𝑓→0

, 𝐶𝑑𝑙
𝑓𝑓→0

, 𝑅𝑠
𝑓𝑓→0

, 𝑝𝑓𝑓→0 and 𝑧𝑓𝑓→0 parameters. Rgap has no influence in 

system behavior at this point (𝑓𝑓 → 0), so it is defined by 600 Ω. 𝑝𝑓𝑓→0 is 

calculated because his value is required for the second step. To minimize the 

number of parameters to be estimated, equation (2.48) and the approach of 

𝑧𝑓𝑓→0 in (2.59) is used to define 𝑅𝑐𝑡
𝑓𝑓→0

and 𝐶𝑑𝑙
𝑓𝑓→0

 dependent on 𝑅𝑠
𝑓𝑓→0

, 𝑝𝑓𝑓→0 

and 𝑧𝑓𝑓→0. Then, 𝑅𝑐𝑡
𝑓𝑓→0

and 𝐶𝑑𝑙
𝑓𝑓→0

are defined by (2.62) and (2.63), and used in  

𝑍𝐶𝐸(𝑠) in (2.60). 

 0

0

0

1

2

ff

ct ff

ff dl

R
p C

→

→

→

=  (2.62) 

 0

0

0

1

2

ff

dl ff

ff s

C
z R

→

→

→

=  (2.63) 

2. Final estimation. When wells are fully covered by cells, the oscillation para-

meters can be used to estimate the CE model parameters when 𝑓𝑓 → 1. In the 

same way that step 1, 𝑅𝑐𝑡
𝑓𝑓→1

and 𝐶𝑑𝑙
𝑓𝑓→1

are defined by  (2.64) and (2.65), and 

depend on 𝑅𝑠
𝑓𝑓→1

, Rgap, 𝑝𝑓𝑓→1 and 𝑧𝑓𝑓→1. From section 2.1.5.2.1, it is known 



  

57 

that 𝑝𝑓𝑓→0 ≈ 𝑝𝑓𝑓→1, that is an approximation which is assumed to be able to 

estimate the other parameters when 𝑓𝑓 → 1. 

 1

1

0

1

2

ff

ct ff

ff dl

R
p C

→

→

→

=  (2.64) 

 1

1

1

1

2 ( )

ff

dl ff

ff s gap

C
z R R

→

→

→

=
+

 (2.65) 

Now, the estimation can be performed. The problem is to obtain the value of three 

parameters from two equations (2.61). As there are more parameters than equations, the 

choice is to minimize a cost function (CF) to obtain the value of the parameters. The CF 

must fullfil the condition in such way that real and imaginary parts of (2.60) must be 

zero. The best way found to meet the condition is to use the module of the complex 

number ℎ(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐). Due to ℎ(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) = ℎ1(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) + 𝑗 · ℎ2(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐),  CF can be 

defined as:   

 2 2

1 2( , ) ( , ) ( , )osc osc osc osc osc osch a f h a f h a f +  (2.66) 

The fact of ℎ1(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) and ℎ2(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) are squared assures that terms ℎ1(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) 

and ℎ2(𝑎𝑜𝑠𝑐 , 𝑓𝑜𝑠𝑐) cannot compensate each other. 

Data to fit the model are obtained from a one-week experiment of AA8 cell line with 

initial number of cells of 2500 cells for wells 1 and 3, 5000 cells for wells 4 and 5, and 

10000 cells for wells 7 and 8. Oscillation parameters (𝑓𝐶𝐸 and 𝑎𝐶𝐸) when 𝑓𝑓 → 0 and when 

𝑓𝑓 → 1 are summarized in Table 2.1. Notice that 𝑓𝐶𝐸
𝑓𝑓→0

 is the frequency of the signal VCE 

when 𝑓𝑓 → 0, 𝑓𝐶𝐸
𝑓𝑓→1

 is the frequency of the signal VCE when 𝑓𝑓 → 1, 𝑎𝐶𝐸
𝑓𝑓→0

 is the 

amplitude of the signal VCE when 𝑓𝑓 → 0 and 𝑎𝐶𝐸
𝑓𝑓→1

 is the amplitude of the signal VCE 

when 𝑓𝑓 → 1. Amplitude 𝑎𝐶𝐸 is different from 𝑎𝑜𝑠𝑐 (amplitude of the comparator input 

voltage) used in DF. The relationship between 𝑎𝑜𝑠𝑐 and 𝑎𝐶𝐸 is 𝑎𝑜𝑠𝑐 = 𝑎𝐶𝐸𝐻𝐾𝐾𝐻𝑃𝐹𝐾𝐿𝑃𝐹 

defined in section 2.1.4.2.1. 

As was explained, there are two steps per well to characterize it. In the first step, 

using the oscillation parameters for 𝑓𝑓 → 0 (𝑓𝑜𝑠𝑐
𝑓𝑓→0

 and 𝑎𝑜𝑠𝑐
𝑓𝑓→0

) and replacing them on the 

Table 2.1 Oscillation frequency (𝑓𝐶𝐸) and amplitude (𝑎𝐶𝐸) at the beginning of the 

experiment 𝑓𝑓 → 0 and at the end 𝑓𝑓 → 1 for AA8 cell line. 

Well 0  [ ]ff

CEf Hz→  1  [ ]ff

CEf Hz→  0  [ ]ff

CEa mV→  1  [ ]ff

CEa mV→  

1 783.43 867 9.7 13.94 

3 802.14 925.43 7.46 15.19 

4 821.73 932.12 6.19 13.39 

5 780.75 872.2 10.35 14.97 

7 822.15 938.3 7.02 16.19 

8 843.86 934.37 6.57 14.19 
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CF (2.66), 𝑅𝑠
𝑓𝑓→0

, 𝑝𝑓𝑓→0 and 𝑧𝑓𝑓→0 can be estimated by minimizing the CF. Then, 𝑅𝑐𝑡
𝑓𝑓→0

 

and 𝐶𝑑𝑙
𝑓𝑓→0

 can be calculated using (2.62) and (2.63). In the same way, for 𝑓𝑓 → 1, 𝑓𝑜𝑠𝑐
𝑓𝑓→1

 

and 𝑎𝑜𝑠𝑐
𝑓𝑓→1

can be replaced on CF to minimize it. 𝑅𝑠
𝑓𝑓→1

, Rgap, 𝑝𝑓𝑓→0 and 𝑧𝑓𝑓→1 are obtained 

and are used in equations (2.64) and (2.65) to estimate 𝑅𝑐𝑡
𝑓𝑓→1

and 𝐶𝑑𝑙
𝑓𝑓→1

. 

The way to assure that the minimization is enough accurate is to use the function 

value (𝑓𝑣𝑎𝑙) for each found solution.  It is difficult to obtain a 𝑓𝑣𝑎𝑙 value of zero, but the 

lowest value can be ensured. Table 2.2 summarizes 𝑓𝑣𝑎𝑙 for each well in these two steps 

of the fitting process.  Their values are, in general, low enough. 

The results of minimizing the CF of (2.66) are shown in next tables. Table 2.3 displays 

the CE model parameters when 𝑓𝑓 → 0 and Table 2.4 presents the CE model parameters 

when  𝑓𝑓 → 1. 

Table 2.2 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of model parameters 

estimation, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 1 3 4 5 7 8 

0ff

valf →  [x 10-3] 0.12 0.18 0.035 0.2 0.04 0.28 

1ff

valf →  [x 10-3] 0.25 0.14 0.28 0.033 0.24 0.12 
 

Table 2.3 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for AA8 cell 

line (SEW model). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

1 0.40 24.9 0.94 16.02 6.82 

3 0.15 34.14 0.67 31.05 7 

4 0.43 43.77 0.72 8.51 5.04 

5 0.18 23.1 0.73 38.56 9.41 

7 0.69 38.6 0.82 6 5.01 

8 0.07 44.29 0.58 48.57 6.23 
 

Table 2.4 Model parameters at the end of the experiment 𝑓𝑓 → 1 for AA8 cell line 

(SEW model). 

Well 1  [ ]ff

ctR M→   1  [ ]ff

dlC nF→  1  [ ]ff

sR k→    [ ]gapR   
0  [ ]ffz kHz→

 

1 0.44 22.77 0.38 1178.03 4.45 

3 0.19 27.41 1.24 451.22 3.46 

4 0.58 32.37 0.73 902.34 3.01 

5 0.19 21.6 0.46 1002.6 5.02 

7 0.96 27.75 1.11 877.28 2.89 

8 1.06 30.84 1.15 350.97 3.48 
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It has been considered that 𝑝𝑓𝑓→0 ≈ 𝑝𝑓𝑓→1  but that 𝑧𝑓𝑓→0is not equal (or similar) to 

𝑧𝑓𝑓→1. On the other hand, the obtained results propose that 𝑅𝑐𝑡
𝑓𝑓→0

≠ 𝑅𝑐𝑡
𝑓𝑓→1

, 𝐶𝑑𝑙
𝑓𝑓→0

≠

𝐶𝑑𝑙
𝑓𝑓→1

 and 𝑅𝑠
𝑓𝑓→0

≠ 𝑅𝑠
𝑓𝑓→1

. So, now it is known that Rct, Cdl and Rs change with ff. In [25] 

authors report that Rs changes with the area covered by cells (that means with the ff), but 

this approximation is not consistent with the variations found in this work. An 

alternative work [55] found a way to fit the variations of Rs that match can be 

implemented with the data herein. It also suggests that if Rs remains constant from 𝑓𝑓 →

0 to 𝑓𝑓 → 1 it is not possible to do a good model fitting because aosc cannot be properly 

calculated. Following the work [55], the spreading can be divided in two terms: 

 ( ) ( )n

s si sR k R R ff k= +    (2.67) 

where k is the time index of the experiment, Rsi is the initial value of Rs, ΔRs is the change 

range of Rs (from 𝑓𝑓 → 0 to 𝑓𝑓 → 1), ff(k) is the fill-factor at time k, and n is the growth 

rate of Rs from Rsi to Rsi + ΔRs. Note that ΔRs can be positive or negative, it is only limited 

by not make Rs lower or equal to zero, i.e., ΔRs > -Rsi. Then, initial and final Rs values are 

translated into this new form, and showed for each well in Table 2.6. 

ff must be estimated for each well in each moment, to test the obtained results. There 

are also two more model parameters (Rct and Cdl) which its initial and final values are 

known, but its evolution is unknown. Then, there are three model parameters to be 

estimated for each moment k: Rct, Cdl and ff. All of them are going to be estimated by 

minimizing the CF (2.66). Table 2.5 summarizes the limits of each parameter. 

The limits of Rct and Cdl for the minimization are defined for each well for its initial 

and final value (Table 2.3 and Table 2.4). ff has the known limits: 0 and 1.  

Table 2.5 Limits of Rct, Cdl and ff for minimization of the CF 

 ctR  
dlC  ff  

Lower limit 0ff

ctR →  1ff

dlC →  0 

Upper limit 1ff

ctR →  0ff

dlC →  1 

  

Table 2.6 Parameters to define the evolution of Rs 

Well  [ ]siR k   [ ]sR k   

1 0.94 -0.56 

3 0.67 0.58 

4 0.72 0.01 

5 0.73 -0.27 

7 0.82 0.29 

8 0.58 0.57 
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As expected, in Fig. 2.22 can be observed that wells 1 and 3 are the latest to reach the 

maximum fill-factor, wells 4 and 5 are the second and wells 7 and 8 are the first ones to 

reach the maximum. This is due to the initial number of cells on each well. The more the 

initial number of cells, the lower the time to reach the maximum fill-factor. 

To know how good is the fitting method, the results must be compared with the 

results obtained by traditional counting method. For the sake of illustration, biologists 

of the department of Cell Biology Department in the Seville University performed an 

experiment in the same environmental conditions and using cells obtained from the 

same batch, using the same cell line at an equal cell concentration of the experiments of 

our data. Then, they performed a traditional optically counting of the number of cells 

with the Leica DMI1 Inverted Microscopy every 24h until the confluence phase was 

reached. 

The metric used to compare data was the cell concentration. ff must be translated to 

number of cells (Ncell). From the traditional experiment, the number of cells in confluence 

phase (𝑓𝑓 = 1) is known. Relationship between ff and Ncell is defined by: 

 cell
cell

well

A
ff N

A
=  (2.68) 

where Acell is the mean area of the cells of AA8 cell line, and Awell is the well area. Then 

the AA8 cell mean area is: 

 2

6

1 23.75
552.5 

4.3 10

trad

well
cell

cell

ff A
A m

N


 
= = =


 (2.69) 

a)

b)

c)

 

Fig. 2.22 Fill-factor evolution for each well of the experiment using SEW model. a) Initial 

number of cells: 2500 cells (well 1 on the left and well 3 on the right). b) Initial 

number of cells: 5000 cells (well 4 on the left and well 5 on the right). c) Initial number 

of cells: 10000 cells (well 7 on the left and well 8 on the right). 
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Note that the 𝐴𝑤𝑒𝑙𝑙
𝑡𝑟𝑎𝑑 used in (2.69) is the area of the well employed in the traditional 

experiment. The area of the wells from [46], used to perform the OBT experiments, is 

named as Awell. Cell area allows us to kwon the number of cells from each fill factor value 

using (2.68) in the form: 

 well
cell

cell

A
N ff

A
=  (2.70) 

where Awell = 0.8 cm2. 

The cell concentration is obtained by divided the number of cells by the well area 

(traditional data divided by 𝐴𝑤𝑒𝑙𝑙
𝑡𝑟𝑎𝑑 and OBT data divided by Awell). Fig. 2.23 shows the 

comparison between cell concentration obtained from CF minimization method and 

traditional method. Note that CF minimization method curves are obtained by making 

the mean of the fill-factor for each initial number of cells. Except at the beginning of the 

experiment, where there are few cells in the wells and the CF minimization method is 

not accurate, the results are very similar. The error bars of the traditional optical counting 

method are shown in Fig. 2.23, and it is observed that the data obtained from the CF 

minimization method satisfies the error margins. 

Using the electrical model of the SEW CE system, results are close to those obtained 

with traditional optical counting (microscopy). However, this model is not close enough 

to reality. On the other hand, notice that the values of model parameters obtained (Rct, 

Cdl, Rs and Rgap) are not very accurate. The reason is that the used model describes the 

well as a big electrode, but the real model must contain ten microelectrodes and one big 

reference electrode. For this reason, the values of Cdl and Rct differ significantly from the 

theoretical values estimated in 2.1.2. The real model of the CE system is explored in the 

next section. 
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Fig. 2.23 Cell concentration comparison between data from CF minimization method 

and traditional counting method. 
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2.1.5.3 Real-electrode well model (11 electrodes) 

In the previous section, it was performed a parameter fitting using as a model a SEW 

system. The problem is that the real wells don’t have just one electrode. Employed wells 

have ten microelectrodes and one big reference electrode. On this section, the model to 

be fitted is not exactly the circuit on Fig. 2.5.b).  

Let us consider that circuit in Fig. 2.5.b) is the circuit inside blocks ( )CEZ s  in Fig. 2.24. 

That figure shows how the electrodes are connected to each other. Microelectrodes (e1 to 

e10) are connected to the signal VCE and to the reference electrode. The reference electrode 

(er) is connected to the others electrodes and to ground. Microelectrodes and reference 

electrode are connected to each other by the spreading resistance output terminal. That 

is the model that is considered in this section. 

The model of Fig. 2.24 is complex but must be simplified and analyzed to reduce its 

complexity. There is a relationship between the parameters of the microelectrode model 

and the reference electrode model. The relationship between Rct and Rctr can be derived 

from (2.6): 

 
'

'
  [ ]ctr ct e e

ctr ct

ct re ct re

R R A A
R R

R A R A
= → =   (2.71) 

where Rctr is the change transfer resistance of the reference electrode model and Are is the 

reference electrode area. In the same way, relationship between Cdl and Cdlr, and between 

Rs and Rsr can be derived from (2.11) and (2.13) respectively: 

VCE

ZCE(s)

e1

ZCE(s)

e2

ZCE(s)

e10

ZCE(s)

er

C1

R1 Rs

C2

R2

Rgap

C1r

R1rRsr

C2r

R2r

Rgap

 

Fig. 2.24 Real-electrode well (REW) model of the well. It has ten microelectrodes (e1 to 

e10) and one big reference electrode (er). 
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'

'
  [ ]dlr dl er re

dlr dl

dl dl e e

C C A A
C C F

C C A A


= → =


 (2.72) 

 
4

  [ ]
4

esr e
sr s

s rere

AR A
R R

R AA

 

 


= → = 

 
 (2.73) 

where Cdlr is the interfacial capacitance of the reference electrode model and Rsr is the 

spreading resistance of the reference electrode model. Note that V0 (equation (2.8)) is 

different from Cdl (near to 10 mV) and Cdlr (0 V), consequently relationship between Cdl 

and Cdlr depends on electrode area and the gap resistor (Fig. 2.4), Rgap, is considered equal 

for microelectrode model and reference electrode model. Since the 𝐴𝑒 𝐴𝑟𝑒⁄  factor is 

repeated, the relationship between Ae and Are is defined as: 

 e
e

re

A
k

A
=  (2.74) 

Therefore, the parameters of the electric model of the reference electrode are: 

      C      dl
ctr ct e dlr sr s e

e

C
R R k R R k

k
=  = =   (2.75) 

The reference electrode model is defined as 𝑍𝐶𝐸
𝑟𝑒 (𝑠) = 𝐹(𝑅𝑐𝑡𝑟 , 𝐶𝑑𝑙𝑟 , 𝑅𝑠𝑟 , 𝑅𝑔𝑎𝑝, 𝑓𝑓, 𝑠), 

then TF of the REW model with ten microelectrodes and one reference electrode is: 

 
( )

( ) ( )
10

reCE
well CE

Z s
Z s Z s= +  (2.76) 

where 𝑍𝑤𝑒𝑙𝑙(𝑠) is the impedance of the CE system considering the real distribution of the 

electrodes. Using the relationships between parameters of the microelectrodes model 

and reference electrodes model described in (2.75), 𝑍𝑤𝑒𝑙𝑙(𝑠) is a Laplace function that 

depends on: 

 ( ) ( , , , , , , )well ct dl s gap eZ s F R C R R ff k s=  (2.77) 

𝑍𝑤𝑒𝑙𝑙(𝑠) have three poles and three zeros. The expressions of the zeros are too large 

to present here. In the same way which is done in section 2.1.5.2 poles, zeros and gain 

for 𝑓𝑓 → 0 and 𝑓𝑓 → 1 must be estimated to fit the model.  

 0 0

(1 10 ) (1 10 )1
     

(1 10 )

ct e s e

ff ff

dl ct dl ct s e

R k R k
p z

C R C R R k
→ →

 +  +  + −
= = −

 + 
 (2.78) 

 1 1

(1 10 ) (1 10 ) 111
     

( (1 10 ) 11 )

ct e s e gap

ff ff

dl ct dl ct s e gap

R k R k R
p z

C R C R R k R
→ →

 +  +  +  + −
= = −

  +  + 
 (2.79) 

 

0

0

1 1

10 10

1 1
11

10 10 10

ff

well ct e s e

gapff
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   
=  + +  +   
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   
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In (2.78) are presented the pole and the zero when 𝑓𝑓 → 0, and in (2.79) are presented 

the pole and the zero when 𝑓𝑓 → 1. These expressions cannot be used to estimate the 

𝑍𝑤𝑒𝑙𝑙(𝑠)  model parameters, since the approximation done in (2.59) is less accurate for 

zeros in (2.78) and (2.78). The best choice is to get the 𝑅𝑐𝑡
𝑓𝑓→0

 and 𝐶𝑑𝑙
𝑓𝑓→0

 expressions from 

(2.78) and the 𝑅𝑐𝑡
𝑓𝑓→1

 and 𝐶𝑑𝑙
𝑓𝑓→1

 expressions from (2.79). Working with the equations of 

poles and zeros, the following expressions are obtained: 
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 Then, the values of Rct, Cdl, poles and zeros when 𝑓𝑓 → 0 and 𝑓𝑓 → 1 can be obtained. 

The values of 𝑓𝐶𝐸
𝑓𝑓→0

, 𝑓𝐶𝐸
𝑓𝑓→1

, 𝑎𝐶𝐸
𝑓𝑓→0

 and 𝑎𝐶𝐸
𝑓𝑓→1

 used in the step one and the step two of the 

fitting process are the same of the Table 2.1. In Table 2.7 and Table 2.8 the values of poles, 

zeros and model parameters are summarized. Note that, as with the SEW model, 

𝑝𝑓𝑓→0 ≈ 𝑝𝑓𝑓→1 have been considered. 𝑅𝑐𝑡
𝑓𝑓→0

 and 𝑅𝑐𝑡
𝑓𝑓→1

 values are still an order of 

magnitude below 13.67 MΩ expected from (2.6). Values of 𝐶𝑑𝑙
𝑓𝑓→0

 and 𝐶𝑑𝑙
𝑓𝑓→1

 are very 

close to the expected theoretical value 3.29 nF in (2.11). Besides that, Rs values are 

different from the expected value of 1 kHz in (2.13). The value of Rgap is studied below. 

fval of both fitting steps for each well is shown in Table 2.9. Notice that, compared with 

fval for SEW model (Table 2.2), 2 less orders of magnitude have been achieved. 

 As for SEW model, cell concentration is estimated using ff for each moment and well. 

ff estimation is perform in the same way of SEW model, but in that case, the REW model 

Table 2.7 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for AA8 cell 

line (REW model with 10 microelectrodes and one reference electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

1 1.17 2.74 4.17 49.67 9.59 

3 0.71 3.75 3.23 60.17 9.04 

4 0.52 4.8 2.95 64.24 7.75 

5 1.41 2.54 4.71 44.2 9.12 

7 0.63 4.24 3.44 59.78 7.52 

8 0.36 4.85 2.58 91.65 8.79 
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of the wells is used. Limits for CF minimization are the same of Table 2.5, but the values 

of 𝑅𝑐𝑡
𝑓𝑓→0

, 𝑅𝑐𝑡
𝑓𝑓→1

, 𝐶𝑑𝑙
𝑓𝑓→0

 and 𝐶𝑑𝑙
𝑓𝑓→1

 used for each well are the values of Table 2.7 and Table 

2.8. Table 2.10 present the values for Rsi and ΔRs for the REW model. 

In Fig. 2.25 shows the fill-factor evolution for each well using the parameters obtained 

in fitting process. As expected, wells 1 and 3 are the last ones to reach the maximum fill-

factor, wells 4 and 5 are the second ones and the first to reach the maximum are wells 7 

and 8. This is due to the initial number of cells on each well. The more the initial number 

of cells, the lower the time to reach the maximum fill-factor. 

In the same way for SEW model, results of ff can be used to calculate cell 

concentration using (2.70). It is interesting to compare SEW model result with REW 

model results and with cell concentration of traditional counting method. Fig. 2.26 shows 

Table 2.8 Model parameters at the end of the experiment 𝑓𝑓 → 1 for AA8 cell line 

(REW model with 10 microelectrodes and one reference electrode). 

Well 1  [ ]ff

ctR M→   1  [ ]ff

dlC nF→  1  [ ]ff

sR k→    [ ]gapR   1  [ ]ffz kHz→  

1 1.28 2.5 6.08 346.6 5.12 

3 0.88 3.02 7.41 383.5 3.63 

4 0.69 3.61 1.6 1021.1 3.36 

5 1.51 2.38 7.79 258.5 4.8 

7 0.87 3.07 5.01 841.6 3.24 

8 0.51 3.43 1.2 1017.4 3.73 
 

Table 2.9 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of model parameters 

estimation, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 1 3 4 5 7 8 

0ff

valf →  [x 10-5] 0.089 0.38 0.99 0.161 0.16 0.69 

1ff

valf →  [x 10-5] 0.26 0.068 1.53 0.18 1.61 0.38 

  

Table 2.10 Parameters to define the evolution of Rs. 

Well  [ ]siR k   [ ]sR k   

1 4.17 1.91 

3 3.23 4.18 

4 2.95 -1.35 

5 4.71 3.09 

7 3.44 1.57 

8 2.58 -1.38 
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this comparison. Cell concentration evolution of REW model seems to be similar to cell 

concentration evolution of traditional counting method, except for the wells with an 

initial number of cells of 10000, where it differs slightly. In general, REW model seems 

to show better the behavior (or cell concentration evolution) of cell concentration (or fill-

factor) for low values of ff. Like the SEW model, the REW model meets the error margins 

obtained from traditional optical counting.  

In this subsection, it has been demonstrated that linear models can be used to know 

the behavior of a CC assay even if it has a clearly nonlinear behavior. Therefore, it can 

be concluded that it is possible to obtain the cell concentration of a CC assay using an 

oscillator circuit (OBT) as a measurement circuit. The errors found are relatively small, 

and the trend of the traditional curves and those using the OBT circuit are similar. 

 

a)

b)

c)

 

Fig. 2.25 Fill-factor evolution for each well of the experiment using the REW model. a) 

Initial number of cells: 2500 cells (well 1 on the left and well 3 on the right). 

b) Initial number of cells: 5000 cells (well 4 on the left and well 5 on the right). 

c) Initial number of cells: 10000 cells (well 7 on the left and well 8 on the 

right). 
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Fig. 2.26 Cell concentration comparison between CF minimizing method using SEW 

model (blue) and REW model (red), and traditional counting method 

(yellow). 
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2.1.5.4 Fractional order model 

Integer-Order (IO) models, such as those used in the previous subsections, do not 

completely fit the behavior of a real system. In the case of the electrical behavior of a BS, 

their BDs confirm that a (relatively simple) IO model cannot capture all the dynamics of 

the response to an electrical stimulus. Although in the previous subsections the 

evolution of the growth of a CC assay has been successfully obtained using IO models 

(with a certain degree of complexity), it is interesting to apply Fractional Order (FO) 

models in the process of extracting ff from 
oscf  and 

osca . FO models can achieve a better 

fit of the CE system parameters, because they are non-linear and are closer to the real 

behavior. For example, in [35] a two electrode model, which contains a FO Constant 

Phase element (CPE) is used to is used to perform the characterization of electrodes for 

bioimpedance measurement of animal tissue. Authors consider that the electrodes have 

resistive and capacitive properties of FO (the CPE element), and that the tissue is of the 

resistive type. FO elements can also be used to characterize vegetal tissues, as is done in 

[34]. 

FO models are based on the premise that the order of a differential operator can be 

non-integer. To start learning about FO elements and their frequency behavior, the 

manual [64] is used as a reference document. The authors define the FO Laplace operator 

as follows, 

      0< <2n

n ns
 =  (2.85) 

where αn is the order of the differential Laplace operator s and n is an integer such that 

n = {1, 2, 3…}. Capacitors of the CE model (Fig. 2.5) are replaced by CPE described with 

FO operators,  

 
1 21 2

1 2

1 1
          

dl dlC C

dl dl

X X
s C s C 

= =  (2.86) 

where α1 is the order of s in reactance 𝑋𝐶𝑑𝑙1
 and α2 is the order of s in reactance 𝑋𝐶𝑑𝑙1

. 

The transfer function of the 10 electrodes FO CE model is very complex, so it is 

expressed as: 

 
1 2( ) ( , , , , , , , , )well ct dl s gap eZ s F R C R R ff k s =  (2.87) 

From first tests, where a CF of the FO CE model was minimized to know the possible 

values of α1 and α2, a conclusion is reached: in this FO CE model, Rs does not change 

with ff (i.e., ΔRs is removed from the model). The first tests have reported values of ΔRs 

in the order of 10-3, which does not affect the model because Rs has an order of 103. The 

explanation begins by derived the FO models of the 10 electrodes system when 𝑓𝑓 → 0 

and 𝑓𝑓 → 1, in order to estimate the parameters in a simple way. The transfer functions 

obtained are as follows, 
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where poles, zeros and gains have been previously defined in equations (2.78) to (2.80). 

Note that, when 𝑓𝑓 → 0, α2 has no influence in the system behavior, and, when 𝑓𝑓 → 1, 

α1 has any influence in the system behavior. In an FO model, α changes the slope of poles 

and zeros, such that its magnitude curve has a slope of ± α·20 dB/dec. Furthermore, the 

change in phase, for single poles and zeros, is ± α·π/2 º. The experimental BDs (Fig. 2.19) 

of the system indicate that the system has a non-linear behavior, because the slope of the 

magnitude curve and the changes in the phase curve do not match the general 

characteristics of an IO model. Considering that the fractional exponent α can modify 

these indicators outside the standard of an IO model, and knowing that Rs defines zeros 

and gains in the IO CE model, the conclusion is that small changes between α1 and α2 

(transition from 𝑓𝑓 → 0 to 𝑓𝑓 → 1) produce big changes in the FO model of the system, 

and, therefore, ΔRs becomes redundant and can be removed from the FO model. 

The parameter estimation process is similar to the performed for the 1 electrode and 

10 electrodes IO models. The BSC is used to ensure the oscillation conditions, obtaining 

a complex number (2.60), which must be equal to 0. Since s = j·ω, in FO models complex 

number j is replaced by jα. Then, the FO complex number must be translated to complex 

number by using Moivre's formula: 

 cos sin
2 2

j j  
 

   
=  +     

   
 (2.90) 

Due to the high complexity of the model (cross products of α1 and α2), the model is 

implemented in a different way than the previous sections. IO models have been 

implemented (sections 2.1.5.2 and 2.1.5.3) completely to obtain its parameters, while FO 

models are, in this case, implemented in a transitional mode. This means that, 

considering that the pole is constant for any value of ff, a transition from 𝑧𝑓𝑓→0 to 𝑧𝑓𝑓→1 

and from 𝑘𝑤𝑒𝑙𝑙
𝑓𝑓→0

 to 𝑘𝑤𝑒𝑙𝑙
𝑓𝑓→1

 is implemented using ff. In other words, ff is used to change 

from 𝑍𝑤𝑒𝑙𝑙
𝑓𝑓→0(𝜆1) to 𝑍𝑤𝑒𝑙𝑙

𝑓𝑓→1(𝜆2). Then, the implemented model is: 

 1, 2( )well well

p z
Z k

z p


 



+
=

+
 (2.91) 

where 𝑝 = 𝑝𝑓𝑓→0 = 𝑝𝑓𝑓→1 and, 

 
0 1(1 ) ff ffz ff z ff z→ →= −  +   (2.92) 

 0 1(1 ) ff ff

well well wellk ff k ff k→ →= −  +   (2.93) 

 1 2(1 )ff ff  = −  +   (2.94) 
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When 𝑓𝑓 → 0, by replacing fosc by 𝑓𝐶𝐸
𝑓𝑓→0

 and aosc by  𝑎𝐶𝐸
𝑓𝑓→0

 (Table 2.1) in (2.91), 𝑅𝑐𝑡, 

𝐶𝑑𝑙, 𝑅𝑠, 𝑝, 𝑧𝑓𝑓→0 and α1 can be obtained by minimizing the CF. The CF for FO model is the same 

of (2.66), except that during its calculation the CE model used is the FO real electrode-well (REW) 

model (2.91). In the same way, when 𝑓𝑓 → 1, by replacing fosc by 𝑓𝐶𝐸
𝑓𝑓→1

 and aosc by  𝑎𝐶𝐸
𝑓𝑓→1

 

(Table 2.1) in (2.91), 𝑅𝑔𝑎𝑝, 𝑧𝑓𝑓→1 and α2 can be obtained by minimizing the CF (2.66). As in the 

previous sections, data obtained from the AA8 cell line is used.  

 In this case, to minimize the CF, the Matlab® function fminsearch [65] is used. It 

performs an unbounded search of the values that make the CF minimum, starting from 

the initial point chosen by the user. The value of the function, fval, is again used as a 

measurement of the minimization quality. Table 2.11 shows the fval values obtained for 

each well and ff limit. Notice that fminsearch finds parameter values for which fval is very 

small. The results of minimizing the CF of (2.66) are shown in next tables. Table 2.12 

displays the CE model parameters when 𝑓𝑓 → 0 and Table 2.13 presents the CE model 

Table 2.11 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of FO model parameters 

estimation, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 1 3 4 5 7 8 

0ff

valf →  [x 10-15] 0.4 0.18 0.72 0.04 0.38 0.26 

1ff

valf →  0 0 0 0 0 0 
 

Table 2.12 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for AA8 cell 

line (FO REW model with 10 microelectrodes and one reference electrode). 

Well  [ ]ctR M   [ ]dlC nF   [ ]sR k   [ ]p Hz  
0  [ ]ffz kHz→

 
1  

1 0.43 1.85 0.97 200 61.1 1.05 

3 0.29 2.72 0.29 199.1 137.65 1.04 

4 0.47 4.1 2.39 83.05 11.2 1.02 

5 0.69 2.42 0.56 94.7 80.63 1 

7 0.24 3.03 0.36 222.98 98.89 1.04 

8 0.84 7.2 1.21 26.24 12.52 0.95 
 

Table 2.13 Model parameters at the end of the experiment 𝑓𝑓 → 1 for AA8 cell line 

(FO REW model with 10 microelectrodes and one reference electrode). 

Well  [ ]gapR   1  [ ]ffz kHz→  
2  

1 501.13 12.89 1.03 

3 699.81 7.58 1 

4 520.64 4.37 0.98 

5 686.71 8.12 0.99 

7 355.63 12.32 0.99 

8 412.02 3.6 0.91 
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parameters when  𝑓𝑓 → 1. The transition from α1 to α2 models the effect of changes in the 

zero and gain. Thus, Rct, Cdl and Rs do not change during the CC assay growth, they are 

obtained at 𝑓𝑓 → 0 and are constant. 

Fig. 2.27 shows ff evolution for each well using the parameters obtained in fitting 

process. Results are similar to the ones in subsections  2.1.5.2 and 2.1.5.3. In this case, it 

seems that ff tends to higher values in the first days of simulation. Even so, the trend and 

the time at which ff reaches value 1 is similar to the previous subsections. 

As in previous sections, ff is used to calculate cell concentration using (2.70). Cell 

concentration results of FO REW model are once again compared with SEW model 

results and REW model results and with cell concentration of traditional counting 

method. Fig. 2.28 shows this comparison. Cell concentration evolution of FO REW model 

seems to be similar to cell concentration evolution of the previous models. The results 

prove that FO models can be used to track the growth of CC assays, but with a 

sufficiently high initial ff or cell concentration. For Nini values of 2500 and 5000 cells, it 

has significant errors in the first hours and/or days of the experiment. 

All three models (SEW, REW and FO REW) predict correctly the growth trend of the 

CC assay. However, the FO REW model, for low values of Nini, fits worse than the IO 

models, which may be due to the high sensitivity of α1 and α2. When a FO is minimized, 

several local minima can be found, making it difficult for the algorithm to know which 

is the correct value. On the other hand, FO model fits better the BD of the real system,  

a)

b)

c)

 

Fig. 2.27 Fill-factor evolution for each well of the experiment using the FO REW model. 

a) Initial number of cells: 2500 cells (well 1 on the left and well 3 on the right). 

b) Initial number of cells: 5000 cells (well 4 on the left and well 5 on the right). 

c) Initial number of cells: 10000 cells (well 7 on the left and well 8 on the 

right). 
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Fig. 2.28 Cell concentration comparison between CF minimizing method using FO  

REW model (blue), REW model (red) and SEW model (yellow), and 

traditional counting method (purple). 
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since it can be adapted to slopes of poles and zeros different from the classical ±20 dB/dec 

(also for ±90 °/dec phase). If the initial concentration is high or the minimization 

algorithm can be improved, the FO model is the best choice to simulate a BS due to its 

non-linear behavior. 

In the current subsection the REW model has been adapted and tested to a FO model. 

The new model, FO REW, contains FO Laplace operators. It is shown that using an FO 

model it is possible to obtain the cell concentration of a CC assay from the data of an 

OBT to which the culture is connected. The best way to confirm these results is to test 

the fitting method of these models for other cell lines. In the following subsection, results 

obtained for the N2a and N2a-APP lines (introduced in 2.1.5.1) will be presented. 

2.1.5.5 Model fitting of different cellular lines 

In this section the REW model (section 2.1.5.3) and the FO REW model (section 

2.1.5.4) are fitted to other cell lines than AA8. The fitting process is applied to the N2a 

and N2aAPP lines (introduced in section 2.1.5.1). The goal of this task is to validate the 

models and fitting methods with additional target cell lines. Very useful conclusions can 

be drawn such as the limits of the method, the influence of cell type size and 

morphology, etc. 

The first problem found is that the values of the parameters of the FO model are not 

consistent. Negative results are obtained for some parameters and others are far from 

the expected range. This means that there are parameters, such as Rct or 𝑧𝑓𝑓→0 and 𝑧𝑓𝑓→1 

that take negative or far out of range values when using the transitional model defined 

in (2.91). Therefore, from this point the REW FO model (2.87) is used to fit the other two 

cell lines. Then, the parameters and the procedure to obtain the cell line parameters is 

the same for the REW model and the FO REW model as the one used in section 2.1.5.3. 

The only difference between the IO and the FO is that the latter estimates α1 for low ff 

and α2 for high ff. 

During the experiments with the N2a and N2aAPP cell lines the wells setup with 

respect to the number of cells is: wells 2 and 6 has an Nini = 2500 cells, wells 3 and 7 has 

an Nini = 5000 cells, and wells 4 and 8 has an Nini = 10000 cells. As the fitting procedure is 

described in section 2.1.5.3, the values of the parameters obtained when 𝑓𝑓 → 0 and for 

𝑓𝑓 → 1 are shown below. 

2.1.5.5.1 Fitting results of N2a and N2aAPP cell lines 

This subsection shows the fitting data of the REW model (also called IO model) and 

the FO REW model for the N2a and N2aAPP cell lines. In the following subsection the 

results obtained are discussed and explained. 

Table 2.14 and Table 2.15 shows the values of the parameter fitting of REW model 

for N2a cell line. Table 2.16 shows the parameters that define the evolution of Rs. The 
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first outcome observed is that both Rct and Cdl have a very low dispersion compared to 

the AA8 cell line. Also, to a lesser extent, this happens for 𝑝𝑓𝑓→0 , 𝑧𝑓𝑓→0 and, 𝑧𝑓𝑓→1. In 

contrast, Rgap, Rsi and ΔRs have a similar dispersion to the AA8 line. The values of fval for 

𝑓𝑓 → 0 and 𝑓𝑓 → 1 are good or satisfactory in both cases, as shown in Table 2.17. 

Table 2.14 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for N2a cell 

line (REW model with 10 microelectrodes and one reference electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

2 0.39 4.04 1.71 99.68 15.88 

3 0.39 3.96 1.67 102.74 16.52 

4 0.36 3.55 1.59 122.86 19.29 

6 0.32 4.67 1.41 103.21 15.94 

7 0.32 4.66 1.72 106.96 13.64 

8 0.26 5.19 1.39 117.69 15.22 
 

Table 2.15 Model parameters at the end of the experiment 𝑓𝑓 → 1 for Na2 cell line 

(REW model with 10 microelectrodes and one reference electrode). 

Well 1  [ ]ff

ctR M→   1  [ ]ff

dlC nF→  1  [ ]ff

sR k→    [ ]gapR   1  [ ]ffz kHz→  

2 0.37 4.34 2.17 172.47 7.43 

3 0.36 4.30 0.70 401.99 6.97 

4 0.34 3.82 0.72 512.73 6.43 

6 0.31 4.92 3.82 132.65 4.78 

7 0.31 4.82 3.86 43.16 5.60 

8 0.24 5.67 1.93 188.69 5.94 
 

Table 2.16 Parameters to define the evolution of Rs. 

Well  [ ]siR k   [ ]sR k   

2 1.71 0.47 

3 1.67 -0.97 

4 1.59 -0.88 

6 1.41 2.41 

7 1.72 2.13 

8 1.39 0.54 
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 Table 2.18 and Table 2.19 shows the values of the parameter fitting of FO REW model 

for N2a cell line. In this case, the transitional model is not considered, but the REW 

complete FO model is used. Therefore, 𝑅𝑐𝑡
𝑓𝑓→0

, 𝐶𝑑𝑙
𝑓𝑓→0

, Rs, 𝑝𝑓𝑓→0 , 𝑧𝑓𝑓→0 and α1 are 

estimated for 𝑓𝑓 → 0. For 𝑓𝑓 → 1, 𝑅𝑐𝑡
𝑓𝑓→1

, 𝐶𝑑𝑙
𝑓𝑓→1

, Rgap, 𝑧𝑓𝑓→1 and α2 are obtained. Note that, 

in this case, in the FO REW model, the values of Rct and Cdl changes with ff. In addition, 

Rs is fixed (estimated when 𝑓𝑓 → 0), since the effect that was observed and modeled with 

ΔRs is achieved with α1 and α2. 

 Parameters of FO model for N2a have more dispersion than IO model, but have 

similar values to those obtained with the transitional FO model for the AA8 cell line. 

Table 2.17 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of model parameters 

estimation of N2a, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 2 3 4 6 7 8 

0ff

valf →  [x 10-15] 0.15 0.29 0.19 0.83 0.14 0.04 

1ff

valf →  [x 10-5] 0.04 0.08 0.18 0.43 0.47 5.08 

  

Table 2.18 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for N2a cell 

line (FO  REW model with 10 microelectrodes and one reference electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→   [ ]sR k  
0  [ ]ffp Hz→

 
0  [ ]ffz kHz→

 
1  

2 0.90 6.21 1.36 28.49 12.90 0.95 

3 1.44 6.65 1.57 16.63 10.43 0.94 

4 1.13 6.46 1.24 21.80 13.55 0.93 

6 0.37 4.97 1.81 87.05 12.15 0.99 

7 0.36 5.19 1.55 85.83 13.59 0.99 

8 0.26 5.41 1.22 111.76 16.60 0.99 
 

Table 2.19 Model parameters at the end of the experiment 𝑓𝑓 → 1 for N2a cell line (FO  

REW model with 10 microelectrodes and one reference electrode). 

Well 1  [ ]ff

ctR M→   1  [ ]ff

dlC nF→   [ ]gapR   1  [ ]ffz kHz→  
2  

2 3.75 1.49 1.46 6.07 1.13 

3 2.14 4.47 0.65 3.84 0.99 

4 3.59 2.03 1.47 4.45 1.08 

6 0.63 2.92 0.92 4.43 1.06 

7 0.84 2.22 1.11 5.14 1.09 

8 0.54 2.64 0.92 5.29 1.09 
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Table 2.20 shows the values of fval for 𝑓𝑓 → 0 and 𝑓𝑓 → 1, which are similar to those in 

the Table 2.17. 

 Fig. 2.29 shows the cell concentration comparison of N2a cell line. Cell concentration 

obtained by using parameters values of IO and FO models, is compared with the cell 

concentration obtained from the traditional optical cell count. The first noticeable point 

is that the cell concentration obtained by traditional methods takes longer to initiate 

growth and to reach its maximum. This was not the case with the AA8 cell line. If the 

time of the cell concentration obtained by traditional methods is advanced, it is observed 

that the trends of the curves match (Fig. 2.30). This figure shows that the trend is similar, 

but for Nini = 2500 cells, the fit is very unsatisfactory with both the IO model and the FO 

model. For the other two values of Nini, the trend is similar and close to the margins of 

error. Note that the IO model, for low concentrations, does not perform as well as it 

should. This may be because it does not properly understand the initial perturbations 

due to temperature, humidity, CO2, and the initial time that the cells take to  adhering to 

the bottom of the well. 

 

Table 2.20 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of FO model parameters 

estimation, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 1 3 4 5 7 8 

0ff

valf →  [x 10-15] 0.34 0.32 0.11 0.23 0.23 0.22 

1ff

valf → [x 10-5] 1.72 0.35 1.94 0.42 0.44 1.55 
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Fig. 2.29 N2a cell line cell concentration comparison between CF minimizing method 

using FO REW model (blue) and  REW model (red), and traditional counting 

method (yellow ). 
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Fig. 2.30 N2a cell line cell concentration comparison between CF minimizing method 

using FO REW model (blue) and  REW model (red), and traditional counting 

method (yellow). The time vector has been advanced by 48 hours to match 

the lines. 
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In Table 2.21 to Table 2.24 are shown the results of fitting the N2aAPP cell line with 

the REW model. The results are similar to those obtained for N2a, with a few more 

dispersion in some parameters.  

Table 2.21 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for N2aAPP 

cell line (REW model with 10 microelectrodes and one reference electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

2 0.61 3.20 2.38 81.24 14.35 

3 0.43 3.07 1.48 119.55 24.09 

4 0.35 3.99 1.67 115.30 16.42 

6 0.47 3.65 1.58 93.19 18.86 

7 0.43 3.75 1.62 97.81 17.94 

8 0.32 4.33 1.91 114.08 13.26 
 

Table 2.22 Model parameters at the end of the experiment 𝑓𝑓 → 1 for N2aAPP cell line 

(REW model with 10 microelectrodes and one reference electrode). 

Well 1  [ ]ff

ctR M→   1  [ ]ff

dlC nF→  1  [ ]ff

sR k→    [ ]gapR   1  [ ]ffz kHz→  

2 0.66 2.96 1.75 417.65 7.67 

3 0.48 2.78 0.49 628.83 7.76 

4 0.39 3.57 2.23 384.32 6.17 

6 0.39 4.39 4.72 69.89 4.91 

7 0.47 3.45 2.66 162.74 8.35 

8 0.29 4.71 3.14 415.53 3.87 
 

Table 2.23 Parameters to define the evolution of Rs. 

Well  [ ]siR k   [ ]sR k   

1 2.38 -0.63 

3 1.48 -0.99 

4 1.67 0.56 

5 1.58 3.14 

7 1.62 1.04 

8 1.91 1.22 
 

Table 2.24 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of model parameters 

estimation of N2a, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 2 3 4 6 7 8 

0ff

valf →  [x 10-15] 0 0.11 0.56 0 0 0 

1ff

valf →  [x 10-5] 0.35 0.31 1.44 0.15 0.28 0.51 
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In the same way, the results of the FO REW model fit for the N2aAPP cell line are 

similar to those obtained for the N2a line, and are shown in Table 2.25 to Table 2.27. All 

the data will be discussed in the following section in which an explanation of the 

dispersions will be proposed by relating them to various parameters of cell morphology 

and the oscillation waveforms (𝑓𝐶𝐸 and 𝑎𝐶𝐸). 

Fig. 2.31 and Fig. 2.32 shows the cell concentration comparison of N2aAPP cell line. 

Cell concentration obtained by using parameters values of IO and FO models, is 

compared with the cell concentration obtained from the traditional optical cell count. As 

for the N2a line, the cell growth time of the traditional methods is longer than that 

obtained from the prototype data (Fig. 2.31). Therefore, in Fig. 2.32, the time of cell 

concentration obtained by traditional optical counting is advanced in order to compare 

the evolution of the concentrations. For low concentrations, the model also does not 

Table 2.25 Model parameters at the beginning of the experiment 𝑓𝑓 → 0 for N2aAPP 

cell line (FO  REW model with 10 microelectrodes and one reference 

electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→   [ ]sR k  
0  [ ]ffp Hz→

 
0  [ ]ffz kHz→

 
1  

2 0.90 6.21 1.36 28.49 12.90 0.95 

3 1.44 6.65 1.57 16.63 10.43 0.94 

4 1.13 6.46 1.24 21.80 13.55 0.93 

6 0.37 4.97 1.81 87.05 12.15 0.99 

7 0.36 5.19 1.55 85.83 13.59 0.99 

8 0.26 5.41 1.22 111.76 16.60 0.99 
 

Table 2.26 Model parameters at the end of the experiment 𝑓𝑓 → 1 for N2a cell line (FO  

REW model with 10 microelectrodes and one reference electrode). 

Well 1  [ ]ff

ctR M→   1  [ ]ff

dlC nF→   [ ]gapR k  1  [ ]ffz kHz→  
2  

2 3.75 1.49 1.46 6.07 1.13 

3 2.14 4.47 0.65 3.84 0.99 

4 3.59 2.03 1.47 4.45 1.08 

6 0.63 2.92 0.92 4.43 1.06 

7 0.84 2.22 1.11 5.14 1.09 

8 0.54 2.64 0.92 5.29 1.09 
 

Table 2.27 Function value (𝑓𝑣𝑎𝑙) for each well in the two steps of FO model parameters 

estimation, for 𝑓𝑓 → 0 and 𝑓𝑓 → 1. 

Well 1 3 4 5 7 8 

0ff

valf →  [x 10-15] 0.34 0.32 0.11 0.23 0.23 0.22 

1ff

valf → [x 10-5] 1.72 0.35 1.94 0.42 0.44 1.55 
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properly reflect the real behavior of the CC assay. The trend of the curves is similar for 

medium and high concentration values, but like the N2a line, the fit is not sufficiently 

accurate, as it exceeds the error margins at many points. 

The data from the OBT oscillation connected to the CC assays of the N2a and 

N2aAPP cell lines have provided evidence that the method of model fitting and 

subsequent cell concentration estimation works. Notice that, both cell lines present a 

worse match than the AA8 line, and therefore this point should be analyzed. 
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Fig. 2.31 N2aAPP cell line cell concentration comparison between CF minimizing 

method using FO REW model (blue) and REW model (red), and traditional 

counting method (yellow ). 
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Fig. 2.32 N2aAPP cell line cell concentration comparison between CF minimizing 

method using FO REW model (blue) and  REW model (red), and traditional 

counting method (yellow). The time vector has been advanced by 48 hours 

to match the lines. 
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2.1.5.5.2 Results comparison between cellular lines 

The previous sections show that the results obtained, using cell concentration as a 

metric, are better for the AA8 cell line than for N2a and N2aAPP. In this section, an 

explanation for this will be discussed, as it is interesting to know the reason for future 

experiments.  

The first factor to consider is the frequency and amplitude of oscillation. The metrics 

to be used are 𝑓𝐶𝐸 and 𝑎𝐶𝐸. Concretely, it is observed that the difference between 𝑓𝐶𝐸 and 

𝑎𝐶𝐸 between 𝑓𝑓 → 0 and 𝑓𝑓 → 1 is greater in the AA8 line than in the other cell lines 

fitted. If 𝑓𝐶𝐸
𝑓𝑓→0

 and 𝑎𝐶𝐸
𝑓𝑓→0

are defined as the frequency and amplitude when 𝑓𝑓 → 0, and 

𝑓𝐶𝐸
𝑓𝑓→1

 and 𝑎𝐶𝐸
𝑓𝑓→1

 are defined as the frequency and amplitude when 𝑓𝑓 → 1, the 

variations of 𝑓𝐶𝐸 and 𝑎𝐶𝐸 can be defined as 

 
1 0

1 0

ff ff

CE CE CE

ff ff

CE CE CE

f f f

a a a

→ →

→ →

 = −

 = −
 (2.95) 

where 𝛥𝑓𝐶𝐸 and 𝛥𝑎𝐶𝐸 are the difference in frequency and amplitude, respectively, 

between the time when 𝑓𝑓 → 1 and 𝑓𝑓 → 0. Table 2.28 and Table 2.29 shows the values 

of 𝛥𝑓𝐶𝐸 and 𝛥𝑎𝐶𝐸, respectively, of the three cell lines. The tables reveal a greater 

difference in amplitude variation between the AA8 cell line and the other two than in 

frequency. 

To find a relationship with the BI, the magnitude and phase variation of the BI from 𝑓𝑓 →

0 to 𝑓𝑓 → 1  is calculated. As for frequency and amplitude, the magnitude and phase 

variation can be defined as 

 
1 0

1 0

ff ff

CE CE CE

ff ff

CE CE CE

Mag Mag Mag

Ph Ph Ph

→ →

→ →

 = −

 = −
 (2.96) 

Table 2.28 𝛥𝑓𝐶𝐸 values of AA8, N2a and N2aAPP cell lines [Hz] 

Nini 2500 5000 10000 

AA8 83.57 90.51 91.45 110.39 116.15 123.28 

N2aAPP 52.15 70.26 53.37 104.92 60.95 111.64 

N2a 56.15 69.99 61.22 75.14 67.22 103.40 
 

Table 2.29 𝛥𝑎𝐶𝐸 values of AA8, N2a and N2aAPP cell lines [mV] 

Nini 2500 5000 10000 

AA8 4.23 4.61 7.20 7.63 7.73 9.17 

N2aAPP 2.04 3.65 2.27 3.66 2.41 3.80 

N2a 0.96 1.92 1.10 1.98 1.27 2.97 
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where 𝛥𝑀𝑎𝑔𝐶𝐸 and 𝛥𝑃ℎ𝐶𝐸 are the difference in magnitude and phase, respectively, 

between the time when 𝑓𝑓 → 0 and 𝑓𝑓 → 1. Table 2.30 and Table 2.31 show the values of 

𝛥𝑀𝑎𝑔𝐶𝐸 and 𝛥𝑃ℎ𝐶𝐸 sorted by cellular line and Nini. 𝛥𝑀𝑎𝑔𝐶𝐸 has different values 

depending on the cell line, whereas 𝛥𝑃ℎ𝐶𝐸 takes close values for different cell lines. 

 Due to the highest differences in the oscillation parameters between cell lines,  

𝛥𝑀𝑎𝑔𝐶𝐸 and 𝛥𝑃ℎ𝐶𝐸 are presented versus to the 𝛥𝑎𝐶𝐸 for each cell line (note that the data 

are sorted in ascending order of 𝛥𝑎𝐶𝐸). In this way, Fig. 2.33 shows these relationships, 

where data of Table 2.30 and Table 2.31 is displayed versus data of Table 2.29. 

In the figures there are three clearly defined zones, one for each cell line. This clearly 

suggests that the cells (size, shape, composition, etc.)  influence the accuracy of the fitting 

method. A useful parameter, known from experiments by traditional methods (optical 

counting), is the mean area of the CC assay cells. The area of the cells affects 2 main 

parameters: Rgap and Rs. The Table 2.32 shows the mean area of each cell line and the 

ranges of Rgap and Rs obtained for each cell line for the REW model. 

In [55] the author of the present thesis shown how both parameters influence 𝑎𝐶𝐸 and 

𝑓𝐶𝐸 when 𝑓𝑓 → 0 to 𝑓𝑓 → 1. On the other hand, looking at Fig. 2.4, it is concluded that 

Rgap and Rs (Rgap in a stronger degree) depend on the size and morphology of the cells. So, 

these facts indicate that the cell area influences 𝛥𝑎𝐶𝐸 and 𝛥𝑓𝐶𝐸, which results in a loss of 

accuracy in the model fitting method when the cell area is low. 

Table 2.30 𝛥𝑀𝑎𝑔𝐶𝐸 values of AA8, N2a and N2aAPP cell lines [V/V] 

Nini 2500 5000 10000 

AA8 30.16 654.77 993.03 -209.67 1288.03 1381.04 

N2aAPP 166.03 -1374.60 329.02 180.28 271.68 -621.72 

N2a -577.87 -372.62 -650.96 -384.35 -643.13 509.08 
 

Table 2.31 𝛥𝑃ℎ𝐶𝐸  values of AA8, N2a and N2aAPP cell lines [°] 

Nini 2500 5000 10000 

AA8 4.57 8.72 8.17 5.10 9.06 7.22 

N2aAPP 2.63 7.42 3.72 2.87 4.68 9.04 

N2a 3.26 7.22 3.59 5.20 4.58 4.83 

  

Table 2.32 Values of Acell, and ranges of Rgap and Rs of the cell lines under study for 

REW model. 

Cell line Acell [μm2] Rgap [Ω] 0  [ ]ff

sR k→   

AA8 552.5 258.5 – 1021.1 2.58 – 4.71 

N2aAPP 118 69.9 – 628.8 1.48 – 2.38 

N2a 184 43.1 – 512.7 1.39 – 1.72 
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Table 2.33 shows the same comparison of Table 2.32, but for FO REW model. As can 

be seen in the cell concentration figures (Fig. 2.28 for AA8, Fig. 2.30 for N2a and Fig. 2.32 

for N2aAPP), FO model fits better to the results obtained by traditional counting than 

the IO model. 

It can be concluded that, for this particular case, the FO model captures better the 

growth of a CC assay, since the model parameters are closer to the real ones because 
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Fig. 2.33 Relationship between 𝛥𝑎𝐶𝐸 and oscillation parameters. Top figure shows the 

relationship  𝛥𝑎𝐶𝐸  - 𝛥𝑀𝑎𝑔𝐶𝐸, and bottom figure shows the relationship  𝛥𝑎𝐶𝐸 

- 𝛥𝑃ℎ𝐶𝐸 . 

Table 2.33 Values of Acell, and ranges of Rgap and Rs of the cell lines under study for FO 

REW model 

Cell line Acell [μm2] Rgap [Ω]  [ ]sR k  

AA8 552.5 355.6 – 699.8 0.29 – 2.39 

N2aAPP 118 493.8 – 2010.6 1.12 – 1.98 

N2a 184 653 – 1474.2 1.22 – 1.81 
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they should not compensate for the nonlinearities modeled by the FO Laplace operator 

exponent (2.85). 

Comparing the three cell lines, it can be seen that while AA8 cells are easily fitted, 

the other two lines are not. This is mostly due to the range of the oscillation amplitude. 

The (2.35) shows the dependence between the oscillation amplitude and the BI of the CE 

system. The simplest solution to this problem is to tune the oscillator to a different 

frequency than 1 kHz. The BD of the AA8 cellular line is very useful to know the 

optimum frequency. Fig. 2.34 shows the BD of well in a AA8 cell line experiment. 

Magnitude and phase changes with ff, but for the tunned frequency (1 kHz) the variation 

is much smaller than for higher frequencies (10 kHz). In the absence of experimental BDs 

of the N2a and N2aAPP lines, the optimal frequency to maximize the range cannot be 

known, but the BD of Fig. 2.34 suggests that the accuracy of the tuning method improves 

greatly when the range (which depends on ff) is higher. Therefore, for future 

experiments the bandpass filter will be tuned to higher frequencies. 

The second problem faced during the fitting of the N2a and N2aAPP cell lines is the 

growth rate of the CC assay. While the culture of the AA8 line grows at the same rate as 

the traditional parallel experiment, the other two lines seem to grow much faster than 

the traditional experiment performed for the N2a and N2aAPP lines. Taking into 

account that the conditions of the traditional experiments and using the OBT are the 

same, that the initial cells have the same origin, and the experiments have been 

performed in parallel, the only possible explanation is electrostimulation. Since the 

current through the cells is similar for all cell lines (close to 7 μA), the only difference is 

the cells themselves. Table 2.32 shows the average cell sizes for each cell line. The 

hypothesis proposed in this work is that the current increases the growth rate, 

depending on the size of the cells. Therefore, the AA8 cell line, having a considerably 

Δff

Δff

 

Fig. 2.34 BD of a well in AA8 cell line experiment. The range of the magnitude and 

phase changes with the oscillation frequency. 



  

89 

larger size (on average) than the other two lines, is not affected by the current levels 

used, while the N2a and N2aAPP lines are accelerated in growth due to the currents 

used. This is only a hypothesis, which is still under study, whose results will be studied 

in the future. 

2.2 Conclusions 

This chapter has explained in detail how to model the behavior of the growth of a 

CC assay using OBT data. The oscillator changes its amplitude and frequency of 

oscillation as a function of the cell concentration from the cell culture which is connected 

as a load. Some conclusions and questions arising from the modeling work are detailed 

below: 

• It is possible to measure the growth of a CC assay using an oscillator. The BS 

is connected as a load, which by varying its BI, changes the amplitude and 

frequency of oscillations. In addition, using the oscillation frequency and 

amplitude, and the BSC, the electrical model of the BS can be known, while 

injecting a signal of a given frequency through a CC assay, only its impedance 

at the frequency of the injected signal is known, so it would be necessary to 

make a sweep in frequency to obtain the BI model. 

• The DF method is a very accurate approach to linearize a non-linear element, 

which allows to use the BSC to obtain the theoretical (mathematically) 

oscillation frequencies and amplitudes. 

• A CC assay can be modeled by its BI, which is highly non-linear. Therefore, 

the theoretical value of a parameter of a CE electrical model should be 

considered as a nominal value with a certain margin of error. 

• Experience with the three cell lines used in this work suggests that a tunable 

BPF is necessary in order to be able to adapt the oscillation frequency to the 

most suitable zone according to the electrical behavior of the BS. 

• The SEW model allows easy fitting of a CC assay. On the other hand, it does 

not work sufficiently robust for low Nini, or in case the oscillation parameters 

have low ranges (e.g., the N2a and N2aAPP lines). 

• The experimental BD is very useful to configure the measurement circuit 

(OBT), since it provides the optimum oscillation frequency for each BS. 

• Choosing an appropriate CF is important, as the minimization of CF must 

meet all the objectives required. For that reason, the module of an imaginary 

number is perfect as a CF for the fitting  which use the BSC. 
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• The FO model is more robust than the IO model (also called REW model) 

because it captures the non-linearities and makes use of the FO coefficients to 

predict them. If the IO model is used, the model parameters must compensate 

for the non-linearities of the real system (CE system), so their values may 

differ from the nominal theoretical value. 

• The size of the cells impacts the accuracy of the measurements. In addition, if 

they are too small for the applied current, this can stimulate the CC assay and 

influence the measurements, so they would not be valid and reliable data (as 

with the N2a and N2aAPP lines). 

• A method has been developed to obtain the electrical model of a CC assay 

from the oscillation data of the OBT circuit. This one provides the value of the 

cell concentration at each time point, which is a very important step in the 

field of cell biology. Notice that, although it has been shown that the cell 

concentration can be obtained from the oscillation parameters, this fitting 

method has considerable error and needs to be improved. From the work 

performed in this dissertation, the required knowledge to improve the fitting 

method, from the changes in the measurement prototype to the algorithms of 

the method, is available. In future work, all these changes will be added, 

expecting a significant improvement in the accuracy of the results. 

• The estimation of the cell concentration has been performed after the 

completion of the cell growth experiments with the three lines. The goal of 

this work is to develop a method to obtain the cell concentration in real-time 

during an experiment. Therefore, in the following chapter, simulations of 

real-time experiments will be performed to obtain the cell concentration 

without knowing the following values of amplitude and frequency. That is, 

for each amplitude and frequency measurement performed by the OBT, the 

cell concentration should be estimated in real-time, which, up to now, has not 

been achieved, being this one of the best and main contributions of this thesis. 
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Chapter 3 Simulations of real 

experiments of 

biological systems 

 System modeling is the starting point for understanding and predicting a system 

behavior. The simulation of systems based on its models, helps to know its current state 

and future behavior. The information extracted from a simulation can be used in several 

ways: 

• To apply a control on a system to regulate its outputs or to restrict the 

behavior of some of its internal states. For example, the rotational speed of an 

electric motor can be controlled using a PI (proportional-integral) control at 

the input voltage. Another example is to apply predictive control with 

constraints to an electrical circuit to limit the maximum and minimum 

currents flowing through its nodes. 

• To know the behavior of a system when some of its parameters are changed. 

For example, obtain the consumption and speed curves of a mobile robot 

when modifying its dimensions. 

• To ensure the robustness of a system against different conditions, such as 

temperature changes, potential failures, ... A good example is the simulations 

of an electronic circuit varying the working temperature. 

These are just a few examples of the benefits of system simulation. This chapter 

focuses on the simulation of the oscillator-electronic circuit, including the cell-electrode 

(CE) block. The oscillator circuit, coupled with the CE system as a load, will be 

mathematically simulated using the Barkhausen stability criterion (BSC), to test the 

feasibility of estimating the on-line cell concentration in a real experiment. Additionally, 

the same system will be simulated using the Ngspice [61] electrical simulator. It is a very 

useful tool, which can be used from Matlab to optimize circuit design processes.  

3.1 Real-time estimation of cell-concentration 

growth 

In the Chapter 2 the parameters of the electrical models of the cell-electrode (CE) 

system have been found. In sections 2.1.5.2 to 2.1.5.4 values have been searched for the 

integral order (IO) electrical models called single-electrode well (SEW) well model and 



  

92 

real-electrode well (REW) model, and for the fractional order (FO) REW electrical model. 

These values have been fitted to the AA8 cell line. Since the SEW well model is not 

enough real, its use has been discarded for the 2.1.5.5, where the values of the other two 

models (REW and FO REW) for the N2a and N2aAPP cell lines have been searched. 

Model fitting, the use of the Oscillation-Based Test (OBT) as a sensor, the 

minimization of a cost function (CF) to predict ff values, etc., have as final goal to predict 

in real-time (RT), i.e., during a real growth experiment of a cell-culture (CC) assay, the 

cell concentration in the well at each moment. In this section a routine will be designed 

(based on the previous work [66]) in which a real experiment is simulated and the value 

of ff is predicted at each moment, as well as the cell concentration. This routine will be 

tested using the REW and FO REW electrical models for the three cell lines used in 

Chapter 2: AA8, N2a and N2aAPP. 

3.1.1 Fitting routine 

The key problem of knowing ff at each time of a real experiment is that the values of 

𝑓𝐶𝐸 and 𝑎𝐶𝐸 when well is totally covered by cells (𝑓𝑓 → 1) are not available. That is, you 

can estimate the parameters of the models at the beginning of the experiment, where 

there is any cell in the well  (𝑓𝑓 → 0) , but there are certain parameters that have no 

influence on the behavior of the system at this point. These parameters are Rgap, 𝑧𝑓𝑓→1, 

ΔRs (for the REW model), and  also α2 (for the FO REW model). The designed routine is 

as follows: 

1. Estimate initial values of 𝒇𝑪𝑬 and 𝒂𝑪𝑬: Fig. 3.2 shows the block diagram of 

the step 1, where the initial routine is presented in graphic form. During the 

first hours or days of the experiment, the mean of the last 5 values of 𝑓𝐶𝐸 and 

𝑎𝐶𝐸 measured is calculated (𝑓𝐶𝐸
̅̅ ̅̅  and 𝑎𝐶𝐸̅̅ ̅̅ ̅). As the sampling time (time between 

measurements) is 1 h, the average of the last 4 hours is taken together with 

the values just obtained. After each measurement, after calculating the mean, 

a check is performed to verify whether the values obtained are greater than 

the mean of the new measurement plus a margin (km = 1.005). If this condition 

is met, showed in (3.1), the lowest 𝑓𝐶𝐸
̅̅ ̅̅  and 𝑎𝐶𝐸̅̅ ̅̅ ̅ are stored as minimum values. 

Fig. 3.2 also defines the initial value of Rgap and the value of the constant km. 

Note that the index j is the time index, and goes from 1 to jmax. During the 

calculation of 𝑓𝐶𝐸
̅̅ ̅̅  and 𝑎𝐶𝐸̅̅ ̅̅ ̅ j is incremented from 1 until (3.1) is satisfied. jmax is 

the maximum value of j, and its value is defined by the number of 

measurements taken during the real experiment. 

 ( ) ( )( ) ( 1) & ( ) ( 1)CE CE m CE CE mf j f j k a j a j k −   −   (3.1) 
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2. Computation of the initial parameters of the electrical models: Using the 

minimum 𝑓𝐶𝐸
̅̅ ̅̅  and 𝑎𝐶𝐸̅̅ ̅̅ ̅ estimated in the previous step, the initial parameters 

of the electrical models are fitted. The prediction is performed using the 

method of CF minimization, as in Chapter 2 (sections 2.1.5.3 and 2.1.5.4). For 

the REW model the parameters 𝑝𝑓𝑓→1 (which met that 𝑝𝑓𝑓→0 ≈ 𝑝𝑓𝑓→1), Rsi and 

𝑧𝑓𝑓→0 are calculated, and the values of 𝑅𝑐𝑡
𝑓𝑓→0

 and 𝐶𝑑𝑙
𝑓𝑓→0

 can be derived from 

these using (2.81) and (2.82). For the FO REW model the parameters 𝑝𝑓𝑓→1 

(which met that 𝑝𝑓𝑓→0 ≈ 𝑝𝑓𝑓→1), Rs, 𝑧𝑓𝑓→0 and α1 are calculated, and the values 

of 𝑅𝑐𝑡
𝑓𝑓→0

 and 𝐶𝑑𝑙
𝑓𝑓→0

 can be derived from these using (2.81) and (2.82). The 

initial parameters calculated are the same for all t(j), and therefore they are 

not re-estimated during the simulation. The whole process of estimating the 

initial parameters is illustrated in the Fig. 3.2 block diagram, which starts 

from the results of Step 1 and ends at the beginning of the third and last step. 
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Fig. 3.1 Block diagram of step 1 of RT simulation, whose target is to find the mean 

around the 𝑓𝐶𝐸 and 𝑎𝐶𝐸 minimums. 
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3.  Real-time estimation of ff: The last step and the goal is to predict in RT the 

parameter ff. The computation of ff, once the initial parameters of the models 

are obtained (previous step), is performed for all the previous measurements 

and for all the measurements that will be performed until the end of the 

experiment. The Fig. 3.3 describes the whole prediction process. First, the 

time index j is initialized to start the estimation of ff from j = 1 to j = jmax. The 

CF minimization is different from the one performed in Chapter 2, since it 

must be more robust in order to obtain the parameters as accurately as 

possible. The minimization attempts to obtain the values for each j-measure 

of the parameters: ff, Rgap, 𝑧𝑓𝑓→1 and ΔRs (for the REW model), : ff, Rgap, 𝑧𝑓𝑓→1 

and α2 (for the FO REW model). For this purpose, a loop is used to increment 

the index j from 1 to jmax. Inside the loop, for each value of j, the CF 

minimization function is used to obtain the candidate values of the 

parameters to be calculated that obtain a lower fval value. These candidate 

values are indexed by the indices m (from 1 to mmax) and n (from 1 to nmax). m 

and n index are internal to the CF minimization function, so the parameters 

computed inside the function (ff, Rgap, etc.) indexed with m and n are not the 

same as the parameters outside the function. When the parameters with the 

best fval (minimum fval values) are obtained, among all, the ones with the lowest 

fval are chosen and assigned as the values taken by the parameters for time j. 

Inside CF minimization function, the first step is to define the bounds of these 

parameters, which are shown in (3.2). ff bounds changes for each j-

estimations, but the bounds of the others parameters remain constant for all 

Step 3

Step 1

REW model

REW model
or

 FO REW model

CF minimization of REW model

( )( ) 0 0min , , ,CE CE ff si ffh a f p R z→ →→

CF minimization of FO REW model

( )( ) 0 0 1min , , , ,CE CE ff si ffh a f p R z → →→

FO REW model

 

Fig. 3.2 Block diagram of step 2 of RT simulation, whose target is to find the initial 

parameters (𝑓𝑓 → 0) using the values of 𝑓𝐶𝐸
̅̅ ̅̅  and 𝑎𝐶𝐸̅̅ ̅̅ ̅. 
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j-estimations depending on the experience collected in the previous sections 

of this work. 
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 (3.2) 

CF minimization is performed using as initial values those shown in (3.3). As 

can be seen, 𝑅𝑔𝑎𝑝
𝑖𝑛𝑖  and 𝑧𝑓𝑓→1

𝑖𝑛𝑖  have four and two initial values, respectively. The 

index m moves along the vector 𝑅𝑔𝑎𝑝
𝑖𝑛𝑖  (from 1 to mmax = 4) and the index n 

moves along 𝑧𝑓𝑓→1
𝑖𝑛𝑖  (from 1 to nmax = 2). This is due to the fact that for each j-

estimation several minimizations of the CF are performed, as many as 

possible combinations of the initial values, i.e., eight minimizations. The main 

purpose of this approach is to find the point that achieves the lowest fval, in a 

robust and computationally time efficient way. As a result, a matrix of values 

is obtained at each time j for each of the estimated parameters. This process 

is performed for each value of j, after which, when exiting the function and 

as already explained, the values of the parameters for which fval is minimum 

are chosen (note that there is an fval for each value of the matrix m×n, and there 

is a matrix m×n for each value of j). 
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Fig. 3.3 Block diagram of step 3 of RT simulation. Describe, after obtaining the initial 

parameters, the simulation process from j = 1 to j = jmax. 
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The steps described above are applied for each value of j for each well of each cell 

line, performing simulations that do not consider the future values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸, using 

the REW and FO REW models. The following subsection shows the results of this 

simulation procedure of the real CC assay experiments, which predicts the cell 

concentration in RT. 

3.1.2 Real-time simulation results 

The RT simulation method is finally designed to be implemented in a prototype to 

report the ff and cell concentration values after each measurement. As the required 

sampling time is 1 h, the time to perform all the necessary mathematical operations is 

not a critical point. This means that the computation time of the initial parameters, and 

of the ff and other parameters for each measurement, is not a critical problem.  

Two metrics will be used to determine the level of accuracy of the method. The first 

is the error in the estimation of ff, and the second is the error in the calculation of the cell 

concentration. The error in the estimation of the fill factor will be measured with respect 

to the deviation from its ideal final value. It is considered that for the maximum ff 

obtained in the simulation, the error is the difference between the maximum value 

obtained and the maximum value that ff should reach, i.e., a value of 0.99. Thus, it is 

possible to calculate the real ff curve that should have been obtained for each well using 

the following equation, 

 

( )

( ) ( )

0.99

max

i ff sim

ff

sim

ff j k ff j

k
ff

= 

=
 (3.4) 

where ffsim is the vector of ff values obtained from RT simulation, ffi is the vector of 

theoretically real values of ff and kff is the factor applied to ffsim to obtain ffi. The metrics 

for measuring accuracy are the mean relative error in the fill factor and the mean relative 

error in cell concentration, both in percent (%).The results for each of the cell lines are 

presented in the next three subsections. 

3.1.2.1 AA8 results 

This cell line is the one that should obtain better results, considering the Chapter 2, 

where the best results of modelling CE block were achieved with the AA8 cell line. The 
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following tables show the values of the initial parameters of the simulation in RT, i.e., 

when the simulator detects that the minimum 𝑓𝐶𝐸 and 𝑎𝐶𝐸 have been reached. Table 3.1 

shows the values obtained using the REW model, while Table 3.2 shows the values 

obtained using the FO REW model. Large differences are observed between some of the 

parameter values of the two models, for example, between the parameters 𝑅𝑐𝑡
𝑓𝑓→0

, 𝑝𝑓𝑓→0 

and 𝑧𝑓𝑓→0 of both models. This effect may be due to the fact that by introducing α1, the 

other parameters do not have to adjust for the nonlinear behavior of the real CE system. 

 If the obtained values for the REW model (Table 3.1) are compared with the values 

obtained for the same model during the modeling (Table 2.7), it is observed that the new 

values have less dispersion. The differences during the estimation of the initial 

parameters are that 𝑓𝐶𝐸
𝑓𝑓→0

 and 𝑎𝐶𝐸
𝑓𝑓→0

 are obtained automatically, and that the value of ff 

parameter is estimated at the same time as the other parameters. The value of ff when 

𝑓𝐶𝐸 and 𝑎𝐶𝐸 reach its minimum is named as ffi. The fact that ffi is estimated, gives more 

freedom to the other parameters to get closer to their correct value. 

Table 3.1 Model parameters estimated at the beginning of the RT simulation 

(𝑓𝑓 → 0) for AA8 cell line (REW model with 10 microelectrodes and one 

reference electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

iff  

1 0.61 2.66 1.27 98.56 32.19 0.02 

3 0.44 3.71 1.56 98.08 18.81 0.01 

4 0.34 4.76 1.88 97.29 12.28 0.02 

5 0.72 2.56 2.01 86.37 21.20 0.02 

7 0.35 4.17 1.73 107.95 15.22 0.02 

8 0.26 4.78 1.43 129.08 16.05 0.02 
 

Table 3.2 Model parameters estimated at the beginning of the RT simulation 

(𝑓𝑓 → 0) for AA8 cell line (FO REW model with 10 microelectrodes and 

one reference electrode). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→   [ ]sR k  
0  [ ]ffp Hz→

 
0  [ ]ffz kHz→

 
1  

iff  

1 2.34 4.21 1.71 16.16 15.15 0.95 0.01 

3 2.67 6.60 1.44 9.04 14.69 0.93 0.02 

4 0.33 4.92 1.56 98.02 14.25 0.99 0.02 

5 1.64 3.56 2.09 27.20 14.64 0.96 0.01 

7 0.45 5.75 0.71 61.13 26.59 0.96 0.03 

8 0.32 5.94 1.16 83.21 15.86 0.97 0.02 
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A similar situation appears with the parameters of the FO REW model of the Table 

3.2 if they are compared with the Table 2.12. The values obtained for 𝑓𝑓 → 0 in the RT 

simulation present less spread than those obtained during the modeling. 

Fig. 3.4 and Fig. 3.5 illustrate the evolution of ffsim and ffi during the RT simulation of 

a RT simulation experiment for AA8 cells using the REW and FO REW models, 

respectively. As can be seen in the figures, the accuracy is considerably high, considering 

that the values of𝑓𝐶𝐸
𝑓𝑓→1

 and 𝑎𝐶𝐸
𝑓𝑓→1

 are not known. Note also that the simulation 

performed with the REW model seems to be more accurate than the one performed with 

the FO REW model. The mean relative error (erm) is calculated using the following 

expression, 

 
( ) ( )

( )

sim i

rm
j i

ff j ff j
e

ff j

−
=   (3.5) 

where the sum of j is the sum of the expression for each calculated value of ff. Table 3.3 

shows the mean relative errors per well using both models. This table confirms what 

was previously observed in the Fig. 3.4 and Fig. 3.5, by simulating in RT, more accurate 

results are obtained, in terms of ff, using the REW (IO) model than the FO REW model. 

Considering that the FO REW model should fit better to the behavior of the real CE 

system, the most likely explanation for its lower accuracy is that it is more complex, 

implying the estimation of more parameters, which can greatly change the other 

parameters. These parameters that are introduced in the FO REW model are the FO 

coefficients α1 and α2, which with a small change produce a considerable change in the 

other parameters, since in terms of bode diagrams (BD) they configure the slope of the 

magnitude and phase lines, as well as the degrees per pole or zero. 

The final target of this work is the simulation of a RT experiment to know the cell 

concentration of a CC assay at each moment. In the following figures and tables, the level 

of accuracy of the cell concentration will be analyzed compared to the traditional optical 

counting method. Fig. 3.6 shows the cell concentration estimated in the RT simulation 

for Nini of 2500, 5000 and 1000 cells. Lines blue and red present the cell concentration  

obtained by using the FO REW model using ffsim and ffi respectively. Lines yellow and 

purple present the cell concentration  obtained by using the REW model using ffsim and 

ffi respectively. The last line, in green, present the cell concentration obtained using the 

traditional optical counting method. As can be seen, as for the ff curves (Fig. 3.4 and Fig. 

3.5) the FO REW model performs a little worse than the REW model on the final point (t  

Table 3.3 Mean relative error (erm) per well for AA8 cell line. erm is shown for REW 

and FO REW models. 

Well 1 3 4 5 7 8 

 [%]REW

rme  11.44 5.76 5.72 11.79 5.11 6.26 

  [%]FO REW

rme  16.23 6.79 24.73 30.41 9.98 17.65 
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a)

b)

c)

 

Fig. 3.4 Fill-factor evolution for each well of the experiment using the REW model in 

the RT simulation. ffsim in blue and ffi in red a) Nini: 2500 cells (well 1 on the 

left and well 3 on the right). b)  Nini : 5000 cells (well 4 on the left and well 5 

on the right). c)  Nini : 10000 cells (well 7 on the left and well 8 on the right). 

a)

b)

c)

 

Fig. 3.5 Fill-factor evolution for each well of the experiment using the FO REW model 

in the RT simulation ffsim in blue and ffi in red a) Nini: 2500 cells (well 1 on the 

left and well 3 on the right). b)  Nini : 5000 cells (well 4 on the left and well 5 

on the right). c)  Nini : 10000 cells (well 7 on the left and well 8 on the right). 
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Fig. 3.6 AA8 cell line cell concentration comparison between RT simulation using FO 

REW model (obtained from ffsim in blue and ffi in red) and REW model 

(obtained from ffsim in yellow and ffi in purple), and traditional counting 

method (green ). 
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= 120 h). In addition, the graphs also show that the higher the initial concentration, the 

more accurate the cell concentration estimation method. As a final point, notice that the 

RT experiment estimation method calculates the fill factor (and consequently the cell 

concentration) better at the beginning of the experiment than the estimation of the model 

parameters carried out in the Chapter 2. Therefore, it is concluded that the estimation of 

all parameters for each measurement of 𝑓𝐶𝐸 and 𝑎𝐶𝐸 is more accurate than using the 

parameter values calculated at the end of the experiment. 

Finally, the mean relative error of the cell concentration (erm) will be calculated using 

the formulas as follows, 

 

.

.

( ) ( )

( )

( ) ( )

( )

trad

trad

sim trad trad trad

rm sim
j trad trad

i trad trad trad

rm i
j trad trad

C j C j
e

C j

C j C j
e

C j

−
=

−
=





 (3.6) 

where jtrad is the index of the cell concentration obtained by traditional optical method 

(defined as Ctrad), Csim is the cell concentration calculated using ffsim, and Ci is the cell 

concentration estimated using ffi. Since the cell concentration vectors obtained in the RT 

simulation have many more points than the one obtained by the traditional method 

(sampling times of 1 h versus 1 day respectively), the error is estimated using the point j 

closest in time to the jtrad point. Table 3.4 contains the erm calculated from Csim and Ci for 

the REW and FO REW model. The first point to note is that the average erm is high. 

However, note that the Csim and Ci curves are closer to or in the error margins of Ctrad. 

Moreover, the tendency is similar. Therefore, the values are acceptable. On the other 

hand, although the graphs show that the FO REW model is less accurate  at the end than 

the REW for the RT simulation, the erm values are lower for the FO REW model.  

The differences between erm.sim and erm.i are almost negligible considering the erm 

values. Although the erm values of Table 3.4 are better for FO REW model, the graph 

shows that at the end the REW model gives better results. Finally, note that the FO REW 

model returns better results in terms of the trend of the curve (first hours of the 

experiment), as it is similar to that obtained by traditional methods. This may be due to 

Table 3.4 Cell concentration mean relative error (erm) per Nini for AA8 cell line. erm 

is shown for REW and FO REW models. The  erm obtained from Csim and 

Ci is calculated for each model. 

Nini 2500 5000 10000 

.  [%]REW

rm sime  59.37 37.56 46.40 

.  [%]REW

rm ie  68.47 46.70 49.79 

 

.  [%]FO REW

rm sime  33.34 36.79 40.70 

 

.  [%]FO REW

rm ie  41.04 31.61 31.19 
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the greater complexity of the model, which better describes the real dynamics of the 

growth of a CC assay. 

In the conclusions of Chapter 2, it was discussed that the electrical model of the CE 

block can be fitted using the OBT values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸 at the beginning (𝑓𝑓 → 0) and at 

the end (𝑓𝑓 → 1) of the experiment. In the current chapter, it has been found that, at least 

for the best performing cell line (AA8), it is possible to determine the cell concentration 

in RT during a laboratory experiment. By implementing the algorithm in the OBT 

prototype (which includes a microcontroller [47]), it is possible to calculate the cell 

concentration in RT (each time a measurement of𝑓𝐶𝐸 and 𝑎𝐶𝐸 is taken) in an experiment 

with a CC assay. This is a significant improvement in the field of biology, because the 

time and economic savings are very large. It is one of the main contributions of this 

thesis, with which biological and medical research processes can be optimized, and go 

further with the research or invest the saved resources in another research. 

3.1.2.2 N2a results 

In this section the results of the RT simulation for the N2a line will be presented. The 

simulation is performed in the same way as for the AA8 cell line (3.1.2.1). Then, the first 

data to report are the initial parameters derived during the first hours of the RT 

simulation. Table 3.5 and Table 3.6 shows the initial parameters from simulations using 

both models, REW and FO REW model. As is the case for the AA8 cell line, the 𝑅𝑐𝑡
𝑓𝑓→0

 

and 𝑝𝑓𝑓→0 parameters have a higher dispersion using the FO REW model. This is mainly 

due to the estimation of 𝑝𝑓𝑓→0, which directly influences the calculation of 𝑅𝑐𝑡
𝑓𝑓→0

 

(equation (2.78)). The values of 𝑝𝑓𝑓→0, in some cases, are much lower (almost an order of 

magnitude) for the FO REW model than for the REW model. A small fluctuation of α1 

can produce these changes, since it changes the slope of the BD of the model. Moreover, 

taking into account that this cell line has a low 𝛥𝑎𝐶𝐸, and knowing that the value of 𝑝𝑓𝑓→0 

is largely determined by 𝑓𝐶𝐸
𝑓𝑓→0

 and 𝑎𝐶𝐸
𝑓𝑓→0

 [55], it is expected that more deviations can be 

seen in the FO REW model as it is more sensible. 

Table 3.5 Model parameters estimated at the beginning of the RT simulation 

(𝑓𝑓 → 0) for N2a cell line (REW model). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

iff  

2 0.41 3.95 1.68 98.88 16.53 0.004 

3 0.38 3.86 1.66 107.94 17.04 0.006 

4 0.36 3.69 1.68 121.68 17.67 0.006 

6 0.32 4.87 1.43 102.68 15.67 0.004 

7 0.32 4.66 1.74 106.60 13.54 0.001 

8 0.30 5.49 2.00 95.19 10.00 0.040 
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Table 3.7 displays the erm of the ffsim using as reference ffi. As can be seen, erm in terms 

of ff is much larger for N2a cell line than for AA8. This was expected, since worse results 

were obtained in Chapter 2 for the N2a and N2aAPP lines than for AA8, as explained in 

2.1.5.5.2. Notice that the erm of the ff does not follow a pattern as a function of Nini. An 

interesting fact is that the erm of the ff generated from the FO REW model in the simulation 

is larger than the erm of the ff generated from the REW model. 

The erm values shown in the table above are obtained from Fig. 3.7 and Fig. 3.8. Figures 

clearly show very large differences between ffsim and ffi. The hypothesis to explain such 

high errors is the same as in 2.1.5.5.2, the differences in 𝛥𝑎𝐶𝐸. And the solution, in the 

same way, is still to tune the BPF to a higher frequency (around 10 kHz). 

Table 3.6 Model parameters estimated at the beginning of the RT simulation 

(𝑓𝑓 → 0) for N2a cell line (FO REW). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→   [ ]sR k  
0  [ ]ffp Hz→

 
0  [ ]ffz kHz→

 
1  

iff  

2 1.57 6.56 1.58 15.47 10.49 0.94 0.007 

3 0.48 4.30 1.88 77.93 13.52 0.99 0.010 

4 1.09 6.70 1.28 21.75 12.73 0.93 0.020 

6 0.37 4.97 1.81 87.05 12.15 0.99 0.001 

7 0.38 5.48 1.45 76.30 13.74 0.98 0.017 

8 0.23 5.04 1.45 137.59 15.00 1.01 0.044 

  

Table 3.7 Mean relative error (erm) per well for N2a cell line. erm is shown for REW 

and FO REW models. 

Well 2 3 4 6 7 8 

 [%]REW

rme  19.51 19.00 12.68 7.73 11.87 13.48 

  [%]FO REW

rme  28.13 52.81 19.29 29.55 33.23 39.82 

  

Table 3.8 Cell concentration mean relative error (erm) per Nini for N2a cell line. erm is 

shown for REW and FO REW models. The  erm obtained from Csim and Ci 

is calculated for each model. 

Nini 2500 5000 10000 

.  [%]REW

rm sime  372.52 154.33 83.80 

.  [%]REW

rm ie  430.92 173.84 91.49 

 

.  [%]FO REW

rm sime  205.13 100.82 56.00 

 

.  [%]FO REW

rm ie  275.54 129.35 55.11 
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While the Fig. 3.9 presents the evolution of Csim and Ci versus Ctrad for the N2a cell line, 

the Table 3.8 shows the errors of these concentrations. Of course, the Ctrad time vector had 

to be advanced 48 h to match the dynamics, as discussed in 2.1.5.5.1. The figure shows 

that, in terms of the final value of cell concentration (t = 120 h), Csim is always more distant 

than Ci from Ctrad. This does not necessarily mean that it is a worse fit, since the table 

shows slightly worse erm values for Ci than for Csim for any Nini. On the other hand, note 

that Ci in the figure fits much better to Ctrad if the first hours of the simulation are 

excluded. Finally, although the cell concentration obtained from the FO REW model 

achieves significantly lower erm, notice that it is closer to the real dynamics at the 

beginning of the experiment but from the middle to the end of the simulation, the FO 

REW model does not produce as good results as the REW model. 
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a)

b)

c)

 

Fig. 3.7 Fill-factor evolution for each well of the experiment using the REW model in 

the RT simulation. ffsim in blue and ffi in red a) Nini: 2500 cells (well 2 on the 

left and well 6 on the right). b)  Nini : 5000 cells (well 3 on the left and well 7 

on the right). c)  Nini : 10000 cells (well 4 on the left and well 8 on the right). 

a)

b)

c)

 

Fig. 3.8 Fill-factor evolution for each well of the experiment using the FO REW model 

in the RT simulation ffsim in blue and ffi in red a) Nini: 2500 cells (well 1 on the 

left and well 3 on the right). b)  Nini : 5000 cells (well 4 on the left and well 5 

on the right). c)  Nini : 10000 cells (well 7 on the left and well 8 on the right). 
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Fig. 3.9 N2a cell line cell concentration comparison between RT simulation using FO 

REW model (obtained from ffsim in blue and ffi in red) and REW model 

(obtained from ffsim in yellow and ffi in purple), and traditional counting 

method (green). 
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A RT experiment has been simulated based on the 𝑓𝐶𝐸 and 𝑎𝐶𝐸 data obtained in a real 

experiment. The error data from the simulation suggest that it is possible to estimate the 

cell concentration of this cell line using an oscillator circuit (OBT). To improve the 

accuracy of the cell concentration, the OBT prototype must be reconfigured, in 

particular, the cutoff frequency of the BPF. If the frequency response of the CE block of 

the AA8 line is observed (Fig. 2.19), the 1 kHz zone has less variation between 𝑓𝑓 → 0and 

𝑓𝑓 → 1. Therefore, it would be easier to obtain measurements in a zone with a larger 

range. 

3.1.2.3 N2aAPP cell line results 

In this section the results of RT simulation of the N2aAPP cell line are presented. As 

in the previous subsections, the values of the initial parameters, the ff and cell 

concentration graphs, as well as the erm of each well in terms of ff and concentration in 

terms of Nini will be presented. The results presented include the simulation using the 

REW model and the FO REW model. Table 3.9 and Table 3.10 present the values of the 

initial parameters using the REW model and the FO REW model, respectively. Both the 

range of values and the dispersion of some parameters of the FO REW model are as 

expected after analyzing the AA8 and N2a cell lines previously. Therefore, these results 

will not be discussed again in this section. 

Table 3.9 Model parameters estimated at the beginning of the RT simulation 

(𝑓𝑓 → 0) for N2aAPP cell line (REW model). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→  0  [ ]ff

sR k→   0  [ ]ffp Hz→
 

0  [ ]ffz kHz→
 

iff  

2 0.61 3.20 2.38 81.65 14.35 0.003 

3 0.48 3.04 1.74 110.17 20.65 0.011 

4 0.35 4.00 1.67 114.96 16.39 0.003 

6 0.45 3.45 1.35 102.68 23.38 0.004 

7 0.44 3.50 1.44 103.01 21.73 0.006 

8 0.23 4.73 1.57 143.89 14.79 0.005 
 

Table 3.10 Model parameters estimated at the beginning of the RT simulation 

(𝑓𝑓 → 0) for N2aAPP cell line (FO REW). 

Well 0  [ ]ff

ctR M→   0  [ ]ff

dlC nF→   [ ]sR k  
0  [ ]ffp Hz→

 
0  [ ]ffz kHz→

 
1  

iff  

2 2.32 5.19 1.81 13.20 11.61 0.94 0.003 

3 1.50 5.11 1.60 20.78 13.30 0.94 0.001 

4 1.03 6.80 1.52 22.63 10.57 0.94 0.012 

6 2.69 6.24 1.29 9.49 13.50 0.93 0.004 

7 2.55 6.32 1.34 9.89 12.89 0.93 0.007 

8 0.28 5.59 1.43 103.03 13.73 0.98 0.001 
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Fig. 3.10 and Fig. 3.11 shows show the ff (ffsim and ffi) using the REW and FO REW 

models, respectively. As with the AA8 line, the FO REW model predicts the cell culture  

a)

b)

c)

 

Fig. 3.10 Fill-factor evolution for each well of the experiment using the REW model in 

the RT simulation. ffsim in blue and ffi in red a) Nini: 2500 cells (well 2 on the 

left and well 6 on the right). b)  Nini : 5000 cells (well 3 on the left and well 7 

on the right). c)  Nini : 10000 cells (well 4 on the left and well 8 on the right). 

a)

b)

c)

 

Fig. 3.11 ff evolution for each well of the experiment using the FO REW model in the 

RT simulation ffsim in blue and ffi in red a) Nini: 2500 cells (well 1 on the left 

and well 3 on the right). b)  Nini : 5000 cells (well 4 on the left and well 5 on 

the right). c)  Nini : 10000 cells (well 7 on the left and well 8 on the right). 
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growth dynamics better than the REW model. This means that the RT simulation works 

better for the N2aAPP cell line than for the N2a line. As discussed in the 2.1.5.5.2, this 

may be due to the 𝛥𝑎𝐶𝐸 and the Acell. Even so, as expected, the results do not reach a level 

of accuracy similar to those of the AA8 cell line. To know the degree of accuracy, the erm 

of ff is used, which is illustrated for both models used in Table 3.11. The erm in terms of ff 

obtained for the N2aAPP line is similar to that obtained for the N2a cell line, and worse 

than that of the AA8 line. 

The cell concentration graphs generated during the RT simulation of the N2aAPP cell 

line are shown in Fig. 3.12. The same details as in Fig. 3.9 of line N2a can be observed: 

The REW model gives better results in the final half of the experiment, while the FO 

REW model fits better to the initial dynamics. Actually, contrary to the N2a line, the 

graph of Nini = 10000 cells manages to match the growth dynamics in a similar way as the 

AA8 line does. This could be due to the cells of the N2aAPP cell line would take less time 

to adhere to the bottom of the well, or some other characteristic of this cell line. It should 

be studied in depth in future work. 

Table 3.12 shows the erm of the cell concentration, in the same way as in the analysis 

of the results of cell lines AA8 and N2a. In this case the errors are very large for Nini 

values of 2500 and 5000 cells compared to the other two lines. This is due, mostly, to the 

fact that at the beginning of the experiment (first hours and/or days) the errors are very 

high. In the following subsection the results of the three lines will be analyzed, compared 

and some conclusions will be presented. As in the previous subsections, a RT estimation 

(simulation) of the cell concentration of the N2aAPP cell line has been achieved using an 

oscillator. The method of minimizing a CF seems to work, although it needs to be 

improved, both the algorithm and the OBT measurement prototype. 

Table 3.11 Mean relative error (erm) per well for N2aAPP cell line. erm is shown for 

REW and FO REW models. 

Well 2 3 4 6 7 8 

 [%]REW

rme  14.53 13.13 10.93 7.34 14.89 6.80 

  [%]FO REW

rme  24.20 20.78 18.47 9.58 21.25 29.93 

  

Table 3.12 Cell concentration mean relative error (erm) per Nini for N2aAPP cell line. 

erm is shown for REW and FO REW models. The  erm obtained from Csim 

and Ci is calculated for each model. 

Nini 2500 5000 10000 

.  [%]REW

rm sime  396.43 219.13 25.51 

.  [%]REW

rm ie  443.78 271.15 22.31 

 

.  [%]FO REW

rm sime  238.65 102.22 45.56 

 

.  [%]FO REW

rm ie  276.67 135.65 30.58 
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Fig. 3.12 N2aAPP cell line cell concentration comparison between RT simulation 

using FO REW model (obtained from ffsim in blue and ffi in red) and REW 

model (obtained from ffsim in yellow and ffi in purple), and traditional 

counting method (green ). 
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3.1.2.4 Comparison of cell line results 

In this subsection, the RT simulation results of the three cell lines used in this thesis 

(AA8, N2a and N2aAPP ) are compared. The data will be analyzed and compared, as 

well as divided into sections of the experiment. There are two main sections of interest: 

the initial section, where the cells adapt to the culture medium and adhere to the bottom 

of the well, and the section from the beginning of growth (exponential phase) to the 

saturation phase of the well (𝑓𝑓 → 1). 

The Table 3.13 shows the erm of the cell concentration for the three cell. The error 

shown is the erm of the cell concentration curves during the first hours and/or days of the 

experiment, i.e., from the time the CC assay is seeded until the moment when it starts to 

grow significantly (beginning of the exponential phase). 

 As expected from the cell concentration plots the erm in the first simulation period 

are larger than the total erm. Specifically, the REW model returns much larger errors 

than the FO REW, since it does not obtain good results for low ff, as previously discussed. 

The opposite case is the erm for the second part of the simulation, which are detailed in 

the Table 3.14. 

As expected, the erm in the second half of the simulation is much lower than in the 

first half. The most notable difference is found in the simulations using the REW model, 

since there is a large difference in error between the first and second frame, with the 

Table 3.13 Cell concentration mean relative error, in %, before the beginning of CC 

assay growth (t < 40 h). 

Nini 2500 5000 10000 

Line AA8 N2a Na2APP AA8 N2a Na2APP AA8 N2a Na2APP 

.

REW

rm sime  120.6 1082.9 946.0 88.8 390.4 515.9 111.1 200.2 31.4 

.

REW

rm ie  128.9 1252.4 1056.6 101.1 472.5 616.7 118.6 230.6 25.6 

 

.

FO REW

rm sime  52.5 518.6 535.4 38.5 176.4 229.2 69.7 78.9 62.2 

 

.

FO REW

rm ie  68.3 771.4 629.5 55.2 327.9 295.9 64.1 117.4 52.5 
 

Table 3.14 Cell concentration mean relative error, in %, after the beginning of CC 

assay growth (t > 40 h). 

Nini 2500 5000 10000 

Line AA8 N2a Na2APP AA8 N2a Na2APP AA8 N2a Na2APP 

.

REW

rm sime  28.7 17.3 30.0 11.9 36.3 21.3 14.0 25.6 21.6 

.

REW

rm ie  38.3 20.2 35.2 19.5 24.5 40.8 15.4 21.9 20.1 

 

.

FO REW

rm sime  23.8 48.4 40.8 35.9 63.0 17.6 26.2 44.5 34.5 

 

.

FO REW

rm ie  27.4 27.6 41.4 19.8 30.1 28.8 14.8 23.9 15.9 
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second one providing much better results (at the accuracy level of FO REW model). 

Another point to note is that, in general, better results are obtained at higher Nini. 

Finally, it should be pointed out that the first section of the simulation is not as important 

in terms of predicting ff and cell concentration. Therefore, these data are quite acceptable, 

and provide a useful starting point for an improvement in the models and the method 

of simulation and parameter computation. 

Separate analysis of the two zones of the experiment has provided interesting results. 

The cell concentration of a CC assay can be estimated in RT by connecting the CC assay 

as a load to an OBT. The errors are still large, but with some improvements of the 

algorithm, and of the OBT measurement prototype, the error should be greatly reduced. 

3.2 Electrical simulation of the Bio-Oscillator 

 In the previous sections and chapters, the cell concentration in a CC assay has 

been obtained from the oscillation data of the electronic system where the CE block is 

connected as a load to the OBT circuit. Apparently, the results are acceptable as the 

obtained cell concentration has been compared with the measured cell concentration 

obtained by traditional optical counting method. Oscillation amplitude and frequency 

are the key parameters to achieve the main goal: provide the cell concentration of a CC 

assay experiment in RT. On the other hand, the oscillator must be designed to produce 

self-sustained oscillations. This point requires to perform electrical simulations (ES) of 

the oscillator, which should consider similar load values to the CE block. In this way it 

is possible to know the response of the system to different values of ff and other 

parameters of the electrical model. Prior to performing the experiments to obtain the 

experimental amplitude and frequency values, electrical simulations of the oscillator 

were carried out considering values of the model parameters obtained theoretically. In 

future work, the oscillator prototype will be modified, so it is crucial to have very 

accurate values of the model parameters, so that the prototype and the results obtained 

are as optimal and accurate as possible. Therefore, because of the relevance of the 

electrical simulations, it should be ensured that the values of the model parameters 

calculated in the previous sections can be used in future electrical simulations. 

In the current subsection ES of the oscillator will be performed, using the values of 

the model parameters previously obtained. The simulations will be performed using the 

electrical simulator Ngspice [61], but with the difference that all the electrical simulations 

are launched from Matlab. As a comparison metric, the amplitude and frequency data 

will be obtained using the method of minimization of a CF, and the error with respect to 

the amplitudes and frequencies obtained in a real experiment will be calculated. The 

same error will be estimated for the results of the electrical simulations and the error of 

both methods will be compared. As in the previous subsections, tests will be performed 

using data from cell lines AA8, N2a and N2aAPP. 
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3.2.1 Electrical simulator and its integration in Matlab 

The electrical simulator used is Ngspice, which is an open-source Spice simulator for 

electric and electronic circuits. All its documentation can be found at [61]. Ngspice is 

used in this work due to the fact that it can be launched from Matlab using commands 

through the system function.  

To simulate the oscillator circuit in order to reproduce each point of the experiments 

performed, it is necessary to perform as many simulations as amplitude and frequency 

measurements have been taken in each of the experiments with the different cell lines. 

Considering that the time between each sample taken is 1 h, and that the experiments 

have a duration of between 6 and 9 days, at least 170 simulations must be performed for 

each cell line. This is unmanageable, since editing each of the components of the 

electrical model of the CE block one by one would be too laborious. All this without 

considering that exporting the results to Matlab for processing becomes really 

impractical. For these reasons, Matlab and Ngspice are connected to each other to edit, 

simulate and process the data automatically. 

Section 3.1.1 presents the simulation routine of the system under test using 

mathematical methods of a CF minimization. These simulations emulate a RT 

experiment in which the future values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸 are not known, recalculating certain 

model parameters for each measurement of f and a. In this way, acceptable results were 

achieved in predicting the behavior of the cell concentration of a CC assay. The initial 

parameters calculated in mentioned section, together with the parameters that are 

reevaluated for each measurement of 𝑓𝐶𝐸 and 𝑎𝐶𝐸, will be introduced in the electrical 

simulator to reproduce the frequency and amplitude values obtained experimentally. 

The whole circuit (oscillator plus the electrical model of the CE block has been 

implemented in Spice language with the same topology and characteristics as described 

in section 2.1.4. Notice that the file which contains the electrical model of the CE block 

can be easily replaced to switch between the different electrical models (SEW, REW and 

FO REW). The details, step by step, of the electrical simulation using Matlab in 

combination with Ngspice are described below: 

1. Edit the model netlist. The oscillator circuit is not modified from one 

measurement to another. Therefore, the part of the circuit to be edited is the 

CE block model. This block, composed of passive components, is defined by 

the model used, which can be SEW, REW and FO REW. There is a text file in 

Spice language defining the structure of the CE model to be used in the 

simulations. For each actual measurement of 𝑓𝐶𝐸 and 𝑎𝐶𝐸, the CF 

minimization method obtained the values of the model parameters. Matlab 

edits the Spice file that contain the model to include the values of the passive 

components of the CE model. Matlab does it automatically, using string 

replacement. In this way it is not necessary to edit the values one by one 

before each electrical simulation. 
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2. Run the simulation. As previously mentioned, an electrical simulation with 

Ngspice can be executed from Matlab using commands. The simulation is run 

in a single command line, choosing certain options, the Spice file to be 

simulated and the files where the results are stored. Using commands, it is 

not possible to choose the analysis time to be performed (DC, transient, AC, 

etc.), neither the variables to be displayed and saved at the end of the 

simulation. All this is included in the Spice file to be simulated. For this 

reason, a script has been designed to which the Spice file to be simulated, the 

analysis to be performed, the necessary parameters for the analysis and the 

variables to be saved at the end of the simulation are provided. This Matlab 

script or function works as a mask to automate the process of editing the type 

of analysis and the results to be shown, since for a user not used to the use of 

Spice, it can be useful to launch in a simple way from Matlab some electrical 

simulations in Spice (for example, for educational purposes). As in step 1, the 

script inserts the necessary code into the Spice file to perform the required 

analysis. 

3. Results generation. After finishing the simulation, the script described in 

step 2 extracts the variables to be saved from a text file generated by Ngspice. 

This file contains the information of the variables that have been requested to 

be saved. These variables are stored in a Matlab struct variable that contains 

their names and values, as well as other variables that may be necessary for 

their interpretation (e.g., time). 

Using the mixed electrical simulation technique which involves Matlab and Ngspice, 

it is possible to automate the process of CE block configuration, electrical simulation and 

data analysis, which is much more efficient than performing the simulations one by one. 

All the scripts to perform the simulations using Matlab are in Appendix B. The function 

simOBTngspice is the main function, managing the whole simulation. Function 

editBioZngspice edits automatically the netlist of the CE model used. ngspiceSim is the 

function that manages the simulation of a spice circuit, launching Ngspice from Matlab 

and processing the results. The function getfA obtains the frequency and amplitude of a 

sine wave without using the Fast Fourier Transform. 

3.2.2 Electrical simulation using REW electric model 

Due to the fact that the SEW model is less accurate, responds worse to possible 

perturbations (an example is the values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸 at the beginning of an experiment) 

and the parameter values obtained are not close to those theoretically expected (because 

it is not the real model), it is decided to implement the REW model for the electrical 

simulations. These electrical simulations are performed as explained in the previous 

subsection and using the data from the three cell lines. As an example of the result of the 

electrical simulation, Fig. 3.13 shows the 𝑉𝐶𝐸voltage waveform (at the bottom of the 
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figure) obtained in that simulation. A waveform is obtained for each time of the 

simulation (for each t(j)), from which values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸 are extracted for each t(j) (top 

of the figure). 

The value of Rsi obtained at the beginning of the RT simulation (AA8 in Table 3.1, 

N2a in Table 3.5 and N2aAPP in Table 3.9), and the values of ff, Rct, Cdl, ΔRs and Rgap 

obtained for each measure of f and a are used. Since there is a value of each parameter 

for each measure of 𝑓𝐶𝐸 and 𝑎𝐶𝐸, they are not shown because of the space requirement 

in this document. In addition, using the CF minimization method, the values of 𝑓𝐶𝐸 and 

𝑎𝐶𝐸 will be estimated from these same parameters. As a comparison metric, the erm in 

terms of frequency and amplitude is used in relation to the real values measured 

experimentally for each cell line. erm is calculated as follows, 
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where 𝑒𝑟𝑚
𝑓

 and 𝑒𝑟𝑚
𝑎  are the mean relative error in terms of frequency and amplitude 

respectively,  𝑓𝐶𝐸𝑚𝑒𝑎𝑠 and 𝑎𝐶𝐸𝑚𝑒𝑎𝑠 are the values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸, respectively, measured 

in a real experiment, and 𝑓𝐶𝐸𝑒𝑠𝑡𝑖𝑚 and 𝑎𝐶𝐸𝑒𝑠𝑡𝑖𝑚 are the values of 𝑓𝐶𝐸 and 𝑎𝐶𝐸, respectively, 

obtained by one of the both methods (CF minimization and electrical simulation). 

Amplitude Frequency

 

Fig. 3.13 Voltage 𝑉𝐶𝐸 waveform (bottom graph) obtained from a Ngspice electrical 

simulation of the oscillator circuit (including the CE block).From the 

wave,𝑓𝐶𝐸 and 𝑎𝐶𝐸 are extracted for each time t(j) (top graphs). 
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In the following subsections, the frequency and amplitude erm data for the three cell 

lines obtained using the REW model will are presented. 

3.2.2.1 AA8 

In this subsection the erm values, in terms of frequency and amplitude, obtained with 

CF minimization and by electrically simulating the oscillator using REW model and AA8 

cell line data are presented. In Table 3.15 and Table 3.16 erm values are shown. 𝑒𝑟𝑚.𝑓
𝐶𝐹  and 

𝑒𝑟𝑚.𝑎
𝐶𝐹  are the mean relative errors of the frequency and amplitude estimated by using the 

CF minimization method. On the other hand, 𝑒𝑟𝑚.𝑓
𝐸𝑆  and 𝑒𝑟𝑚.𝑎

𝐸𝑆  are the mean relative errors 

of the frequency and amplitude obtained from the electrical simulation (ES). 

 The frequency error is smaller than the amplitude error, which may be due to the 

smaller amplitude ranges. On the other hand, as expected, the error using the CF 

minimization method is lower than that obtained for the ESs. Larger errors were 

expected for ES because the model parameter values are calculated for CF minimization, 

not for ES. Therefore, it is reasonable to expect bigger errors due to tolerances and 

computational methods. For the AA8 cell line, it is concluded that the errors found 

during the ES are acceptable. In the future, simulations will be performed based on this 

data to redesign or improve the oscillator prototype, since the errors are acceptable and 

do not imply a problem. Perhaps, if the circuit were to be integrated, more accurate data 

would be needed, since smaller voltage ranges would be used. 

Table 3.15 Mean relative error (erm) per well for AA8 cell line in terms of frequency. 

Well 1 3 4 5 7 8 

.  [%]CF

rm fe  0.34 0.31 0.27 0.25 0.28 0.16 

.  [%]ES

rm fe  1.34 0.55 1.84 1.77 1.30 1.26 
 

Table 3.16 Mean relative error (erm) per well for AA8 cell line in terms of amplitude. 

Well 1 3 4 5 7 8 

.  [%]CF

rm ae  1.14 1.25 1.24 0.82 1.01 0.84 

.  [%]ES

rm ae  6.36 9.14 8.62 6.46 8.55 7.85 
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3.2.2.2 N2a 

 As in the previous subsection, the erm values, in terms of frequency and amplitude, 

obtained with CF minimization and by electrically simulating the oscillator using REW 

model and N2a cell line data are presented. Table 3.17 and Table 3.18 show the values of 

the erm for the N2a cell line. The conclusions reached for the error data of the AA8 cell 

line are applicable to the N2a cell line. In addition, it should be added that the errors of 

the N2a line are slightly higher than the AA8. This fact may be due, as explained in 

previous sections, to the difference in the ranges of f and a between the different cell 

lines. However, the errors are also acceptable, which means that these data can be used 

in future ESs. 

3.2.2.3  N2aAPP 

 The erm values, in terms of frequency and amplitude, obtained from CF minimization 

and electrical simulation using REW model and N2aAPP cell line data are presented in 

the current subsection. Table 3.19 and Table 3.20 show the frequency and amplitude erm 

values respectively. All comments and conclusions given for the two previous cell lines 

are applicable to the N2aAPP cell line. The error of both parameters is similar to the error 

values of the previous cell lines. All three cell lines have acceptable error values. The 

Table 3.17 Mean relative error (erm) per well for N2a cell line in terms of frequency. 

Well 2 3 4 6 7 8 

 [%]CF

rme  0.51 0.36 0.30 0.37 0.28 0.33 

 [%]ES

rme  2.21 1.97 1.65 2.08 2.01 2.47 
 

Table 3.18 Mean relative error (erm) per well for N2a cell line in terms of amplitude. 

Well 2 3 4 6 7 8 

 [%]CF

rme  1.94 1.59 1.48 1.55 1.27 1.39 

 [%]ES

rme  10.58 9.06 9.25 9.70 8.84 10.11 
 

Table 3.19  Mean relative error (erm) per well for N2aAPP cell line in terms of 

frequency. 

Well 2 3 4 6 7 8 

 [%]CF

rme  0.39 0.36 0.37 0.25 0.24 0.90 

 [%]ES

rme  2.20 1.69 1.58 1.67 1.76 1.09 
 



  

118 

values of the REW model parameters obtained are valid for performing ESs, which 

allows testing of future improvements of the prototype. 

3.3 Conclusions 

 The main target of Chapter 3 is to simulate in RT a CC assays growth real experiment 

connected to an OBT as a load and make predictions. The simulation has the goal to 

estimate the cell concentration in the wells in RT, i.e., when a measurement of 𝑓𝐶𝐸 and 

𝑎𝐶𝐸 is performed, calculating the cell concentration at that time. In order to perform this 

task, the parameters of the electrical model used to predict the electrical behavior of the 

CE block must be estimated. Keeping in mind that future values are not known, so 

parameters such as Rgap, which has more influence at the end of the simulation (𝑓𝑓 → 1), 

must be calculated for each measurement taken. The method of minimization of a CF 

has been used to obtain the optimal values of the model parameters that meet the BSC 

for each value of 𝑓𝐶𝐸 and 𝑎𝐶𝐸. Due to the complexity of the used models (REW and FO 

REW) it is hard to obtain good results, since there is a considerable number of parameters 

to calculate at each moment, and small variations in one of them can make the value of 

the parameter ff differs from its real value. In addition, the 𝑓𝐶𝐸 and 𝑎𝐶𝐸 data for some cell 

lines are worse than the data for others, as the prototype measurement is still in the 

experimental phase. Even with these difficulties, it has been possible to successfully 

estimate the RT cell concentration present in a CC assay, although with a certain margin 

of error. Considering the variability of cell concentration, and the studies performed up 

to now, it can be considered that the results are good. It is a very useful method, but 

should be improved in future works. Some conclusions have been derived from these 

simulations, which are discussed below: 

• Cell concentration of a CC assay can be measured using an oscillator as a 

measuring circuit to which the CC is connected as a load. The oscillator circuit 

(OBT) must be configured to oscillate at the frequencies at which the most 

robust measurements are obtained taking into account the frequency 

response (BD) of the CC assay (CE block). 

• The optimum oscillation frequency depends on the cell line. In this work, all 

measurements have been performed with the cut-off frequency of the BPF of 

the OBT set at 1 kHz, i.e., the circuit oscillates at frequencies somewhat lower 

than the filter cut-off frequency. The cell lines used as subject of study in this 

Table 3.20 Mean relative error (erm) per well for N2aAPP cell line in terms of 

amplitude. 

Well 2 3 4 6 7 8 

 [%]CF

rme  1.43 1.53 1.68 0.93 0.90 3.33 

 [%]ES

rme  9.58 8.60 9.06 9.44 10.25 8.21 
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work (AA8, N2a and N2aAPP) have provided relatively good results in terms 

of oscillation parameters. However, after observing the BD of other different 

cell lines, in future works, the cut-off frequency of the BPF should be 

increased to obtain larger ranges of frequency and amplitude (𝛥𝑓𝐶𝐸 and 𝛥𝑎𝐶𝐸). 

• The erm obtained, in terms of cell concentration, depends on the cell line, 

because the lines with a lower Acell (N2a and N2aAPP) reach much larger error 

values than the cell line with a higher Acell (AA8). 

• More generally, it has been demonstrated that the cell concentration can be 

obtained in RT during the performance of a cell growth experiment. The 

errors found, while significant, can be reduced by improving the 

measurement circuit and the algorithm for calculating the cell concentration. 

The other purpose of Chapter 3, derived from the main goal, is to obtain the values 

of the parameters of the CE model of the CE block. Although it is considered secondary 

in this work, it is crucial for the development of the measurement prototype, since it 

allows to perform ES with real data of the CE model. The ES are very important to 

improve and test the OBT before implementing improvements to the current prototype 

or designing a new one. For this reason, ES have been performed with the CE model 

data using the Ngspice electrical simulator. Routines have been created in Matlab to 

automatically edit the Spice files of the CE model and to launch simulations with 

Ngspice in an automated and much easier way than using the Ngspice software's own 

command window. The results of the electrical simulations are very promising, as the 

error margins are acceptable, so the CE model data obtained can be used as a starting 

point to improve the OBT circuit and obtain more robust and accurate measurements of 

the RT cell concentration of a CC assay. 
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Chapter 4 Conclusions and future 

works 

The goal of this thesis is to find a method to estimate in real-time (RT) the cell 

concentration in a cell culture (CC) assay real experiment using bioimpedance (BI) 

measurements. For this purpose, an electronic oscillator circuit (OBT) has been used 

which ensures the measurement of BI in a non-invasive, fast and safe way for the cells. 

Some conclusions have been reached after finishing this thesis: 

• The BI of a biological sample (BS) is usually obtained by injecting a signal of 

a specific frequency and amplitude through the BS. This is a limitation, 

because although it is possible to calculate the impedance of the BS at a 

particular frequency or frequencies, it is very complex to obtain an electrical 

model of these averages. In this thesis an indirect BI measurement technique 

has been used. The CC is connected to an OBT circuit, which oscillates by 

itself at an amplitude and frequencies determined by all the elements that 

compose the circuit, including the CC. The oscillation frequency and 

amplitude depend, therefore, on the BI of the CC. From the two oscillation 

parameters, it is possible to obtain the electrical model of the cell-electrode 

(CE) block. 

• Although the models tested in this work consider the contribution of the cells 

to the electrical behavior of the CE block to be negligible (not including 

capacitance or intracellular resistance), these models are reasonably accurate 

at predicting the electrical response of the block by selecting the adequate 

frequency. This is because  at some frequencies the cells impedance achieves 

very high values (short circuit). The fill-factor (ff) parameter can measure, 

with high precision, the fill percentage of the bottom of the well, which means 

that the cell concentration can be obtained in an approximate range. This 

means that it is possible to perform a RT monitoring of the CC assay growth 

from ff = 0 to ff = 1, which is a key contribution of this work (only applicable 

to a monolayer CC assay). 

• The electrode model used has been widely employed in the BI field, and in 

this work, it has provided good results. Although some parameters differ a 

little from the theoretical calculated values, this is not a problem, because 

there are many variables during the theoretical calculation whose values are 

still under study. 
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• Three variants of the same model have been tested: single-electrode well 

(SEW), real-electrode well (REW) and fractional order (FO) real-electrode 

well (FO REW). In general, the SEW model offers less accuracy than the other 

two, since it contains the effects of eleven electrodes in one. Therefore, 

although the SEW model has been used as a starting point, tests should be 

performed with the other two models, since they are more accurate. 

• The method for fitting the models has been to minimize a cost function (CF). 

The chosen CF ensures the fulfillment of the Barkhausen stability criterion 

(BSC), which guarantees the OBT oscillations. The BSC is the key to the 

mathematical estimation of the electrical models, because it would be 

impossible to translate the oscillation parameters to the models without it. 

• The CF minimization has been applied, firstly to the initial (𝑓𝑓 → 0) and final 

(𝑓𝑓 → 1) points of the experiments. This is because it was found that there are 

certain parameters that only influence the model for low ff, and there are also 

other parameters that only influence the model when ff is high. It is a way to 

calculate model parameters that, although successfully, does not allow RT 

estimation of cell concentration. 

• An algorithm has been designed to estimate the cell concentration in a CC 

assay in RT. It is based on the use of the minimization of a CF that meets the 

BSC. In addition, it can determine the minimum points of the oscillation 

parameters to estimate the initial parameters with the lowest possible ff. 

• RT estimation of cell concentration is computationally expensive. However, 

this is not a problem because one measurement is taken per hour in the 

experiments performed for this thesis. In terms of computation time, the 

bottle neck could be below 30 seconds from measurement to measurement, 

which is not realistic, since such a level of precision is not necessary and 

would introduce a lot of noise in the amplitude and frequency curves (and 

consequently in the ff curve). 

• Although in previous works, other authors have used Rgap (resistor that 

models the gap region between cells and between cells and the electrode) 

values of the order of 104 and 105 Ω, in this thesis the Rgap values obtained are 

of the order of 103 Ω. This suggests that the Rgap value may depend on the 

estimation method or on the cell line. 

• The first hours of a CC assay are not important in predicting cell 

concentration growth. In these hours, the cells adapt to the medium and 

adhere to the bottom of the well. Therefore, in this work, somewhat 

inaccurate measurements are obtained during these hours. The RT cell 

concentration has a much larger error in the first hours than in the growth 

and saturation phase of the well. Therefore, the results are considered 
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acceptable due to the low density of the cells (or the low area occupied by 

cells in the bottom of the well). 

• The three used models seem to predict correctly the growth dynamics of a 

CC. The SEW model, although computationally lighter, is the least accurate 

of all, finding its largest errors in the first hours of the experiments. REW 

model is much more accurate than SEW, but it is still slightly unstable in the 

first hours of the experiments. On the other hand, the FO REW model has a 

much better knowledge of the electrical behavior of the CE block. This model, 

being an FO model, can fit the nonlinear effects with the fractional 

coefficients, without the need for the other parameters of the model to 

compensate for the nonlinearities. Although, in general, the FO REW model 

is more accurate, during RT estimation of cell concentration, the REW model 

returns more accurate results in the final region of the experiment (𝑓𝑓 → 1). 

• Similar tests have been performed using 3 different cell lines: AA8, N2a and 

N2aAPP. The AA8 line shows better results than the others. One of the 

possible hypotheses is that, since the morphology and size of the cells is 

different for each line, and the N2a and N2aAPP lines have a mean area five 

times smaller than AA8, it is possible that this factor results in lower 

amplitude and frequency ranges. This fact makes harder the model fitting 

and estimation of ff and cell concentration. 

• The cell growth data of the AA8 line obtained by traditional methods are 

similar to those obtained using the BI data. In contrast, this is not the case for 

the other two lines, which seem to take longer to start growing during a 

traditional experiment. 

• To perform electrical simulations of the system from Matlab, some scripts 

have been developed that automatically edit the CE block model, launch the 

electrical simulation and process the data. The electrical simulation is 

performed with Ngspice, an open-source software, which can perform 

electrical simulations of Spice files. Part of the toolbox developed in Matlab 

can be very useful in the educational field, since it allows to launch 

simulations of Spice files from Matlab and easily save, process and display 

the data. 

• The electrical simulations present an acceptable error in terms of frequency 

and amplitude of oscillation (the maximum errors are found in the amplitude 

curves of the N2a and N2aAPP lines, reaching levels of 10 %) . Therefore, 

while the first prototype of the OBT circuit was designed, designers did not 

have experimental real BI data to perform the electrical simulations 

(simulations required before building the first prototype), the model data 

obtained from the RT simulations can be used, in the future, to simulate 

modifications and improvements of the OBT circuit. 
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• Although the error margins of RT simulations are still large, it has been 

shown that the objective of estimate the cell concentration using an indirect 

measure of BI via an OBT is possible and feasible. The center frequency of the 

band-pass filter (BPF), according to the bode diagrams of the CCs, could be 

increasing in order to obtain more accurate results with the N2a and N2aAPP 

line and improve the results obtained with the AA8 line. In addition, the RT 

cell concentration calculation algorithm can be improved. Therefore, 

although data acquisition prototype and estimation algorithm in RT should 

be improved, the results can be considered promising. 

• After the completion of this thesis, several clearly differentiated sources of 

error are found: the first is the BPF cut-off frequency that defines around 

which frequency the circuit oscillates; the second is the difference in cell size 

between the cell lines (which leads to differences in the electrical model), 

which can be solved with a BPF circuit whose cut-off frequency is variable 

(by software or hardware); and the third is the complexity to know the 

electrical behavior of the CE block during the first hours of an experiment 

(research on this topic should be carried out). 

Based on the above conclusions, certain questions and future work to be performed 

are suggested: 

• The OBT circuit should be improved. The circuit will be modified in order to 

make the cut-off frequency of the BPF tunable in a suitable range of 

frequencies, which will allow to work with different types of cells. 

• A detailed study on the influence of cell size and morphology on the model 

parameters should be carried out. This should allow RT corrections during 

RT estimation. In other words, the perturbation model that introduces the 

size difference between one cell line and another must be found. 

• The growth rate of cells of the N2a and N2aAPP lines is different in the 

presence of electric current and in its absence. The causes and the relationship 

between cell size and electric current will be studied to determine if 

electrostimulation has been produced. 

• Electrical simulations are very slow compared to simulations using CF 

minimization. On the other hand, electrical simulations should be more 

accurate and closer to reality. Therefore, it is planned to implement the OBT 

measurement circuit in a nonlinear semi-analytical simulation toolbox, which 

has been developed in [67]. This work could find a more equilibrated point 

between the accuracy of an electrical simulation and the speed of a semi-

analytical solution. 
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• The RT cell concentration estimation method will be applied to other cell 

lines. It will also be tested in toxicology or radiation experiments to check if 

it can overcome such challenges. In addition, cell identification is planned to 

be applied to viruses and bacteria, as well as to the stem cell differentiation 

process. 

• Designing and building a CAD tool for the electrical simulation of cell 

cultures using the toolbox developed with Ngspice and Matlab, similar to 

[68]. 
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Remote cell growth sensing 

using self-sustained bio-

oscillations 

Sensors MDPI 2018 Q1 [58] 

3D-printed sensors and 

actuators in cell culture and 

tissue engineering: framework 

and research challenges 

Sensors MDPI 2020 Q1 [8] 

Alternative General Fitting 

Methods for Real-Time Cell-

Count Experimental Data 

Processing 

IEEE Sensors 

Journal 
2020 Q2 [66] 

A computer-aided design tool 

for biomedical OBT sensor 

tuning in cell-culture assays 

Computer 

Methods and 

Programs in 

Biomedicine 

2021 Q1 [68] 

 

Table A.2 Conference publications 

Name Conference Year Reference 

Monitoring muscle stem cell cultures with 

impedance spectroscopy 

11th 

BIODEVICES 
2018 [63] 
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2018 [30] 
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Appendix B: Ngspice toolbox code 

Main Function 

 

function [f,A,R1,R2,C1,C2] = simOBTngspice(R,C,Rgap,Rsi,iRs,ff,n,elec,ref) 

R1  = R/(1-ff); 

R2  = R/ff; 

C1  = C*(1-ff); 

C2  = C*ff; 

Rs = Rsi+iRs*(ff^n); 

if elec==0 

    ref = [];     

else 

    ref.Rs = (Rsi+iRs*(ff^n))*sqrt(ref.ker); 

    ref.R1  = ref.Rr/(1-ff); 

    ref.R2  = ref.Rr/ff; 

    ref.C1  = ref.Cr*(1-ff); 

    ref.C2  = ref.Cr*ff; 

end 

 

% Edit circuit 

out = editBioZngspice (R1,R2,C1,C2,Rgap,Rs,elec,ref); 

 

% NGSpice Simulation 

netlistfilename = 'ngspice_OBT.cir'; 

simType = {'tran'}; 

tstep = 1e-005; 

tfinal = 0.001*32; 

tini = 0.001*25; 

maxstep = 1e-005; 

simParams = {[tstep tfinal tini maxstep]}; 

outVars = {'0','vvcmp','vvbpf','vvcs','vvpa'}; 

data_ngs = ngspiceSim(netlistfilename,simType,simParams,outVars); 

 

% Estimate amplitude and frequency 

t = data_ngs.time; 
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L = length(t); 

y = data_ngs.outVars(3).value; 

Lint = 2^nextpow2(L); 

tint = linspace(t(1),t(end),Lint); 

ts = tint(2)-tint(1); 

yint = interp1(t,y,tint); 

ymean = mean(yint); 

out = getFA(yint-ymean,tint,Lint); 

f = out.f; 

A = out.A; 

end 

 

 

Edit Bioimpedance to Ngspice 

 

function out = editBioZngspice (R1,R2,C1,C2,Rgap,Rs,elec,ref) 

fclose ('all'); 

 

% Parameters 

flagR1 = 'R1val'; 

flagR2 = 'R2val'; 

flagC1 = 'C1val'; 

flagC2 = 'C2val'; 

flagRgap = 'Rgapval'; 

flagRs = 'Rsval'; 

if elec==1 

    flagR1_r = 'R1val_r'; 

    flagR2_r = 'R2val_r'; 

    flagC1_r = 'C1val_r'; 

    flagC2_r = 'C2val_r'; 

    flagRgap_r = 'Rgapval_r'; 

    flagRs_r = 'Rsval_r'; 

end 

 

% Copy base code of Bioimpedance circuit 

if elec==0 

circuito = ‘ngspice_BioZ_sub.mod'; 

    circuito_base = 'ngspice_BioZ_sub_base.mod'; 

else 
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circuito = 'ngspice_BioZ11e_sub.mod'; 

    circuito_base = 'ngspice_BioZ11e_sub_base.mod'; 

end 

 

fid = fopen(circuito_base); 

fulltext = fread(fid,'*char')'; 

close = fclose(fid); 

if close==-1 

    out = close; 

    disp('Error al cerrar durante la lectura del circuito Spice'); 

    return; 

else 

    out = close; 

end 

 

% Write parameters values 

fulltext = strrep(fulltext,flagR1_r,num2str(ref.R1)); 

fulltext = strrep(fulltext,flagR2_r,num2str(ref.R2)); 

fulltext = strrep(fulltext,flagC1_r,num2str(ref.C1)); 

fulltext = strrep(fulltext,flagC2_r,num2str(ref.C2)); 

fulltext = strrep(fulltext,flagRgap_r,num2str(ref.Rgap)); 

fulltext = strrep(fulltext,flagRs_r,num2str(ref.Rs)); 

fulltext = strrep(fulltext,flagR1,num2str(R1)); 

fulltext = strrep(fulltext,flagR2,num2str(R2)); 

fulltext = strrep(fulltext,flagC1,num2str(C1)); 

fulltext = strrep(fulltext,flagC2,num2str(C2)); 

fulltext = strrep(fulltext,flagRgap,num2str(Rgap)); 

fulltext = strrep(fulltext,flagRs,num2str(Rs)); 

 

% Save Spice files 

fid = fopen(circuito,'w'); 

fprintf(fid,'%s',fulltext);  

close = fclose(fid); 

if close==-1 

    out = close; 

    disp('Error al cerrar durante la escritura del circuito Spice'); 

    return; 

else 

    out = close; 
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end  

end 

Ngspice simulator launcher 

 

% NGSPICESIM function to simulate spice circuit  

% 

% out = ngspiceSim(netlistfilename,simType,simParams,outVars,options) 

%  

% Inputs:   netlistfilename ->  Name of netlist file (.net or .cir).  

%                               File must not include the simulation code.  

%           simType ->  Code of simulations to be permormance in struct 

%                       format. Example of declaration for OP and  

%                       transient: simType = {'op','tran'}. 

%           simParams ->Necessary and optional parameters for perform 

%                       the simulations declared in simType (in the same 

%                       order as in simType.  

%                       Example of declaration for OP and transient  

%                       analysis: simParams = {[1e-9 100e-9]}  

%           outVars ->  variables to show. Example for voltages 'vo' and  

%                       'vi': outVars = {'0',vvo,vvi}. '0' denotes not 

%                       print vars. 

%           options ->  Input of simulation options. Example of options 

%                       declaration: opts = {'abstol', 2e-12, 'reltol', 

%                       0.001}. 

%  

% List of options: 

%       GENERAL OPTIONS 

%           'temp' -> Operating temperature of the circuit. Default is 27º. 

%           'tnom' -> Nominal temperature at which device parameters are  

%                     measured. Default is 27º. 

%       OP AND DC OPTIONS 

%           'abstol' -> Absolute current error tolerance of the program. 

%                       Default is 1pA. 

%           'reltol' -> Absolute current error tolerance of the program. 

%                       Default is 0.001 (0.1%).  

%  

% Simulations codes and parameters: 

%   Operatinal Point:   Code -> 'op' 

%                       Parameters: No parameters needed 



  

139 

%   Transient:          Code -> 'tran' 

%                       Parameters:  

%                       tstep (double) ->   Printing or plotting increment   

%                                           for line-printer output.  

%                       tstop (double) ->   Final time. 

%                       tstart (double) ->  Initial time. (OPTIONAL) 

%                       tmax (double) ->    Maximum stepsize that ngspice 

%                                           use. (OPTIONAL) 

%   Small-Signal AC:    Code -> 'ac' 

%                       Parameters:  

%                       variation (char)->  Variation type: decade (1),   

%                                           octave (2), linear (3). 

%                       np (double) ->      Number of points per decade, 

%                                           octave or lin. 

%                       fstart (double) ->  Starting frequency. 

%                       fstop (double) ->   Final frequency. 

%  

 

function out = ngspiceSim(netlistfilename,simType,simParams,outVars,varargin) 

 

    % Check input arguments 

    nvarargin = length(varargin);                   % Number of variable input arguments 

     

    % Required arguments 

    if ~ischar(netlistfilename)                     % Check netlist filename 

        error('First argument must be "char" type.'); 

    end     

    nSim = length(simType);                         % Number of simulation to be performance 

    for i=1:nSim 

        if ~ischar(simType{i})                      % Check simulation type name 

            error('Second argument must be "char" type.'); 

        end 

    end 

   

    if nSim~=length(simParams)            % Check number of simulation parameters vector 

error('Number of simulations don''t match with number of simulation … 

parameters vector.'); 

    end 

    for i=1:nSim 
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        if ~isnumeric(simParams{i})                      % Check simulation type name 

            error('Second argument must be "char" type.'); 

        end 

    end 

     

    % Variable arguments (simulation options) 

    if nvarargin>0 

        if mod(nvarargin,2)==0 

            simText{1} = '.options '; 

            charFlag = 1; 

            for i=1:nvarargin 

                if charFlag 

                    if ischar(varargin{i}) 

                        charFlag = 0; 

                        if sum(strcmp({'temp','tnom','abstol','reltol'},varargin{i}))>0 

                            simText{1} = [simText{1} varargin{i} ' = ']; 

                        else 

                            error([varargin{i} 'is not a valid option.']);  

                        end                     

                    else 

                        error('%E value is not associated with any option.',varargin{i});   

                    end 

                else 

                    if isnumeric(varargin{i}) 

                        charFlag = 1; 

                        simText{1} = [simText{1} varargin{i} ' ']; 

                    else 

                        error([varargin{i} 'and ' varargin{i-1} 'options are not properly set.']);    

                    end 

                end 

            end 

        else 

error('Attempt to enter option without a new value or vice versa. The … 

number of optional arguments must be even.');    % Number varargin error 

        end 

    end 

     

    %% Simulations to be performed     

    for i=1:nSim 
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        switch simType{i} 

            case 'op' 

                simResultsTitle{i} = 'Operating Point'; 

                if isempty(simParams{i}) 

                    simText{i+1} = '.op'; 

                else 

error('For Operating Point ("op") Analysis length of simParams vector … 

must be 0.');     

                end 

 

            case 'tran' 

                simResultsTitle{i} = 'Transient Analysis'; 

                if (length(simParams{i})<=4)&&(length(simParams{i})>=2) 

                    simText{i+1} = ['.tran ' num2str(simParams{i})]; 

                else 

                    if length(simParams{i})>4 

                        error('For Transient ("tran") Analysis simParams max length vector is 4.');     

                    else length(simParams{i})<2 

                        error('For Transient ("tran") Analysis simParams min array length is 2.');     

                    end 

                end       

            case 'ac' 

                simResultsTitle{i} = 'Small-Signal AC Analysis'; 

                acVariation = {'dec', 'oct', 'lin'}; 

                if length(simParams{i})==4 

simText{i+1} = ['.ac ' acVariation{simParams{i}(1)} ' ' … 

num2str(simParams{i}(2:end))]; 

                else 

error('For Small-Signal AC Analysis ("ac") analysis length of array … 

simParams must be 4.');    

                end 

 

            otherwise 

                error('Simulation type not supported.');  

        end 

    end 

     

    simText{end} = [simText{end} newline '.save ']; 

    for j=2:length(outVars) 
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        simText{end} = [simText{end} outVars{j}(1) '(' outVars{j}(2:end) ') '];         

    end  

     

    % Modify net file to include simulation 

    netlist = fileread(netlistfilename);    % Read netlist     

    tempfolder = 'tempSimFiles';            % Temp folder 

    if exist([pwd '\' tempfolder])~=7 

        mkdir(tempfolder); 

    end 

    idtemp = sprintf('%d', round(9*rand(1,3))); 

    netlist_tempPath = [pwd '\' tempfolder '\' netlistfilename(1:end-4) '_' idtemp … 

netlistfilename(end-3:end)];  % new temp file for temp netlist 

     

    % Modify netlist 

    netlist_temp = [netlist newline]; 

    for i=1:nSim+1 

        netlist_temp =[netlist_temp newline simText{i}];         

    end 

    netlist_temp =[netlist_temp newline '.end' newline];    

     

    % Save temp netlist  

    [fid,message] = fopen(netlist_tempPath,'w'); 

    if fid==-1 

        error(['Error open netlist temp file.' message]);  

    end 

    fprintf(fid,'%s',netlist_temp);  

    close = fclose(fid); 

    if close~=0 

        error(['Error closing netlist temp file.']);  

    end 

 

 

    %% Spice path 

    ngspicePath = char(which('ngspice.exe','-all')); 

 

    %% Raw and log files 

    savedatafolder = 'savedata';            % Temp folder 

    if exist([pwd '\' savedatafolder])~=7 

        mkdir(savedatafolder); 
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    end 

    rawfilename = [pwd '\' savedatafolder '\raw_' netlistfilename(1:end-4) '_' idtemp … 

'.txt']; 

    logfilePath = 'logfile.log'; 

 

    %% Run simulation 

    command = [ngspicePath ' -b -r ' rawfilename ' -o ' logfilePath ' ' netlist_tempPath ];  

 

    % Simulation command 

    system(command, '-echo');                                                           % run simulation 

     

    % Check simulation error in logfile 

    logfile = fileread(logfilePath);    % Read logfile 

     

    if contains(lower(logfile),'error') 

        error(['Simulation error.' logfile]);  

    end     

    delete(netlist_tempPath);   % Delete temp netlist 

 

    %% Read rawfile (simulations results) 

    rawfile = fileread(rawfilename);    % Read logfile 

     

    % Find sim data ini 

    simTitleIni = strfind(rawfile,'Title:');  

    simDateIni = strfind(rawfile,'Date:');  

    simPlotNameIni = strfind(rawfile,'Plotname:');  

    simFlagsIni = strfind(rawfile,'Flags:');  

    simNoVariablesIni = strfind(rawfile,'No. Variables:');  

    simNoPointsIni = strfind(rawfile,'No. Points:');  

    simValuesIni = strfind(rawfile,'Values:');      

     

 

    % Read simulations data 

    for i=1:nSim         

        % Find simulation initial data  

        datetext = char(regexp(rawfile(simDateIni(i):simPlotNameIni(i)), … 

'^Date:\s*(\w.*?\w)\s*$', 'tokens', 'once', 'lineanchors')); 

        data(i).date = datestr(datenum(datetext, 'ddd mmm dd HH:MM:SS  yyyy')); 
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        data(i).plotname = char(regexp(rawfile(simPlotNameIni(i):simFlagsIni(i)), … 

'^Plotname:\s*(\w.*?\w)\s*$', 'tokens', 'once', 'lineanchors')); 

        data(i).flags = char(regexp(rawfile(simFlagsIni(i):simNoVariablesIni(i)), … 

'^Flags:\s*(\w.*?\w)\s*$', 'tokens', 'once', 'lineanchors')); 

        % Find var number 

        numVariables = … 

str2double(char(regexp(rawfile(simNoVariablesIni(i):simNoPointsIni(i)), '^No\. … 

Variables:\s*(\d+)\s*$', 'tokens', 'once', 'lineanchors')));   

        % Find var names 

        simVariablesIni(i) = … 

simNoPointsIni(i)+11+strfind(rawfile(simNoPointsIni(i)+12:simNoPointsIni(i)+35),' … 

Variables:');   

        vartext = rawfile(simVariablesIni(i)+12:simValuesIni(i)-3); 

        variables = regexp(vartext, … 

'^\s*(?<num>\d+)\s+(?<name>\S+)\s+(?<type>.*?)\s*$', 'names', 'lineanchors'); 

        if numVariables < 1 

            error('The RAW file:\n\t%s\ncontains no variables.', rawfilename); 

        end 

        if numVariables ~= length(variables) 

            error('Was expecting %d variables, but found %d in RAW file:\n\t%s', … 

numVariables, length(variables)); 

        end 

        data(i).numVariables = numVariables; 

 

        % Tanslate vars to valid names in Matlab 

        varnames = {variables.name}; 

        varnames = regexprep(varnames, '(', '');  

        varnames = regexprep(varnames, ')', '');  

        varnames = regexprep(varnames, '-', '');  

        varnames = regexprep(varnames, '#', 'hash');  

        varnames = regexprep(varnames, '\.', 'dot');  

        varnames = regexprep(varnames, '\+', 'plus');  

        varnames = regexprep(varnames, ':', ''); % Remove colons. 

        data(i).varnames = varnames; 

        % Find num points 

        if (strcmp(simType{i},'tran'))||(strcmp(simType{i},'ac')) 

            numPoints = … 

str2double(char(regexp(rawfile(simNoPointsIni(i):simVariablesIni(i)), '^No\. … 

Points:\s*(\d+)\s*$', 'tokens', 'once', 'lineanchors'))); 

            if numPoints < 1 
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                error('The RAW file:\n\t%s\ncontains no points.', rawfilename); 

            end 

            data(i).numPoints = numPoints; 

        end  

         

        % next sim 

        if i==nSim 

            nextSim = length(rawfile); 

        else 

            nextSim = simTitleIni(i+1)-3; 

        end 

         

        % Show vars to save?? 

        if isempty(str2num(outVars{1})) 

            flagShow = 1; 

            ind_oV = 1; 

        else 

            flagShow = str2num(outVars{1}); 

            ind_oV = 2; 

        end        

                 

        switch simType{i} 

            case 'op' 

                % Read data 

                opData = sscanf(rawfile(simValuesIni(i)+10:nextSim),'%f');   

                data(i).results = opData; 

                if flagShow 

                    % Show data 

                    text2show = ['Results Operating Point Analysis: ' newline]; 

                    numOutVars = length(outVars);                 

                    for j=ind_oV:numOutVars 

                        index = find(strcmp(data(i).varnames,outVars{j}));    

                        if isempty(index) 

                            warning(['Variable ' outVars{j} ' does not exist.']); 

                        else 

                            if strcmp(variables(index).type,'current') 

                                unit = 'A'; 

                            elseif strcmp(variables(index).type,'voltage') 

                                unit = 'V'; 
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                            end 

                            text2show =[text2show varnames{index} ' = ' … 

num2str(opData(index)) ' ' unit newline]; 

                        end 

                    end                 

                    fprintf(text2show); 

                end 

                 

            case 'tran' 

                % Read data 

                data_matrix = zeros(numVariables, numPoints); 

                tranData = sscanf(rawfile(simValuesIni(i)+9:nextSim),'%f'); 

                for j=1:numPoints 

                    for k=1:numVariables 

                        data_matrix(k,j) = tranData((j-1)*(numVariables+1)+1+k); 

                    end 

                end 

                data(i).time = data_matrix(1,:); 

                data(i).results = data_matrix(2:end,:); 

                data(i).varnames = data(i).varnames(2:end); 

                % Show data 

                numOutVars = length(outVars);                 

                for j=ind_oV:numOutVars 

                    index = find(strcmp(data(i).varnames,outVars{j}));         

                    if isempty(index) 

                        warning(['Variable ' outVars{j} ' does not exist.']); 

                    else 

                        if strcmp(variables(index+1).type,'current') 

                            unit = 'A'; 

                        elseif strcmp(variables(index+1).type,'voltage') 

                            unit = 'V'; 

                        end 

                         

                        data(i).outVars(j-ind_oV+1).name = outVars{j}; 

                        data(i).outVars(j-ind_oV+1).value = data(i).results(index,:); 

                        if flagShow 

                            figuremax; 

                            plot(data(i).time,data(i).results(index,:)); 

                            ylabel([outVars{j} ' [' unit ']']) 
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                            xlabel('Time [s]'); 

                        end 

                    end 

                end 

            case 'ac' 

                % Read data 

                rawfileValues = regexprep(rawfile(simValuesIni(i)+9:nextSim),',',' '); 

                mag = zeros(numVariables, numPoints); 

                phase = zeros(numVariables, numPoints); 

                tranData = sscanf(rawfileValues,'%f'); 

                for j=1:numPoints 

                    for k=1:numVariables 

                        n1 = tranData((j-1)*(2*numVariables+1)+1+2*k-1); 

                        n2 = tranData((j-1)*(2*numVariables+1)+1+2*k); 

                        cNum = n1+1j*n2; 

                        phase(k,j) = angle(cNum)*180/pi-360;%*(n1<1e-3)*(n2>0); 

                        mag(k,j) = abs(cNum);                         

                    end 

                end 

                data(i).f = mag(1,:); 

                data(i).mag = mag(2:end,:); 

                data(i).phase = phase(2:end,:); 

                data(i).varnames = data(i).varnames(2:end); 

                 

                % Show data 

                numOutVars = length(outVars);                 

                for j=ind_oV:numOutVars 

                    index = find(strcmp(data(i).varnames,outVars{j}));         

                    if isempty(index) 

                        warning(['Variable ' outVars{j} ' does not exist.']); 

                    else 

                        if strcmp(variables(index+1).type,'current') 

                            unit = 'A'; 

                        elseif strcmp(variables(index+1).type,'voltage') 

                            unit = 'V'; 

                        end 

                         

                        data(i).outVars(j-ind_oV+1).name = outVars{j}; 

                        data(i).outVars(j-ind_oV+1).mag = data(i).mag(index,:); 
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                        data(i).outVars(j-ind_oV+1).phase = data(i).phase(index,:); 

                        if flagShow 

                            figuremax; 

                            subplot(2,1,1);semilogx(data(i).f,data(i).mag(index,:)); 

                            title(['Bode ' outVars{j}]); 

                            ylabel(['Magnitude [' unit '/' unit ']']); 

                            subplot(2,1,2);semilogx(data(i).f,data(i).phase(index,:)); 

                            ylabel(['Phase [º]']) 

                            xlabel('Frequency [Hz]'); 

                        end 

                    end 

                end 

            otherwise 

                error('Simulation type not supported.');  

        end 

    end 

     

    % Remove rawfile 

    delete(rawfilename);   % Delete temp netlist 

     

    % Output Data 

    out = data; 

 

end 

 

 

Obtain amplitude and Frequency without Fast Fourier Transform 

 

function out = getFA(y,xq,L) 

 

flag = 1; 

ind1 = 1; 

f = []; 

A = []; 

 

while flag==1        

    flag1 = 0; 

    flag2 = 0; 
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    flag3 = 0; 

    for i=ind1:L 

        if (flag1==0)&&(y(i)>0)&&(flag2==0) 

            flag1 = 1; 

        end 

        if flag1&&(y(i)<0)&&(flag2==0) 

            ini = i; 

            flag2 = 1;         

        end 

        if flag2&&(y(i)>0) 

            flag3 = 1; 

        end 

        if (flag3&&(y(i)<0))||(i==L) 

            fin = i-1; 

            break 

        end 

    end 

     

    if ((L-(fin+1))<(fin-ini)) 

        flag = 0; 

    else 

        ind1 = fin; 

    end 

     

    indMax = round(mean(find(max(y(ini:fin))==y(ini:fin)))); 

    indMin = round(mean(find(min(y(ini:fin))==y(ini:fin)))); 

    f = mean([f 0.5/abs(xq(indMax+ini)-xq(indMin+ini))]); 

    ysec = y(ini:fin); 

    A = mean([A max(ysec)]);     

end 

 

out.A = A; 

out.f = f; 

end 
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