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Abstract. In recent years, the interest in extracting useful knowledge
from gene expression data has experimented an enormous increase with
the development of microarray technique. Biclustering is a recent tech-
nique that aims at extracting a subset of genes that show a similar be-
haviour for a subset conditions. It is important, therefore, to measure
the quality of a bicluster, and a way to do that would be checking if
each data submatrix follows a specific trend, represented by a pattern.
In this work, we present an evolutionary algorithm for finding significant
shifting patterns which depict the general behaviour within each biclus-
ter. The empirical results we have obtained confirm the quality of our
proposal, obtaining very accurate solutions for the biclusters used.

Keywords: Gene Expression Data, Biclustering, Evolutionary Algo-
rithm, Shifting Pattern.

1 Introduction

Microarray data are widely used due to the great potential in different biomedical
fields as gene expression profiling, facilitating the prognosis and the discovering
of subtypes of diseases. A microarray is a set of DNA/RNA sequences, where
the gene expression data are organized in a two-dimensional array. Columns rep-
resent genes and rows represent experimental conditions, so that, each element
in the matrix refers to the expression level of a particular gen under specific
conditions.

In order to extract relevant knowledge from microarray expression data, clus-
tering techniques have been applied [4]. The main application of this techniques
is to group genes together according to any specific algorithm or mathemati-
cal formula related to their functional similarities over all conditions. However,
relevant genes are not necessarily related to every condition [15]. Thus, biclus-
tering [12] is a variation of clustering where the process consist of simultaneously
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mining columns and rows of the matrix. In the context of microarrays study, it
is applied to identify groups of genes which exhibit similar behaviour under a
specific subset of experimental conditions [8]. Bicluster analysis [14] takes into
account the fact that not every gene in a microarray may be relevant for all the
conditions, thus addressing in the two dimensions simultaneously the cluster-
ing problem. Biclustering methods for biological data analysis have been widely
studied in the literature [5,6,13].

In [8], Cheng and Church showed that some biclusters should contain a sub-
set of genes showing similar behaviour and not necessarily similar values, or in
other words, such genes could follow a pattern of behaviour. Thus, two types of
patterns [1], such as shifting and scaling patterns, should be found in biclusters.
These patterns can be very useful for different aspects as to find more genes
or conditions that should be included in a bicluster, or simply to describe the
common conduct of the genes belonging to a certain bicluster.

In this work, we address the finding pattern problem with Evolutionary Algo-
rithms (AE), which has been proven to have an excellent performance on highly
complex optimization problems. Thus, we present a new EA-based tool for find-
ing the shifting patterns which represents more accurately the behaviour of the
genes in a given bicluster. The experimental results show that our approach
obtains shifting patterns with an excellent performance.

The paper is organized as follows: in Section 2, an overview on patterns from
gene expression data is presented. We provide a description of our algorithm in
Section 3 and the experimental results are shown in Section 4. Finally, the last
section summarises the main conclusions of this work.

2 Patterns from Biclustering in Microarrays

The genes included in a bicluster could follow a pattern of behaviour [8]. This
idea was formally described in [1], where two kind of patterns were defined.

Let M be a microarray with N rows (conditions ci, with 1 ≤ i ≤ N) and
M conditions (genes gj , with 1 ≤ j ≤ M). Each element in the matrix will be
represented as vij ∈ M. Also, let B ⊆ M be a bicluster made up of n ≤ N
conditions and m ≤ M genes. Each element in the bicluster will be represented
as wij ∈ B. With these premises, shifting and scaling patterns are defined as
follows [1]:

A bicluster B shows a shifting pattern when the values wij can be obtained
by adding a certain value βi, constant for the ith condition, to a typical value
(πj) for the jth gene. Analogously, the definition of scaling pattern is similar
to the scaling by replacing the additive factor βi with multiplicative value αi.
Formally, a bicluster follows a shifting pattern (Equation 1) or a scaling pattern
(Equation 2) when it follows the expressions:

wij = πj + βi + ξij (1)

wij = πj × αi + ξij (2)
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Fig. 1. Examples of biclusters with shifting and scaling paterns

where wij is the value for gen j and condition i within a bicluster; πj is the fixed
value for jth gene; βi in Equation 1 is the shifting value for condition i; αi is
the scaling factor for ith condition in Equation 2; finally, ξij is the error that the
pattern makes for wij value. In both cases, when such error is 0 for all bicluster’s
values, we say we have a perfect bicluster.

In order to illustrate these definitions, Figure 1 shows an example of two
biclusters that follow a perfect shifting pattern (on the left) and a perfect scaling
pattern (on the right). In the shifting case, if we represent all the values for each
gene, all the charts have the same shape and slope, but in a different range (they
are parallel). However, in the scaling case, all the charts have similar shape but
different slopes.

In this work we only propose an algorithm for finding shifting patterns, al-
though both shifting and scaling patterns can be present in the data matrix
simultaneously. In any case, we are working in order to suggest a scaling ap-
proach for future works.

3 Algorithm

A family of computational techniques inspired by the concept of evolution is
known as Evolutionary Algorithms (EAs). These algorithms find the solutions
to a particular problem by applying a random search on a set of possible solutions
[7,11]. EAs use a finite subset of the search space, called population, in each iter-
ation. Previously, these possible solutions were encoded according to the selected
coding. The coding is the internal representation of the search space that the
algorithm uses. Each encoded element of the population is an individual. Thus,
beginning by a pseudo-randomly generated initial population, the evolutionary
algorithm selects some individuals and recombine them to generate a new gen-
eration of individuals. This process is repeated for a number of generations until
the algorithm converges. The selection of individuals is carried out according to
their fitness, that is a measurement of the quality of each individual with regards



to the remaining ones. The process of calculating the fitness of the individuals
is called evaluation. The evaluation consists in assigning a fitness value to every
individual by applying a fitness function.

As aforementioned, our goal is to find the best shifting pattern which repre-
sents the general trend within a bicluster. In this work, we address this problem
with EAs. Thus, we propose an algorithm which takes as inputs a bicluster and
various configuration parameters, returning a set of βi values (henceforth beta
set) for such bicluster.

Each chromosome or individual (I) is made up of a set of real numbers that
represent the beta values in real coding (I = {β1, β2, . . . , βi, . . . , βn}), corre-
sponding to a shifting pattern proposal. All the individuals have the same length
and equal to the number of conditions in the bicluster.

The initial population can be built in two different ways, generating the initial
solutions randomly or by using an algorithm based on mutations of the values
of the bicluster. For the experiments we present in this work, the second option
has been used. In each iteration, each individual of the population is evaluated
according to the fitness function defined in Equation 3, and based on the Mean
Absolute Error (MAE) of each individual, that is, the mean of |ξij | values (Equa-
tion 4). We have also implemented other alternatives for the fitness function such
as the mean squared error, but the obtained results were similar.

φ(I) =

∑n
i=1

∑m
j=1 ξij

n×m
(3)

ξij = wij − πj − βi (4)

At the end of each generation, the best individual is replicated to the next
one (elitism). Later, a set of individuals (the number of individuals is given by
the replication percentage) are selected through the roulette wheel method [10]
and replicated to the next generation. Afterwards, the use of recombination and
mutation operators allow us to combine a percentage of solutions selected by the
roulette wheel for producing new individuals [11]. These operators modify the
individuals in a random way. Crossover operator takes as input the number of
points for the recombination and create offspring by exchanging the substrings
of both parents, thus producing individuals in which the beta values are from
both of them. The mutation operator is applied to each individual depending
on the mutation probability. Whenever a solution is chosen for a mutation, a
random beta value is selected for being changed. The new value is calculated by
adding a value between zero and the mean of the error values committed for this
beta. Note that this mean can be either positive or negative, depending on the
range of the values in the bicluster. After a preset number of generations, the
algorithm return the best found beta set.

4 Experimental Results

To show the quality of our tool, we conducted experiments on the biclusters
obtained in previous work [2]. These biclusters were obtained by means of an



Table 1. Parameters values of the EA

Parameter Value
Population size 100
Number of generations 100
Crossover probability 0.80
Mutation probability 0.50
Replication probability 0.20
Number of points in crosses 2

EA from two well-known datasets: yeast Saccharomyces cerevisiae cell cycle ex-
pression dataset [9]; and the human B-cells expression data [3]. In this section,
we expose the empirical results obtained. In Table 1 the parameter settings for
all the experiments presented here are shown.

The algorithm was applied with several kinds of biclusters. Thus, for instance,
there are biclusters containing different number of genes and conditions or show-
ing different grades of shifting behaviour. Of course, as all of them are obtained
from real data, no of them exhibit a perfect shifting pattern, manifesting also
scaling trends. In the case of finding a shifting trend within a perfect bicluster,
the tool will perform an error value equal to zero in the first iteration.

We have performed our approach over all the biclusters obtained in [2], dis-
playing here the most relevant results. While testing the algorithm, several pa-
rameters configuration were used, presenting in this work the ones which per-
formed more interesting results. In all cases we have obtained a set of beta values
corresponding to the best found shifting pattern.

4.1 Yeast Dataset

The graphics for five yeast biclusters are represented in Figure 2. In this figure,
we expose two charts for each bicluster, the original bicluster (on the left) and
the pattern shifted to the range of each of the genes (on the right). We can
appreciate how the quality of the found pattern depends on the shifting trend
followed by the bicluster. In general terms, we could say that the pattern tries
to uniform the behaviour, thus ignoring some isolated local shapes. For instance,
in the bicluster labeled 991, the global trend has been perfectly simulated by the
result pattern.

Note that the less uniform the genes are, the worse the pattern will be. It
means that if we run the algorithm on a bicluster with these characteristic, the
shape of the pattern could be very different from some of the genes shapes.
Nevertheless, a great number of genes does not implies a bad quality of the
found pattern (see Figure 2, bicluster 11). Another important characteristic of
our algorithm is its rapid convergence; for almost every bicluster in the data set
we have experimented with, all of them present a similar convergence throughout
the generations. The bicluster labeled 641 has the best final error value (MAE =
10.8), meaning that the pattern our approach has found for this bicluster is closer
to the behaviour of the genes than the pattern in other biclusters. The worst value
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Fig. 2. Yeast biclusters analysed and their pattern result

of the fitness function in the last iteration is for bicluster 791 (MAE = 11.7),
due to this bicluster has few genes but they are quite different one from each
other. However, the differences among the error rates are not significant.

4.2 Human Dataset

Five out of hundred bicluster analysed are shown in Figure 3. This figure have a
similar structure that the previous one. There exists some differences from the
case of the yeast dataset. One point is that now the data include non-positive
values, although it makes no difference for our method. But another issue is that
the biclusters of the human dataset contain much more conditions. From this
point of view, we could expect the fitness function values to be worse than for
the previous dataset. Furthermore, the genes represented here are closer than
in the previous case, thus the result patterns are closer too, as we can easily
appreciate comparing the results in Figures 2 and 3, where we can see how the
range of the outcome patterns is bigger in the first case.

Figure 3 shown different kinds of biclusters. For instance, the one labeled
1011 contains only 3 genes but the mayor number of conditions (72). A medium-
length bicluster would be 501, which is made up of 11 genes and 58 conditions.
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Fig. 3. Human biclusters analysed and their pattern result

Nevertheless, the final error value depends on the quality of each bicluster and
not on its size. As we had predicted, the error values are greater than in the case
of the yeast dataset, due mainly to the great number of conditions. However,
although most of the biclusters tested by the tool show a similar fitness function
behaviour (the best MAE was 24.7 for 1011, and the worst was 27.4 for 311), the
convergence is not so quickly as for the yeast dataset, although an established
value has almost been reach in the last iterations.

5 Conclusions

This work has been developed on the idea that every gene in some types of bi-
clusters follows a similar behaviour, and their graphical representations follow
a similar trend with similar slopes. This behaviour is called shifting patterns.
In this paper we have presented a novel EA-based tool capable of finding shift-
ing patterns representing the general trend within a bicluster. Beginning from a
given bicluster, our approach applies a typical EA to obtain the βi coefficients
that define the pattern. Experimental results over hundred of samples confirm



the quality of our approach for finding this kind of patterns, obtaining very
accurate solutions for the biclusters used.

Future works will focus on finding both shitting and scaling patterns simul-
taneously. A first approach to the scaling problem would consist of considering
it as a shifting problem, using the properties of the logarithms.
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